DONATE

Publications

by Keyword: elastic-modulus

Sans, J, Arnau, M, Roa, JJ, Turon, P, Alernan, C, (2022). Tailorable Nanoporous Hydroxyapatite Scaffolds for Electrothermal Catalysis Acs Applied Nano Materials 5, 8526-8536

Polarized hydroxyapatite (HAp) scaffolds with customized architecture at the nanoscale have been presented as a green alternative to conventional catalysts used for carbon and dinitrogen fixation. HAp printable inks with controlled nanoporosity and rheological properties have been successfully achieved by incorporating Pluronic hydrogel. Nanoporous scaffolds with good mechanical properties, as demonstrated by means of the nanoindentation technique, have been obtained by a sintering treatment and the posterior thermally induced polarization process. Their catalytic activity has been evaluated by considering three different key reactions (all in the presence of liquid water): (1) the synthesis of amino acids from gas mixtures of N-2, CO2, and CH4; (2) the production of ethanol from gas mixtures of CO2 and CH4; and (3) the synthesis of ammonia from N-2 gas. Comparison of the yields obtained by using nanoporous and nonporous (conventional) polarized HAp catalysts shows that both the nanoporosity and water absorption capacity of the former represent a drawback when the catalytic reaction requires auxiliary coating layers, as for example for the production of amino acids. This is because the surface nanopores achieved by incorporating Pluronic hydrogel are completely hindered by such auxiliary coating layers. On the contrary, the catalytic activity improves drastically for reactions in which the HAp-based scaffolds with enhanced nanoporosity are used as catalysts. More specifically, the carbon fixation from CO2 and CH4 to yield ethanol improves by more than 3000% when compared with nonporous HAp catalyst. Similarly, the synthesis of ammonia by dinitrogen fixation increases by more than 2000%. Therefore, HAp catalysts based on nanoporous scaffolds exhibit an extraordinary potential for scalability and industrial utilization for many chemical reactions, enabling a feasible green chemistry alternative to catalysts based on heavy metals.

JTD Keywords: Amino acids, Amino-acids, Ammonium production, Bone, Carbon fixation, Composites, Constitutive phases, Decarbonization, Dinitrogen, Ditrogen fixation, Elastic-modulus, Electrophotosynthesis, Ethanol production, Hardness, Indentation, Nanoindentation, Pluronic hydrogel, Polarized hydroxyapatite


Babeli I, Puiggalí-Jou A, Roa JJ, Ginebra M-P, García-Torres J, Alemán C, (2021). Hybrid conducting alginate-based hydrogel for hydrogen peroxide detection from enzymatic oxidation of lactate International Journal Of Biological Macromolecules 193, 1237-1248

A conducting nanocomposite hydrogel is developed for the detection of L-lactate. The hydrogel is based on a mixture of alginate (Alg) and poly(3,4-ethylenedioxythiophene) (PEDOT), which is loaded with gold nanoparticles (GNP). In this novel hydrogel, Alg provides 3D structural support and flexibility, PEDOT confers conductivity and sensing capacity, and GNP provides signal amplification with respect to simple voltammetric and chronoamperometric response. The synergistic combination of the properties provided by each component results in a new flexible nanocomposite with outstanding capacity to detect hydrogen peroxide, which has been used to detect the oxidation of L-lactate. The hydrogel detects hydrogen peroxide with linear response and limits of detection of 0.91 ?M and 0.02 ?M by cyclic voltammetry and chronoamperometry, respectively. The hydrogel is functionalized with lactate oxidase, which catalyzes the oxidation of L-lactate to pyruvate, forming hydrogen peroxide. For L-lactate detection, the functionalized biosensor works in two linear regimes, one for concentrations lower than 5 mM with a limit of detection of 0.4 mM, and the other for concentrations up to 100 mM with a limit of detection of 3.5 mM. Because of its linear range interval, the developed biosensor could be suitable for a wide number of biological fluids. © 2021

JTD Keywords: biosensor, dehydrogenase, enzymatic oxidation, films, hardness, indentation, lactate oxidase, Biosensor, Elastic-modulus, Enzymatic oxidation, Lactate, Lactate oxidase, Reacciones enzimáticas


García-Mintegui C, Córdoba LC, Buxadera-Palomero J, Marquina A, Jiménez-Piqué E, Ginebra MP, Cortina JL, Pegueroles M, (2021). Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility Bioactive Materials 6, 4430-4446

In the recent decades, zinc (Zn) and its alloys have been drawing attention as promising candidates for bioresorbable cardiovascular stents due to its degradation rate more suitable than magnesium (Mg) and iron (Fe) alloys. However, its mechanical properties need to be improved in order to meet the criteria for vascular stents. This work investigates the mechanical properties, biodegradability and biocompatibility of Zn-Mg and Zn-Cu alloys in order to determine a proper alloy composition for optimal stent performance. Nanoindentation measurements are performed to characterize the mechanical properties at the nanoscale as a function of the Zn microstructure variations induced by alloying. The biodegradation mechanisms are discussed and correlated to microstructure, mechanical performance and bacterial/cell response. Addition of Mg or Cu alloying elements refined the microstructure of Zn and enhanced yield strength (YS) and ultimate tensile strength (UTS) proportional to the volume fraction of secondary phases. Zn-1Mg showed the higher YS and UTS and better performance in terms of degradation stability in Hanks’ solution. Zn-Cu alloys presented an antibacterial effect for S. aureus controlled by diffusion mechanisms and by contact. Biocompatibility was dependent on the degradation rate and the nature of the corrosion products.

JTD Keywords: behavior, biocompatibility, biodegradable metals, bioresorbable metals, bioresorbable scaffold, copper, corrosion properties, elastic-modulus, galvanic corrosion, microstructure, nanoindentation, redox homeostasis, zinc, Biocompatibility, Bioresorbable metals, Galvanic corrosion, Nanoindentation, Room-temperature superplasticity, Zinc alloys