DONATE

Olive oil offers two powerful weapons in the fight against antibiotic resistance

Researchers from the Institute for Bioengineering of Catalonia and the University of Granada have created two potent antimicrobials from oleanolic acid and maslinic acid, both of which are found in olive oil

The study, published in the journal ACS Infectious Diseases, has demonstrated the effect of these derivatives on the bacteria Staphylococcus aureus, one of the main causes of infections in catheters and prostheses.
Liquid gold. This is how all Mediterranean cultures have referred to olive oil throughout history. Its captivating flavour, its texture and its role in gastronomy have been some of the qualities that have contributed to this. But olive oil is also a great ally when it comes to health: from antiinflammatory properties to benefits for the cardiovascular system, and even recently discovered antitumor effects. Now, scientists from the Institute for Bioengineering of Catalonia (IBEC) and the University of Granada (UGR) have contributed new insights that increase the already well-known antimicrobial properties of olive oil.
To do this, they have synthesised two derivatives with enormous antimicrobial potential from two compounds present in olive oil—oleanolic acid and maslinic acid.

IBEC is a partner in four out of five 2018 BIST Ignite Grants awarded to multidisciplinary research projects

Four projects coordinated by 2 group leaders and 2 researchers from IBEC have been successful in gaining funding through the Barcelona Institute of Science and Technology’s IGNITE call.

The BIST Ignite Programme is a mechanism to foster multidisciplinary research among the BIST members. Its goal is to promote new collaboration between its partners, facilitating the exchange of knowledge among different scientific fields and exploring new approaches. The projects that can be eligible for the grants must pursue the exploration of new questions and technological challenges through novel multidisciplinary approaches. The selected projects are granted with 20.000€ each and researchers will have 8 months to develop their projects.

A step forward in using nanoparticles to fight bacterial resistance

The Bacterial Infections: Antimicrobial Therapies group from IBEC, led by Eduard Torrents, has designed a new method that, for the first time, makes it possible to check antimicrobial treatment efficacy in the presence of nanoparticles.This new technique has recently been published in the Journal of Nanobiotechnology..

Antimicrobial resistance is one of the main threats facing global healthcare today. According to data from the WHO, there are an increasing number of infections (pneumonia, tuberculosis, gonorrhoea) that are more difficult to treat given that many antibiotics have lost their effectiveness. The root of this problem lies in the excessive use and misuse of antibiotics, which causes bacteria to become resistant to them. As a result, antibiotics are no longer effective.

Two promising avenues in the fight against antibiotic resistance

IBEC’s Bacterial infections: antimicrobial therapies group have published two papers offering new hope in the urgent search for antimicrobials.

“We desperately need antimicrobials,” says Eduard Torrents. “Antibiotic resistance is one of the greatest threats to human health today, and the time is fast approaching when routine procedures will be much more risky.”
Not only have some common infections or illnesses become resistant to the antibiotics usually used to treat them, a really pressing medical problem now is the rapid rise of ‘superbugs’ or multidrug-resistant bacteria, which are immune to almost all of the antibiotics that are currently available.

Five IBEC researchers awarded “la Caixa” grants at ceremony

IBEC researchers were in the limelight today at the awards ceremony for the “la Caixa” fellowships and grants for research and innovation calls.

Anna Labernadie and Irene Marco, postdocs in the Integrative Cell and Tissue Dynamics and Biosensors for bioengineering groups respectively, won fellowships under the first Junior Leader “la Caixa” call, which helps excellent researchers of any nationality who wish to continue their research career in Spanish or Portuguese territory. Anna was one of 10 postdocs to win a ‘Retaining’ grant for candidates who are already residing in the countries, and Irene was awarded one of 20 ‘Incoming’ positions for those coming from elsewhere.

Bacteria need vitamins too

IBEC’s Bacterial infections: antimicrobial therapies group has revealed the essential role played by a vitamin in the development of a common bacterial biofilm.

This new knowledge could play a part in understanding the spread of these bacteria, which will help towards the better design of targeted antibacterial drugs.

P. aeruginosa bacteria cause chronic lung infections in patients with cystic fibrosis or chronic obstructive pulmonary disease (COPD) by forming a mature biofilm – in which cells stick to each other and can grow on many different surfaces – that lets them grow and adapt.

A molecular mechanism could explain how bacteria resist antibiotics

IBEC researchers have shown for the first time how bacteria make DNA under stressful conditions, such as drug treatments.

This new knowledge could help develop new antibiotics that work, tackling the urgent problem of antibiotic resistance.

The Bacterial infections: antimicrobial therapies group led by Dr. Eduard Torrents was studying the bacterial strain Pseudomonas aeruginosa, which can cause severe chronic lung infections in cystic fibrosis (CF) patients, leading to severely impaired lung function, an increased risk of respiratory failure, and death.

Mycobacterium in olive oil for cancer treatment

micobacterisResearchers at the Autonomous University of Barcelona (UAB) and Institute for Bioengineering of Catalonia (IBEC) have revealed a way to effectively deliver a mycobacterium needed for the treatment of bladder cancer in humans –using a formulation based on olive oil.

The researchers have found a way to reduce the natural clumping that occurs when mycobacteria cells, which possess a high content of lipids in their walls, are introduced to the usual aqueous solutions that are used for intravesical instillation in bladder cancer patients. This clumping may interfere with the interaction of the mycobacteria-host cells and negatively influence their antitumor effects.