DONATE

Inspiration from a carpenter’s toolbox

IBEC’s Smart-Nano-Bio-Devices and Nanobioengineering groups have joined forces to solve the problem of random movement of micro- and nanomotors.

Samuel Sanchez’s group has been forging ahead with its creation of self-propelling micro- and nanodevices in the last few years. These chemically powered ‘swimmers’ are self-propelled by catalytic reactions in fluids – which could be the fluids of our body, or water – and have a number of promising applications, such as targeted drug delivery, environmental remediation, or as pick-up and delivery agents in lab-on-a-chip devices.

Deciphering cell language

New insights into the intercellular communications mechanism that regulates cell repositioning leads the way towards the development of targeted therapies in regenerative medicine

Understanding the language of cells in order to redirect them when necessary: this is one possibility unveiled by researchers at the Center for Regenerative Medicine of Barcelona (CMR[B]), led by Dr. Samuel Ojosnegros, who describe in their latest paper the intercellular communications mechanism involved in cell relocation.

The work, published in Proceedings of the National Academy of Sciences (PNAS), was carried out in collaboration with the groups of Elena Martínez (IBEC) and Melike Lakadamyali (ICFO), among others. The fruitful collaboration also gave rise to the publication of work by Verónica Hortigüela, former PhD student in Elena’s group, who bioengineered a nanopatterning strategy that provides control over this communication mechanism.