DONATE

Luminescent Nanoparticle-based Implants for Pain and Epilepsy Treatment

The IBEC is set to lead the coordination of the PHOTOTHERAPORT project, which will be developed with funding from the European Innovation Council’s Pathfinder Open programme. The project focuses on the development of luminescent implants and light-activated drugs for innovative neuromodulation therapies. PHOTOTHERAPORT will comprise an international consortium of 8 institutions and will receive €3 million over 3 years for the preclinical study of these implants.

Researchers induce brain activation using infrared light-controlled drugs

A pioneering study led by IBEC in collaboration with ICFO has unveiled a method to control brain activity in living organisms using drugs activated by infrared light. This cutting-edge technique activates a specific neurotransmitter receptor using light that can penetrate deep into tissue and offers unparalleled pharmacological and spatiotemporal precision in three dimensions. The findings open new frontiers for neurobiology research and the development of light-based noninvasive neuromodulation therapies.

The first light-controlled drug that could improve the hearing of people with cochlear implants

Researchers at the Institute for Bioengineering of Catalonia (IBEC) in Spain and the University Medical Center Göttingen in Germany achieve, for the first time, in vivo light-activated auditory stimulation without the need for genetic manipulation. This new light-controlled drug, capable of triggering the neural pathways involved in hearing, can contribute to improving the spectral resolution of cochlear implants used by people with profound hearing loss or deafness.

Controlling brain states with a ray of light 

A study led by researchers from IBEC and IDIBAPS achieves, for the first time, the control of brain state transitions using a molecule responsive to light, named PAI.  The results not only pave the way to act on the brain patterns activity, but they also could lead to the development of photomodulated drugs for the treatment of brain lesions or diseases such as depression, bipolar disorders or Parkinson’s or Alzheimer’s diseases. 

New molecules allow to switch on and off neuronal circuits using light

Researchers from IBEC, in collaboration with an international team, describe the first molecules capable of regulate glycine receptors with light: Glyght and Azo-NZ1. The new molecules are a promising way to study neuronal circuits, to develop drug-based phototherapies non-invasively, and to understand neurological disorders related with the incorrect functioning of glycine receptors, as hyperekplexia, epilepsy and autism.