DONATE

Publications

by Keyword: sphere

del Moral, M, Loeck, M, Muntimadugu, E, Vives, G, Pham, V, Pfeifer, P, Battaglia, G, Muro, S, Andrianov, AK, (2023). Role of the Lactide:Glycolide Ratio in PLGA Nanoparticle Stability and Release under Lysosomal Conditions for Enzyme Replacement Therapy of Lysosomal Storage Disorders J Funct Biomater 14, 440

Prior studies demonstrated that encapsulation in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) enhanced the delivery of enzymes used for replacement therapy (ERT) of lysosomal storage disorders (LSDs). This study examined how the copolymer lactide:glycolide ratio impacts encapsulation, physicochemical characteristics, stability, and release under lysosomal conditions. Hyaluronidase, deficient in mucopolysaccharidosis IX, was encapsulated in NPs synthesized using 50:50, 60:40, or 75:25 lactide:glycolide copolymers. All NPs had diameters compatible with cellular transport (≤168 nm) and polydispersity indexes (≤0.16) and ζ-potentials (≤-35 mV) compatible with colloidal stability. Yet, their encapsulation efficiency varied, with 75:25 NPs and 60:40 NPs having the lowest and highest EE, respectively (15% vs. 28%). Under lysosomal conditions, the 50:50 copolymer degraded fastest (41% in 1 week), as expected, and the presence of a targeting antibody coat did not alter this result. Additionally, 60:40 NPs destabilized fastest (<1 week) because of their smaller diameter, and 75:25 NPs did not destabilize in 4 weeks. All formulations presented burst release under lysosomal conditions (56-78% of the original load within 30 min), with 50:50 and 60:40 NPs releasing an additional small fraction after week 1. This provided 4 weeks of sustained catalytic activity, sufficient to fully degrade a substrate. Altogether, the 60:40 NP formulation is preferred given its higher EE, and 50:50 NPs represent a valid alternative, while the highest stability of 75:25 NPs may impair lysosomes. These results can guide future studies aiming to translate PLGA NP-based ERT for this and other LSDs.

JTD Keywords: biodegradation, copolymer ratio, degradation, drug-delivery, emulsification, enzyme release, enzyme replacement therapy, hyaluronidase, mechanisms, microspheres, nanoparticle stability, poly(lactide-co-glycolide) nanoparticles, size, sphingomyelinase, transport, Central-nervous-system, Copolymer ratio, Enzyme release, Enzyme replacement therapy, Hyaluronidase, Lysosomal storage disorder, Nanoparticle stability, Poly(lactide-co-glycolide) nanoparticles


Wang, L, Huang, Y, Xu, H, Chen, S, Chen, H, Lin, Y, Wang, X, Liu, X, Sanchez, S, Huang, X, (2022). Contaminants-fueled laccase-powered Fe3O4@SiO2 nanomotors for synergistical degradation of multiple pollutants Materials Today Chemistry 26, 101059

Although an increasing number of micro/nanomotors have been designed for environmental remediation in the past decade, the construction of contaminants-fueled nanomotors for synergistically degrading multiple pollutants simultaneously remains a challenge. Herein, laccase-powered Fe3O4@silica nanomotors are fabricated, assisted with lipase enzyme for the enhanced degradation of multiple contaminants using the contaminants themselves as fuels. Notably, we demonstrate that representative industrial phenols and polycyclic aromatic pollutants possess the ability of triggering the enhanced Brownian motion of laccase nanomotors (De of 1.16 mu m(2)/s in 220 mu M biphenol A (BPA), 1.40 mu m(2)/s in 375 mu M Congo red (CR)). Additionally, the k(cat) value of lipase-assisted laccase-powered nanomotors increased over 1.4 times, enhancing their Brownian motion, while leading to the efficient degradation of multiple contaminants such as BPA, CR, and triacetin droplets within 40 min, simultaneously. Ultimately, the lipase-assisted laccase nanomotors exhibit great advantages over free laccase, free lipase, lipase nanomotors, or laccase nanomotors in K-m, k(cat), catalytic stability, recycling property, and the degradation efficiency of contaminants. Therefore, our work further broadens the library of enzyme-powered nanomotors and provides deep insights in synergistical enzymatic catalysis, thus paving avenues for environmental remediation based on enzyme-powered micro/nanomotors. (C) 2022 Elsevier Ltd. All rights reserved.

JTD Keywords: core, dye, environmental remediation, enzyme catalysis, hybrid, light, microspheres, motors, pollutants removal, propulsion, removal, self-propulsion, shell, Core, Dye, Environmental remediation, Enzyme catalysis, Hybrid, Light, Micro/nanomotors, Micromotors, Microspheres, Motors, Pollutants removal, Propulsion, Removal, Self-propulsion, Shell


Middelhoek, KINA, Magdanz, V, Abelmann, L, Khalil, ISM, (2022). Drug-Loaded IRONSperm clusters: modeling, wireless actuation, and ultrasound imaging Biomedical Materials 17, 65001

Individual biohybrid microrobots have the potential to perform biomedical in vivo tasks such as remote-controlled drug and cell delivery and minimally invasive surgery. This work demonstrates the formation of biohybrid sperm-templated clusters under the influence of an external magnetic field and essential functionalities for wireless actuation and drug delivery. Ferromagnetic nanoparticles are electrostatically assembled around dead sperm cells, and the resulting nanoparticle-coated cells are magnetically assembled into three-dimensional biohybrid clusters. The aim of this clustering is threefold: First, to enable rolling locomotion on a nearby solid boundary using a rotating magnetic field; second, to allow for noninvasive localization; third, to load the cells inside the cluster with drugs for targeted therapy. A magneto-hydrodynamic model captures the rotational response of the clusters in a viscous fluid, and predicts an upper bound for their step-out frequency, which is independent of their volume or aspect ratio. Below the step-out frequency, the rolling velocity of the clusters increases nonlinearly with their perimeter and actuation frequency. During rolling locomotion, the clusters are localized using ultrasound images at a relatively large distance, which makes these biohybrid clusters promising for deep-tissue applications. Finally, we show that the estimated drug load scales with the number of cells in the cluster and can be retained for more than 10 h. The aggregation of microrobots enables them to collectively roll in a predictable way in response to an external rotating magnetic field, and enhances ultrasound detectability and drug loading capacity compared to the individual microrobots. The favorable features of biohybrid microrobot clusters place emphasis on the importance of the investigation and development of collective microrobots and their potential for in vivo applications.

JTD Keywords: drug delivery, magnetic actuation, microrobot aggregation, sperm, Driven, Drug delivery, Magnetic actuation, Magnetotactic bacteria, Microrobot aggregation, Microrobots, Motion, Movement, Propulsion, Sperm, Sphere, Ultrasound, Wall


Bonany, M, del-Mazo-Barbara, L, Espanol, M, Ginebra, MP, (2022). Microsphere incorporation as a strategy to tune the biological performance of bioinks Journal Of Tissue Engineering 13, 20417314221119896

Although alginate is widely used as a matrix in the formulation of cell-laden inks, this polymer often requires laborious processing strategies due to its lack of cell adhesion moieties. The main objective of the present work was to explore the incorporation of microspheres into alginate-based bioinks as a simple and tuneable way to solve the cell adhesion problems, while adding extra biological functionality and improving their mechanical properties. To this end, three types of microspheres with different mineral contents (i.e. gelatine with 0% of hydroxyapatite, gelatine with 25 wt% of hydroxyapatite nanoparticles and 100 wt% of calcium -deficient hydroxyapatite) were synthesised and incorporated into the formulation of cell-laden inks. The results showed that the addition of microspheres generally improved the rheological properties of the ink, favoured cell proliferation and positively affected osteogenic cell differentiation. Furthermore, this differentiation was found to be influenced by the type of microsphere and the ability of the cells to migrate towards them, which was highly dependent on the stiffness of the bioink. In this regard, Ca2+ supplementation in the cell culture medium had a pronounced effect on the relaxation of the stiffness of these cell-loaded inks, influencing the overall cell performance. In conclusion, we have developed a powerful and tuneable strategy for the fabrication of alginate-based bioinks with enhanced biological characteristics by incorporating microspheres into the initial ink formulation.; [GRAPHICS]; .

JTD Keywords: 3d bioprinting, alginate, bioink, gelatine, hydroxyapatite, 3d bioprinting, Alginate, Behavior, Bioink, Cell-culture, Gelatin, Gelatine, Hydrogels, Hydroxyapatite, Laden, Microspheres, Mineralization, Scaffolds


Clua-Ferre, L, De Chiara, F, Rodriguez-Comas, J, Comelles, J, Martinez, E, Godeau, AL, Garcia-Alaman, A, Gasa, R, Ramon-Azcon, J, (2022). Collagen-Tannic Acid Spheroids for beta-Cell Encapsulation Fabricated Using a 3D Bioprinter Advanced Materials Technologies 7, 2101696

Type 1 Diabetes results from autoimmune response elicited against β-cell antigens. Nowadays, insulin injections remain the leading therapeutic option. However, injection treatment fails to emulate the highly dynamic insulin release that β-cells provide. 3D cell-laden microspheres have been proposed during the last years as a major platform for bioengineering insulin-secreting constructs for tissue graft implantation and a model for in vitro drug screening platforms. Current microsphere fabrication technologies have several drawbacks: the need for an oil phase containing surfactants, diameter inconsistency of the microspheres, and high time-consuming processes. These technologies have widely used alginate for its rapid gelation, high processability, and low cost. However, its low biocompatible properties do not provide effective cell attachment. This study proposes a high-throughput methodology using a 3D bioprinter that employs an ECM-like microenvironment for effective cell-laden microsphere production to overcome these limitations. Crosslinking the resulting microspheres with tannic acid prevents collagenase degradation and enhances spherical structural consistency while allowing the diffusion of nutrients and oxygen. The approach allows customization of microsphere diameter with extremely low variability. In conclusion, a novel bio-printing procedure is developed to fabricate large amounts of reproducible microspheres capable of secreting insulin in response to extracellular glucose stimuli.© 2022 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH.

JTD Keywords: 3d bioprinter, beta-cell, biomaterial, collagen, encapsulation, mechanics, microspheres, survival, 3d bioprinter, ?-cell, Advanced material technologies, Biocompatibility, Cell encapsulations, Cells, Collagen, Cross-linking, Cytology, Drug delivery, Encapsulation, Fabrication, Flavonoids, Gelation, In-vitro, Insulin injections, Insulin release, Microspheres, Tannic acid, Tannins, Throughput, Tissue grafts, Type 1 diabetes, Β‐cell


Konka, J, Buxadera-Palomero, J, Espanol, M, Ginebra, MP, (2021). 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments Acta Biomaterialia 134, 744-759

Porosity plays a key role on the osteogenic performance of bone scaffolds. Direct Ink Writing (DIW) allows the design of customized synthetic bone grafts with patient-specific architecture and controlled macroporosity. Being an extrusion-based technique, the scaffolds obtained are formed by arrays of cylindrical filaments, and therefore have convex surfaces. This may represent a serious limitation, as the role of surface curvature and more specifically the stimulating role of concave surfaces in osteoinduction and bone growth has been recently highlighted. Hence the need to design strategies that allow the introduction of concave pores in DIW scaffolds. In the current study, we propose to add gelatin microspheres as a sacrificial material in a self-setting calcium phosphate ink. Neither the phase transformation responsible for the hardening of the scaffold nor the formation of characteristic network of needle-like hydroxyapatite crystals was affected by the addition of gelatin microspheres. The partial dissolution of the gelatin resulted in the creation of spherical pores throughout the filaments and exposed on the surface, increasing filament porosity from 0.2 % to 67.9 %. Moreover, the presence of retained gelatin proved to have a significant effect on the mechanical properties, reducing the strength but simultaneously giving the scaffolds an elastic behavior, despite the high content of ceramic as a continuous phase. Notwithstanding the inherent difficulty of in vitro cultures with this highly reactive material an enhancement of MG-63 cell proliferation, as well as better spreading of hMSCs was recorded on the developed scaffolds. Statement of significance: Recent studies have stressed the role that concave surfaces play in tissue regeneration and, more specifically, in osteoinduction and osteogenesis. Direct ink writing enables the production of patient-specific bone grafts with controlled architecture. However, besides many advantages, it has the serious limitation that the surfaces obtained are convex. In this article, for the first time we develop a strategy to introduce concave pores in the printed filaments of biomimetic hydroxyapatite by incorporation and partial dissolution of gelatin microspheres. The retention of part of the gelatin results in a more elastic behavior compared to the brittleness of hydroxyapatite scaffolds, while the needle-shaped nanostructure of biomimetic hydroxyapatite is maintained and gelatin-coated concave pores on the surface of the filaments enhance cell spreading. © 2021 The Authors

JTD Keywords: 3d printing, bioceramics, biomimetic, bone, bone regeneration, concavity, concavity, bone regeneration, gelatin, hydrogel, hydroxyapatite, microspheres, osteoinduction, porosity, porous filament, substitutes, tissue-growth, 3d printing, Biomimetic, Calcium-phosphate scaffolds, Concavity, bone regeneration, Gelatin, Hydroxyapatite, Porous filament


Katuri, J, Uspal, WE, Popescu, MN, Sánchez, S, (2021). Inferring non-equilibrium interactions from tracer response near confined active Janus particles Science Advances 7, eabd0719

Chemically active Janus particles sustain non-equilibrium spatial variations in the chemical composition of the suspending solution; these induce hydrodynamic flow and (self-)motility of the particles. Direct mapping of these fields has so far proven to be too challenging. Therefore, indirect methods are needed, e.g., deconvolving the response of “tracer” particles to the activity-induced fields. Here, we study experimentally the response of silica particles, sedimented at a wall, to active Pt/silica Janus particles. The latter are either immobilized at the wall, with the symmetry axis perpendicular or parallel to the wall, or motile. The experiments reveal complex effective interactions that are dependent on the configuration and on the state of motion of the active particle. Within the framework of a coarse-grained model, the behavior of tracers near an immobilized Janus particle can be captured qualitatively once activity-induced osmotic flows on the wall are considered.

JTD Keywords: sphere, Motion


Klein, S., Schierwagen, R., Uschner, F. E., Trebicka, J., (2017). Mouse and rat models of induction of hepatic fibrosis and assessment of portal hypertension Fibrosis (Methods in Molecular Biology) (ed. Rittié, L.), Humana Press (New York, USA) 1627, 91-116

Portal hypertension either develops due to progressive liver fibrosis or is the consequence of vascular liver diseases such as portal vein thrombosis or non-cirrhotic portal hypertension. This chapter focuses on different rodent models of liver fibrosis with portal hypertension and also in few non-cirrhotic portal hypertension models. Importantly, after the development of portal hypertension, the proper assessment of drug effects in the portal and systemic circulation should be discussed. The last part of the chapter is dedicated in these techniques to assess the in vivo hemodynamics and the ex vivo techniques of the isolated liver perfusion and vascular contractility.

JTD Keywords: Aortic ring contraction, Bile duct ligation, Carbon tetrachloride, Colored microsphere technique, High-fat diet, Isolated in situ liver perfusion, Methionine-choline-deficient diet, Partial portal vein ligation, Portal hypertension


Perez, R. A., Del Valle, S., Altankov, G., Ginebra, M. P., (2011). Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion Journal of Biomedical Materials Research - Part B: Applied Biomaterials , 97B, (1), 156-166

Hydroxyapatite and hybrid gelatine/hydroxyapatite microspheres were obtained through a water in oil emulsion of a calcium phosphate cement (CPC). The setting reaction of the CPC, in this case the hydrolysis of alpha-tricalcium phosphate, was responsible for the consolidation of the microspheres. After the setting reaction, the microspheres consisted of an entangled network of hydroxyapatite crystals, with a high porosity and pore sizes ranging between 0.5 and 5 mu m. The size of the microspheres was tailored by controlling the viscosity of the hydrophobic phase, the rotation speed, and the initial powder size of the CPC. The incorporation of gelatin increased the sphericity of the microspheres, as well as their size and size dispersion. To assess the feasibility of using the microspheres as cell microcarriers, Saos-2 cells were cultured on the microspheres. Fluorescent staining, SEM studies, and LDH quantification showed that the microspheres were able to sustain cell growth. Cell adhesion and proliferation was significantly improved in the hybrid gelatin/hydroxyapatite microspheres as compared to the hydroxyapatite ones.

JTD Keywords: Calcium phosphate(s), Bone graft, Microspheres, Composite/hard tissue, Hydroxy(1)lapatite