DONATE

Publications

by Keyword: Bioresorbable

Chausse, V, Iglesias, C, Bou-Petit, E, Ginebra, MP, Pegueroles, M, (2023). Chemical vs thermal accelerated hydrolytic degradation of 3D-printed PLLA/PLCL bioresorbable stents: Characterization and influence of sterilization Polymer Testing 117, 107817

Bioresorbable stents (BRS) are designed to provide initial sufficient mechanical support to prevent vessel recoil while being degraded until their complete resorption. Therefore, degradation rate of BRS plays a crucial role in successful stent performance. This work presents a complete study on the degradation of poly-llactic acid (PLLA) and poly(lactic-co-epsilon-caprolactone) (PLCL) stents fabricated by solvent-cast direct-writing (SC-DW) through two different accelerated assays: alkaline medium at 37 degrees C for 10 days and PBS at 50 degrees C for 4 months. On retrieval, degraded stents were characterized in terms of mass loss, molecular weight (Mw), thermal and mechanical properties. The results showed that under alkaline conditions, stents underwent surface erosion, whereas stents immersed in PBS at 50 degrees C experienced bulk degradation. M-n decrease was accurately described by the autocatalyzed kinetic model, with PLCL showing a degradation rate 1.5 times higher than PLLA. Additionally, stents were subjected to gamma-irradiation and ethylene oxide (EtO) sterilization. Whereas EtOsterilized stents remained structurally unaltered, gamma-irradiated stents presented severe deterioration as a result of extensive chain scission.

JTD Keywords: Acid, Behavior, Bioresorbable stents, Copolymer, Hydrolytic degradation, In-vitro degradation, Mechanical-properties, Molecular-weight, Poly(l-lactide), Poly-l-lactic acid, Poly-l-lactide, Scaffolds, Solvent-cast direct-writing, Sterilization


García-Mintegui C, Córdoba LC, Buxadera-Palomero J, Marquina A, Jiménez-Piqué E, Ginebra MP, Cortina JL, Pegueroles M, (2021). Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility Bioactive Materials 6, 4430-4446

In the recent decades, zinc (Zn) and its alloys have been drawing attention as promising candidates for bioresorbable cardiovascular stents due to its degradation rate more suitable than magnesium (Mg) and iron (Fe) alloys. However, its mechanical properties need to be improved in order to meet the criteria for vascular stents. This work investigates the mechanical properties, biodegradability and biocompatibility of Zn-Mg and Zn-Cu alloys in order to determine a proper alloy composition for optimal stent performance. Nanoindentation measurements are performed to characterize the mechanical properties at the nanoscale as a function of the Zn microstructure variations induced by alloying. The biodegradation mechanisms are discussed and correlated to microstructure, mechanical performance and bacterial/cell response. Addition of Mg or Cu alloying elements refined the microstructure of Zn and enhanced yield strength (YS) and ultimate tensile strength (UTS) proportional to the volume fraction of secondary phases. Zn-1Mg showed the higher YS and UTS and better performance in terms of degradation stability in Hanks’ solution. Zn-Cu alloys presented an antibacterial effect for S. aureus controlled by diffusion mechanisms and by contact. Biocompatibility was dependent on the degradation rate and the nature of the corrosion products.

JTD Keywords: behavior, biocompatibility, biodegradable metals, bioresorbable metals, bioresorbable scaffold, copper, corrosion properties, elastic-modulus, galvanic corrosion, microstructure, nanoindentation, redox homeostasis, zinc, Biocompatibility, Bioresorbable metals, Galvanic corrosion, Nanoindentation, Room-temperature superplasticity, Zinc alloys


Chausse, Victor, Schieber, Romain, Raymond, Yago, Ségry, Brian, Sabaté, Ramon, Kolandaivelu, Kumaran, Ginebra, Maria-Pau, Pegueroles, Marta, (2021). Solvent-cast direct-writing as a fabrication strategy for radiopaque stents Additive Manufacturing 48,