DONATE

Publications

by Keyword: Self assembly

Dias JMS, Estima D, Punte H, Klingner A, Marques L, Magdanz V, Khalil ISM, (2022). Modeling and Characterization of the Passive Bending Stiffness of Nanoparticle-Coated Sperm Cells using Magnetic Excitation Advanced Theory And Simulations 5, 2100438

Of all the various locomotion strategies in low- (Formula presented.), traveling-wave propulsion methods with an elastic tail are preferred because they can be developed using simple designs and fabrication procedures. The only intrinsic property of the elastic tail that governs the form and rate of wave propagation along its length is the bending stiffness. Such traveling wave motion is performed by spermatozoa, which possess a tail that is characterized by intrinsic variable stiffness along its length. In this paper, the passive bending stiffness of the magnetic nanoparticle-coated flagella of bull sperm cells is measured using a contactless electromagnetic-based excitation method. Numerical elasto-hydrodynamic models are first developed to predict the magnetic excitation and relaxation of nanoparticle-coated nonuniform flagella. Then solutions are provided for various groups of nonuniform flagella with disparate nanoparticle coatings that relate their bending stiffness to their decay rate after the magnetic field is removed and the flagellum restores its original configuration. The numerical models are verified experimentally, and capture the effect of the nanoparticle coating on the bending stiffness. It is also shown that electrostatic self-assembly enables arbitrarily magnetizable cellular segments with variable stiffness along the flagellum. The bending stiffness is found to depend on the number and location of the magnetized cellular segments. © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH.

JTD Keywords: Bending stiffness, Cells, Cellulars, Coatings, Decay (organic), Electric excitation, Excited states, Flagellar propulsion, Locomotion strategies, Low reynolds numbers, Magnetic, Magnetic excitations, Nanoparticle coatings, Passive, Propulsion methods, Self assembly, Simple++, Sperm cell, Sperm cells, Stiffness, Travelling waves, Variable stiffness, Wave propagation


Jain, A, Calo, A, Barcelo, D, Kumar, M, (2022). Supramolecular systems chemistry through advanced analytical techniques Analytical And Bioanalytical Chemistry 414, 5105-5119

Supramolecular chemistry is the quintessential backbone of all biological processes. It encompasses a wide range from the metabolic network to the self-assembled cytoskeletal network. Combining the chemical diversity with the plethora of functional depth that biological systems possess is a daunting task for synthetic chemists to emulate. The only route for approaching such a challenge lies in understanding the complex and dynamic systems through advanced analytical techniques. The supramolecular complexity that can be successfully generated and analyzed is directly dependent on the analytical treatment of the system parameters. In this review, we illustrate advanced analytical techniques that have been used to investigate various supramolecular systems including complex mixtures, dynamic self-assembly, and functional nanomaterials. The underlying theme of such an overview is not only the exceeding detail with which traditional experiments can be probed but also the fact that complex experiments can now be attempted owing to the analytical techniques that can resolve an ensemble in astounding detail. Furthermore, the review critically analyzes the current state of the art analytical techniques and suggests the direction of future development. Finally, we envision that integrating multiple analytical methods into a common platform will open completely new possibilities for developing functional chemical systems.

JTD Keywords: analytical techniques, dynamic self-assembly, high-speed afm, liquid cell tem, Analytical technique, Analytical techniques, Biological process, Chemical analysis, Chemical diversity, Complex networks, Cytoskeletal network, Dynamic self-assembly, High-speed afm, Hydrogels, In-situ, Liquid cell tem, Metabolic network, Microscopy, Nanoscale, Proteins, Self assembly, Supramolecular chemistry, Supramolecular systems, System chemistry, Systems chemistry


Duro-Castano, Aroa, Rodríguez-Arco, Laura, Ruiz-Pérez, Lorena, De Pace, Cesare, Marchello, Gabriele, Noble-Jesus, Carlos, Battaglia, Giuseppe, (2021). One-Pot Synthesis of Oxidation-Sensitive Supramolecular Gels and Vesicles Biomacromolecules 22, 5052-5064

Polypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles. This was achieved by polymerization-induced self-assembly (PISA) of the N-carboxyanhydride (NCA) precursor of methionine using poly(ethylene oxide) as a stabilizing and hydrophilic block in dimethyl sulfoxide (DMSO). By adjusting the hydrophobic block length and concentration, we obtained a range of morphologies from spherical to wormlike micelles, to vesicles. Remarkably, the secondary structure of polypeptides greatly influenced the final morphology of the assemblies. Surprisingly, wormlike micellar morphologies were obtained for a wide range of methionine block lengths and solid contents, with spherical micelles restricted to very short hydrophobic lengths. Wormlike micelles further assembled into oxidation-sensitive, self-standing gels in the reaction pot. Both vesicles and wormlike micelles obtained using this method demonstrated to degrade under controlled oxidant conditions, which would expand their biomedical applications such as in sustained drug release or as cellular scaffolds in tissue engineering.

JTD Keywords: alpha-amino-acid, hydrogels, leuchs anhydrides, platform, polypeptides, transformation, triggered cargo release, Amino acids, Amphiphilics, Biocompatibility, Biodegradability, Block lengths, Controlled drug delivery, Dimethyl sulfoxide, Ethylene, Gels, Hydrophobicity, Medical nanotechnology, Methionine, Micelles, Morphology, One-pot synthesis, Organic solvents, Oxidation, Physiological condition, Polyethylene oxides, Post-polymerization, Ring-opening polymerization, Scaffolds (biology), Self assembly, Stimuli-responsive properties, Supramolecular chemistry, Supramolecular gels, Supramolecular micelles, Wormlike micelle


Valle-Delgado, J. J., Liepina, I., Lapidus, D., Sabaté, R., Ventura, S., Samitier, J., Fernàndez-Busquets, X., (2012). Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy Soft Matter 8, (4), 1234-1242

The self-assembly of peptides and proteins into amyloid fibrils of nanometric thickness and up to several micrometres in length, a phenomenon widely observed in biological systems, has recently aroused a growing interest in nanotechnology and nanomedicine. Here we have applied atomic force microscopy and single molecule force spectroscopy to study the amyloidogenesis of a peptide derived from human amylin and of its reverse sequence. The spontaneous formation of protofibrils and their orientation along well-defined directions on graphite and DMSO-coated graphite substrates make the studied peptides interesting candidates for nanotechnological applications. The measured binding forces between peptides correlate with the number of hydrogen bonds between individual peptides inside the fibril structure according to molecular dynamics simulations.

JTD Keywords: Amyloid fibril, Amyloidogenesis, Binding forces, Fibril structure, Graphite substrate, Molecular dynamics simulations, Nanometrics, Protofibrils, Single molecule force spectroscopy, Spontaneous formation, Atomic force microscopy, Atomic spectroscopy, Graphite, Hydrogen bonds, Medical nanotechnology, Molecular dynamics, Molecular physics, Self assembly, Thickness measurement, Peptides