DONATE

Publications

by Keyword: Transition

Wang, ZH, Klingner, A, Magdanz, V, Hoppenreijs, MW, Misra, S, Khalil, ISM, (2022). Flagellar Propulsion of Sperm Cells Against a Time-Periodic Interaction Force Advanced Biology , 2200210

Sperm cells undergo complex interactions with external environments, such as a solid-boundary, fluid flow, as well as other cells before arriving at the fertilization site. The interaction with the oviductal epithelium, as a site of sperm storage, is one type of cell-to-cell interaction that serves as a selection mechanism. Abnormal sperm cells with poor swimming performance, the major cause of male infertility, are filtered out by this selection mechanism. In this study, collinear bundles, consisting of two sperm cells, generate propulsive thrusts along opposite directions and allow to observe the influence of cell-to-cell interaction on flagellar wave-patterns. The developed elasto-hydrodynamic model demonstrates that steric and adhesive forces lead to highly symmetrical wave-pattern and reduce the bending amplitude of the propagating wave. It is measured that the free cells exhibit a mean flagellar curvature of 6.4 +/- 3.5 rad mm(-1) and a bending amplitude of 13.8 +/- 2.8 rad mm(-1). After forming the collinear bundle, the mean flagellar curvature and bending amplitude are decreased to 1.8 +/- 1.1 and 9.6 +/- 1.4 rad mm(-1), respectively. This study presents consistent theoretical and experimental results important for understanding the adaptive behavior of sperm cells to the external time-periodic force encountered during sperm-egg interaction.

JTD Keywords: Bovine sperm cells, Cell-to-cell interaction, Cilia, Filaments, Flagellar propulsion, Hydrodynamic models, Mechanism, Micro-video, Model, Motility, Thermotaxis, Transformations, Transition


Marhuenda, E, Villarino, A, Narciso, M, Elowsson, L, Almendros, I, Westergren-Thorsson, G, Farre, R, Gavara, N, Otero, J, (2022). Development of a physiomimetic model of acute respiratory distress syndrome by using ECM hydrogels and organ-on-a-chip devices Frontiers In Pharmacology 13, 945134

Acute Respiratory Distress Syndrome is one of the more common fatal complications in COVID-19, characterized by a highly aberrant inflammatory response. Pre-clinical models to study the effect of cell therapy and anti-inflammatory treatments have not comprehensively reproduced the disease due to its high complexity. This work presents a novel physiomimetic in vitro model for Acute Respiratory Distress Syndrome using lung extracellular matrix-derived hydrogels and organ-on-a-chip devices. Monolayres of primary alveolar epithelial cells were cultured on top of decellullarized lung hydrogels containing primary lung mesenchymal stromal cells. Then, cyclic stretch was applied to mimic breathing, and an inflammatory response was induced by using a bacteriotoxin hit. Having simulated the inflamed breathing lung environment, we assessed the effect of an anti-inflammatory drug (i.e., dexamethasone) by studying the secretion of the most relevant inflammatory cytokines. To better identify key players in our model, the impact of the individual factors (cyclic stretch, decellularized lung hydrogel scaffold, and the presence of mesenchymal stromal cells) was studied separately. Results showed that developed model presented a more reduced inflammatory response than traditional models, which is in line with what is expected from the response commonly observed in patients. Further, from the individual analysis of the different stimuli, it was observed that the use of extracellular matrix hydrogels obtained from decellularized lungs had the most significant impact on the change of the inflammatory response. The developed model then opens the door for further in vitro studies with a better-adjusted response to the inflammatory hit and more robust results in the test of different drugs or cell therapy.

JTD Keywords: Acute lung injury, Alveolar epithelial cells, Ards, Dexamethasone, Epithelial-mesenchymal transition, Extracellular matrix, Extracellular-matrix, Hydrogels, Inflammation, Lung-on-a-chip, Mesenchymal stromal cells, Oxygen, Stem-cells


De Corato, M, Arroyo, M, (2022). A theory for the flow of chemically responsive polymer solutions: Equilibrium and shear-induced phase separation Journal Of Rheology 66, 813-835

Chemically responsive polymers are macromolecules that respond to local variations of the chemical composition of the solution by changing their conformation, with notable examples including polyelectrolytes, proteins, and DNA. The polymer conformation changes can occur in response to changes in the pH, the ionic strength, or the concentration of a generic solute that interacts with the polymer. These chemical stimuli can lead to drastic variations of the polymer flexibility and even trigger a transition from a coil to a globule polymer conformation. In many situations, the spatial distribution of the chemical stimuli can be highly inhomogeneous, which can lead to large spatial variations of polymer conformation and of the rheological properties of the mixture. In this paper, we develop a theory for the flow of a mixture of solute and chemically responsive polymers. The approach is valid for generic flows and inhomogeneous distributions of polymers and solutes. To model the polymer conformation changes introduced by the interactions with the solute, we consider the polymers as linear elastic dumbbells whose spring stiffness depends on the solute concentration. We use Onsager's variational formalism to derive the equations governing the evolution of the variables, which unveils novel couplings between the distribution of dumbbells and that of the solute. Finally, we use a linear stability analysis to show that the governing equations predict an equilibrium phase separation and a distinct shear-induced phase separation whereby a homogeneous distribution of solute and dumbbells spontaneously demix. Similar phase transitions have been observed in previous experiments using stimuli-responsive polymers and may play an important role in living systems. (C) 2022 The Society of Rheology.

JTD Keywords: Coil-globule transition, Constitutive equation, Dilute-solutions, Dumbbell model, Dynamics, Macromolecules, Nonequilibrium thermodynamics, Polyelectrolytes, Polymer migration, Polymer phase separation, Polymers, Predictions, Rheology, Shear-induced phase separation, Solute-polymer interactions, Stress, Viscoelasticity


Sans, Jordi, Arnau, Marc, Turon, Pau, Alemán, Carlos, (2022). Permanently polarized hydroxyapatite, an outstanding catalytic material for carbon and nitrogen fixation Materials Horizons 9, 1566-1576

Permanently polarized hydroxyapatite is a new material with electrical enhanced properties. This review discusses the advances in this material in terms of structure, properties and catalytic activity of green processes.

JTD Keywords: ammonia, bone, copper hydroxyapatite, electrophotosynthesis, nanoparticles, oxidation, phase-transition, reduction, Amino-acids


Valenti, Sofia, del Valle, Luis Javier, Romanini, Michela, Mitjana, Meritxell, Puiggalí, Jordi, Tamarit, Josep Lluís, Macovez, Roberto, (2022). Drug-Biopolymer Dispersions: Morphology- and Temperature- Dependent (Anti)Plasticizer Effect of the Drug and Component-Specific Johari–Goldstein Relaxations International Journal Of Molecular Sciences 23, 2456

Amorphous molecule-macromolecule mixtures are ubiquitous in polymer technology and are one of the most studied routes for the development of amorphous drug formulations. For these applications it is crucial to understand how the preparation method affects the properties of the mixtures. Here, we employ differential scanning calorimetry and broadband dielectric spectroscopy to investigate dispersions of a small-molecule drug (the Nordazepam anxiolytic) in biodegradable polylactide, both in the form of solvent-cast films and electrospun microfibres. We show that the dispersion of the same small-molecule compound can have opposite (plasticizing or antiplasticizing) effects on the segmental mobility of a biopolymer depending on preparation method, temperature, and polymer enantiomerism. We compare two different chiral forms of the polymer, namely, the enantiomeric pure, semicrystalline L-polymer (PLLA), and a random, fully amorphous copolymer containing both L and D monomers (PDLLA), both of which have lower glass transition temperature (Tg) than the drug. While the drug has a weak antiplasticizing effect on the films, consistent with its higher Tg, we find that it actually acts as a plasticizer for the PLLA microfibres, reducing their Tg by as much as 14 K at 30%-weight drug loading, namely, to a value that is lower than the Tg of fully amorphous films. The structural relaxation time of the samples similarly depends on chemical composition and morphology. Most mixtures displayed a single structural relaxation, as expected for homogeneous samples. In the PLLA microfibres, the presence of crystalline domains increases the structural relaxation time of the amorphous fraction, while the presence of the drug lowers the structural relaxation time of the (partially stretched) chains in the microfibres, increasing chain mobility well above that of the fully amorphous polymer matrix. Even fully amorphous homogeneous mixtures exhibit two distinct Johari–Goldstein relaxation processes, one for each chemical component. Our findings have important implications for the interpretation of the Johari–Goldstein process as well as for the physical stability and mechanical properties of microfibres with small-molecule additives.

JTD Keywords: amorphous pharmaceuticals, beta-relaxation, constant loss, crystallization, dielectric spectroscopy, dynamics, formulation morphology, glass transition, molecular mobility, nanofibers, polylactide, polymer enantiomerism, secondary relaxations, valium metabolite, viscous-liquids, Amorphous pharmaceuticals, Glass-transition, Secondary relaxations


Zeinali, Reza, del Valle, Luis J., Franco, Lourdes, Yousef, Ibraheem, Rintjema, Jeroen, Alemán, Carlos, Bravo, Fernando, Kleij, Arjan W., Puiggalí, Jordi, (2022). Biobased Terpene Derivatives: Stiff and Biocompatible Compounds to Tune Biodegradability and Properties of Poly(butylene succinate) Polymers 14, 161

Different copolymers incorporating terpene oxide units (e.g., limonene oxide) have been evaluated considering thermal properties, degradability, and biocompatibility. Thus, polycarbonates and polyesters derived from aromatic, monocyclic and bicyclic anhydrides have been considered. Furthermore, ring substitution with myrcene terpene has been evaluated. All polymers were amorphous when evaluated directly from synthesis. However, spherulites could be observed after the slow evaporation of diluted chloroform solutions of polylimonene carbonate, with all isopropene units possessing an R configuration. This feature was surprising considering the reported information that suggested only the racemic polymer was able to crystallize. All polymers were thermally stable and showed a dependence of the maximum degradation rate temperature (from 242 °C to 342 °C) with the type of terpene oxide. The graduation of glass transition temperatures (from 44 °C to 172 °C) was also observed, being higher than those corresponding to the unsubstituted polymers. The chain stiffness of the studied polymers hindered both hydrolytic and enzymatic degradation while a higher rate was detected when an oxidative medium was assayed (e.g., weight losses around 12% after 21 days of exposure). All samples were biocompatible according to the adhesion and proliferation tests performed with fibroblast cells. Hydrophobic and mechanically consistent films (i.e., contact angles between 90° and 110°) were obtained after the evaporation of chloroform from the solutions, having different ratios of the studied biobased polyterpenes and poly(butylene succinate) (PBS). The blend films were comparable in tensile modulus and tensile strength with the pure PBS (e.g., values of 330 MPa and 7 MPa were determined for samples incorporating 30 wt.% of poly(PA-LO), the copolyester derived from limonene oxide and phthalic anhydride. Blends were degradable, biocompatible and appropriate to produce oriented-pore and random-pore scaffolds via a thermally-induced phase separation (TIPS) method and using 1,4-dioxane as solvent. The best results were attained with the blend composed of 70 wt.% PBS and 30 wt.% poly(PA-LO). In summary, the studied biobased terpene derivatives showed promising properties to be used in a blended form for biomedical applications such as scaffolds for tissue engineering.

JTD Keywords: alternating copolymerization, biobased materials, biodegradability, composites, crystallization, cyclohexene oxide, induced phase-separation, limonene oxide, mechanical-properties, polyesters, scaffolds, spherulites, terpene derivatives, thermal properties, thermally-induced phase separation, Acetone, Bio-based, Bio-based materials, Biobased materials, Biocompatibility, Biodegradability, Butenes, Cell culture, Chlorine compounds, Degradation, Evaporation, Glass transition, Limonene oxide, Monoterpenes, Phase separation, Poly (butylenes succinate), Polybutylene succinate, Property, Ring-opening copolymerization, Scaffolds, Spheru-lites, Tensile strength, Terpene derivatives, Thermal properties, Thermally induced phase separation, Thermally-induced phase separation, Thermally?induced phase separation, Thermodynamic properties, Thermogravimetric analysis


Le Roux, Anabel-Lise, Tozzi, Caterina, Walani, Nikhil, Quiroga, Xarxa, Zalvidea, Dobryna, Trepat, Xavier, Staykova, Margarita, Arroyo, Marino, Roca-Cusachs, Pere, (2021). Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization Nature Communications 12, 6550

In many physiological situations, BAR proteins reshape membranes with pre-existing curvature (templates), contributing to essential cellular processes. However, the mechanism and the biological implications of this reshaping process remain unclear. Here we show, both experimentally and through modelling, that BAR proteins reshape low curvature membrane templates through a mechanochemical phase transition. This phenomenon depends on initial template shape and involves the co-existence and progressive transition between distinct local states in terms of molecular organization (protein arrangement and density) and membrane shape (template size and spherical versus cylindrical curvature). Further, we demonstrate in cells that this phenomenon enables a mechanotransduction mode, in which cellular stretch leads to the mechanical formation of membrane templates, which are then reshaped into tubules by BAR proteins. Our results demonstrate the interplay between membrane mechanics and BAR protein molecular organization, integrating curvature sensing and generation in a comprehensive framework with implications for cell mechanical responses.

JTD Keywords: aggregation, amphiphysin, domains, vesicles, Article, Cell, Cell component, Curvature, Detection method, Geomembrane, Mechanotransduction, Membrane, Molecular analysis, Phase transition, Physiology, Protein, Self organization


Valenti, S., Yousefzade, O., Puiggalí, J., Macovez, R., (2020). Phase-selective conductivity enhancement and cooperativity length in PLLA/TPU nanocomposite blends with carboxylated carbon nanotubes Polymer 191, 122279

Transmission electron microscopy, temperature-modulated differential scanning calorimetry, and broadband dielectric spectroscopy were employed to characterize ternary nanocomposites consisting of carboxylated carbon nanotubes (CNT) dispersed in a blend of two immiscible polymers, poly(L,lactide) (PLLA) and thermoplastic polyurethane (TPU). The nanocomposite blends were obtained by melt-compounding of PLLA and TPU in the presence of 0.2 wt-% CNT, either in the presence or absence of a Joncryl® ADR chain extender for PLLA, leading to reactive and non-reactive melt mixed samples. In both cases, the binary PLLA/TPU blend is characterized by phase separation into submicron TPU droplets dispersed in the PLLA matrix, and displays two separate glass transition temperatures. The carbon nanotubes are present either inside the TPU phase (samples obtained without chain extender), or at their boundaries (reactive-melt mixed samples). The effect of the sub-micron confinement of the TPU component is to decrease the cooperativity length of the primary segmental relaxation of this polymer, which is accentuated by the presence of the CNT fillers. Depending on the type of sample, five or six distinct relaxations are observed by means of dielectric spectroscopy, which we are able to assign to different dielectric phenomena. Our dielectric data show that the CNT fillers do not contribute directly to the long-range charge transport in the nanocomposite blends, consistent with the nanocomposites morphology, but rather result in a shift of the Maxwell-Wagner-Sillars space-charge frequency associated with charge accumulation at the PLLA/TPU boundary. Such shift testifies to a selective conductivity enhancement of the TPU phase due to the filler.

JTD Keywords: Conductivity enhancement, Cooperatively rearranging region, Dielectric spectroscopy, Glass transition, Maxwell-Wagner-Sillars relaxation, Nanofiller


Redondo-Morata, Lorena, Losada-Pérez, Patricia, Giannotti, Marina Inés, (2020). Lipid bilayers: Phase behavior and nanomechanics Current Topics in Membranes (ed. Levitan, Irena, Trache, Andreea), Academic Press (Berlin, Germany) 86, 1-55

Lipid membranes are involved in many physiological processes like recognition, signaling, fusion or remodeling of the cell membrane or some of its internal compartments. Within the cell, they are the ultimate barrier, while maintaining the fluidity or flexibility required for a myriad of processes, including membrane protein assembly. The physical properties of in vitro model membranes as model cell membranes have been extensively studied with a variety of techniques, from classical thermodynamics to advanced modern microscopies. Here we review the nanomechanics of solid-supported lipid membranes with a focus in their phase behavior. Relevant information obtained by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) as complementary techniques in the nano/mesoscale interface is presented. Membrane morphological and mechanical characterization will be discussed in the framework of its phase behavior, phase transitions and coexistence, in simple and complex models, and upon the presence of cholesterol.

JTD Keywords: Lipid phase behavior, Phase transition, Phase coexistence, Nanomechanics, Thermodynamics, Atomic force microscopy (AFM), Quartz crystal microbalance with dissipation monitoring (QCM-D)


Kuipers, Arthur J., Middelbeek, Jeroen, Vrenken, Kirsten, Pérez-González, Carlos, Poelmans, Geert, Klarenbeek, Jeffrey, Jalink, Kees, Trepat, Xavier, van Leeuwen, Frank N., (2018). TRPM7 controls mesenchymal features of breast cancer cells by tensional regulation of SOX4 Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1864, (7), 2409-2419

Mechanically induced signaling pathways are important drivers of tumor progression. However, if and how mechanical signals affect metastasis or therapy response remains poorly understood. We previously found that the channel-kinase TRPM7, a regulator of cellular tension implicated in mechano-sensory processes, is required for breast cancer metastasis in vitro and in vivo. Here, we show that TRPM7 contributes to maintaining a mesenchymal phenotype in breast cancer cells by tensional regulation of the EMT transcription factor SOX4. The functional consequences of SOX4 knockdown closely mirror those produced by TRPM7 knockdown. By traction force measurements, we demonstrate that TRPM7 reduces cytoskeletal tension through inhibition of myosin II activity. Moreover, we show that SOX4 expression and downstream mesenchymal markers are inversely regulated by cytoskeletal tension and matrix rigidity. Overall, our results identify SOX4 as a transcription factor that is uniquely sensitive to cellular tension and indicate that TRPM7 may contribute to breast cancer progression by tensional regulation of SOX4.

JTD Keywords: TRPM7, SOX4, Epithelial-mesenchymal transition, Cytoskeleton, Mechanotransduction


Urra, O., Jané, R., (2014). New sleep transition indexes for describing altered sleep in SAHS IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 1017-1020

Traditional Sleep Structure Indexes (TSSIs) are insufficient to identify patterns of altered sleep. TSSIs mainly account for absolute time measures, but different levels of state instability may lead to similar absolute time distribution. Therefore, sleep stability remains beyond the scope of TSSIs. However, recent studies suggest that sleep disorders may be rather influenced by a breakdown in the sleep-stage switching mechanisms. In this study, we propose a set of 11 Sleep Transition Indexes (STIs) that characterize sleep fragmentation and account for the state-stability governed by the ultradian, homeostatic and circadian rhythms. We demonstrate that most of the proposed STIs are potential markers of SAHS severity, while TSSIs are not. In addition, we provide a new framework to analyze sleep disorders from the direct perspective of sleep regulatory mechanisms. In particular, our results indicate that SAHS may be influenced by a dysregulation of homeostatic rhythms but not of ultradian or circadian rhythms.

JTD Keywords: SAHS, Sleep Transitions, Sleep Structure, Polysomnography, Hypnogram


Trepat, X., Fredberg, J. J., (2011). Plithotaxis and emergent dynamics in collective cellular migration Trends in Cell Biology 21, (11), 638-646

For a monolayer sheet to migrate cohesively, it has long been suspected that each constituent cell must exert physical forces not only upon its extracellular matrix but also upon neighboring cells. The first comprehensive maps of these distinct force components reveal an unexpected physical picture. Rather than showing smooth and systematic variation within the monolayer, the distribution of physical forces is dominated by heterogeneity, both in space and in time, which emerges spontaneously, propagates over great distances, and cooperates over the span of many cell bodies. To explain the severe ruggedness of this force landscape and its role in collective cell guidance, the well known mechanisms of chemotaxis, durotaxis, haptotaxis are clearly insufficient. In a broad range of epithelial and endothelial cell sheets, collective cell migration is governed instead by a newly discovered emergent mechanism of innately collective cell guidance - plithotaxis.

JTD Keywords: Positional information, Drosophila embryo, Sheet migration, Dpp gradient, Cells, Force, Morphogenesis, Transition, Identification, Proliferation


Toromanov, Georgi, González-García, Cristina, Altankov, George, Salmerón-Sánchez, Manuel, (2010). Vitronectin activity on polymer substrates with controlled -OH density Polymer 51, (11), 2329-2336

Vitronectin (VN) adsorption on a family of model substrates consisting of copolymers of ethyl acrylate and hydroxyl ethylacrylate in different ratios (to obtain a controlled surface density of -OH groups) was investigated by Atomic Force Microscopy (AFM). It is shown that the fraction of the substrate covered by the protein depends strongly on the amount of hydroxyl groups in the sample and it monotonically decreases as the -OH density increases. Isolated globular-like VN molecules are observed on the surfaces with the higher OH density. As the fraction of hydroxyl groups decreases, aggregates of 3-5 VN molecules are observed on the sample. Overall cell morphology, focal adhesion formation and actin cytoskeleton development are investigated to assess the biological activity of the adsorbed VN on the different surfaces. Dermal fibroblast cells show excellent material interaction on the more hydrophobic samples (OH contents lower than 0.5), which reveals enhanced VN activity on this family of substrates as compared with other extracellular matrix proteins (e.g., fibronectin and fibrinogen).

JTD Keywords: Copolymers, Vitronectin, AFM, Self-assembled monolayers, Cell-adhesion, Thermal transitions, Protein adsorption, Surfaces, Fibronectin, Biomaterials, Attachment, Fibrinogen


Sunyer, R., Trepat, X., Fredberg, J. J., Farre, R., Navajas, D., (2009). The temperature dependence of cell mechanics measured by atomic force microscopy Physical Biology 6, (2), 25009

The cytoskeleton is a complex polymer network that regulates the structural stability of living cells. Although the cytoskeleton plays a key role in many important cell functions, the mechanisms that regulate its mechanical behaviour are poorly understood. Potential mechanisms include the entropic elasticity of cytoskeletal filaments, glassy-like inelastic rearrangements of cross-linking proteins and the activity of contractile molecular motors that sets the tensional stress (prestress) borne by the cytoskeleton filaments. The contribution of these mechanisms can be assessed by studying how cell mechanics depends on temperature. The aim of this work was to elucidate the effect of temperature on cell mechanics using atomic force microscopy. We measured the complex shear modulus (G*) of human alveolar epithelial cells over a wide frequency range (0.1-25.6 Hz) at different temperatures (13-37 degrees C). In addition, we probed cell prestress by mapping the contractile forces that cells exert on the substrate by means of traction microscopy. To assess the role of actomyosin contraction in the temperature-induced changes in G* and cell prestress, we inhibited the Rho kinase pathway of the myosin light chain phosphorylation with Y-27632. Our results show that with increasing temperature, cells become stiffer and more solid-like. Cell prestress also increases with temperature. Inhibiting actomyosin contraction attenuated the temperature dependence of G* and prestress. We conclude that the dependence of cell mechanics with temperature is dominated by the contractile activity of molecular motors.

JTD Keywords: Membrane Stress Failure, Frog Skeletal-Muscle, Extracellular-Matrix, Glass-Transition, Energy Landscape, Actin-Filaments, Living Cell, Single, Traction, Cytoskeleton