DONATE

Publications

by Keyword: polysaccharide

Wagner, AM, Kostina, NY, Xiao, Q, Klein, ML, Percec, V, Rodriguez-Emmenegger, C, (2024). Glycan-Driven Formation of Raft-Like Domains with Hierarchical Periodic Nanoarrays on Dendrimersome Synthetic Cells Biomacromolecules 25, 366-378

The accurate spatial segregation into distinct phases within cell membranes coordinates vital biochemical processes and functionalities in living organisms. One of nature's strategies to localize reactivity is the formation of dynamic raft domains. Most raft models rely on liquid-ordered L-0 phases in a liquid-disordered L-d phase lacking correlation and remaining static, often necessitating external agents for phase separation. Here, we introduce a synthetic system of bicomponent glycodendrimersomes coassembled from Janus dendrimers and Janus glycodendrimers (JGDs), where lactose-lactose interactions exclusively drive lateral organization. This mechanism results in modulated phases across two length scales, yielding raft-like microdomains featuring nanoarrays at the nanoscale. By varying the density of lactose and molecular architecture of JGDs, the nanoarray type and size, shape, and spacing of the domains were controlled. Our findings offer insight into the potential primordial origins of rudimentary raft domains and highlight the crucial role of glycans within the glycocalyx.

JTD Keywords: Article, Artificial cells, Atomic force microscopy, Bicomponents, Bilayer, Bilayer membrane, Biochemical functionality, Biochemical process, Biological-membranes, Cell component, Cell membrane, Cellular parameters, Chemical interaction, Chemical structure, Chemistry, Cytology, Defined janus glycodendrimers, Dehydration, Dendrimer, Dendrimers, Dilution, Dimer, External agents, Fourier transform, Giant vesicles, Glycan, Glycans, Glycocalyx, Glycodendrimers, Janus dendrimer, Janus glycodendrimer, Lactose, Lateral organization, Lectin, Lipid rafts, Living organisms, Membrane damage, Membrane microdomain, Membrane microdomains, Membrane structure, Metabolism, Modulated phases, Molecule, Monomer, Nanoarrays, Oligosaccharide, Organization, Periodicity, Phase separation, Phase-separation, Phospholipids, Polysaccharide, Polysaccharides, Raft like domain, Relative humidity, Spatial segregation, Structure analysis, Sugars, Synthetic systems, Tetramer, Unclassified drug, Unilamellar vesicles, Water


Liang, ZW, Nilsson, M, Kragh, KN, Hedal, I, Alcàcer-Almansa, J, Kiilerich, RO, Andersen, JB, Tolker-Nielsen, T, (2023). The role of individual exopolysaccharides in antibiotic tolerance of Pseudomonas aeruginosa aggregates Frontiers In Microbiology 14, 1187708

The bacterium Pseudomonas aeruginosa is involved in chronic infections of cystic fibrosis lungs and chronic wounds. In these infections the bacteria are present as aggregates suspended in host secretions. During the course of the infections there is a selection for mutants that overproduce exopolysaccharides, suggesting that the exopolysaccharides play a role in the persistence and antibiotic tolerance of the aggregated bacteria. Here, we investigated the role of individual P. aeruginosa exopolysaccharides in aggregate-associated antibiotic tolerance. We employed an aggregate-based antibiotic tolerance assay on a set of P. aeruginosa strains that were genetically engineered to over-produce a single, none, or all of the three exopolysaccharides Pel, Psl, and alginate. The antibiotic tolerance assays were conducted with the clinically relevant antibiotics tobramycin, ciprofloxacin and meropenem. Our study suggests that alginate plays a role in the tolerance of P. aeruginosa aggregates toward tobramycin and meropenem, but not ciprofloxacin. However, contrary to previous studies we did not observe a role for Psl or Pel in the tolerance of P. aeruginosa aggregates toward tobramycin, ciprofloxacin, and meropenem.Copyright © 2023 Liang, Nilsson, Kragh, Hedal, Alcàcer-Almansa, Kiilerich, Andersen and Tolker-Nielsen.

JTD Keywords: aggregates, antibiotic tolerance, biofilm formation, extracellular matrix, genome, growth, lungs, molecular-mechanisms, mutations, polysaccharide, pseudomonas aeruginosa, psl, system, Aggregates, Antibiotic tolerance, Biofilm, Extracellular matrix, Pseudomonas aeruginosa, Small-colony variants


García-Torres, J, Colombi, S, Macor, LP, Alemán, C, (2022). Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review International Journal Of Biological Macromolecules 219, 312-332

Poly(3,4-ethylenedioxythiophene) (PEDOT), a very stable and biocompatible conducting polymer, and alginate (Alg), a natural water-soluble polysaccharide mainly found in the cell wall of various species of brown algae, exhibit very different but at the same complementary properties. In the last few years, the remarkable capacity of Alg to form hydrogels and the electro-responsive properties of PEDOT have been combined to form not only layered composites (PEDOT-Alg) but also interpenetrated multi-responsive PEDOT/Alg hydrogels. These materials have been found to display outstanding properties, such as electrical conductivity, piezoelectricity, biocompatibility, self-healing and re-usability properties, pH and thermoelectric responsiveness, among others. Consequently, a wide number of applications are being proposed for PEDOT-Alg composites and, especially, PEDOT/Alg hydrogels, which should be considered as a new kind of hybrid material because of the very different chemical nature of the two polymeric components. This review summarizes the applications of PEDOT-Alg and PEDOT/Alg in tissue interfaces and regeneration, drug delivery, sensors, microfluidics, energy storage and evaporators for desalination. Special attention has been given to the discussion of multi-tasking applications, while the new challenges to be tackled based on aspects not yet considered in either of the two polymers have also been highlighted.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

JTD Keywords: aerogels, composite, conducting polymer, conducting polymers, electrodes, pedotpss, ph, platform, release, scaffold, semi-interpenetrated hydrogels, Alginates, Alginic acid, Bridged bicyclo compounds, heterocyclic, Conducting polymer, Drug-delivery, Hydrogels, Polymers, Polysaccharides, Semi-interpenetrated hydrogels, Water


Riera, R, Hogervorst, TP, Doelman, W, Ni, Y, Pujals, S, Bolli, E, Codée, JDC, van Kasteren, SI, Albertazzi, L, (2021). Single-molecule imaging of glycan–lectin interactions on cells with Glyco-PAINT Nature Chemical Biology 17, 1281-1288

Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. Here we introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan-lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes, as well as the diffusion coefficient of the receptor-sugar complex. Uptake of ligands correlates with their binding affinity and residence time to establish structure-function relations for various synthetic glycans. We reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan-lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin-sugar interactions.© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

JTD Keywords: dc-sign, density, dimerization, endocytosis, lateral mobility, ligand-binding, mannose receptor, proteins, recognition, Animal, Animals, Cell membrane, Cell membrane permeability, Chemistry, Cho cell line, Cho cells, Cricetulus, Cysteine-rich domain, Kinetics, Lectin, Lectins, Ligand, Ligands, Molecular library, Multivariate analysis, Polysaccharide, Polysaccharides, Procedures, Protein binding, Single molecule imaging, Small molecule libraries, Structure activity relation, Structure-activity relationship


Rial-Hermida, MI, Rey-Rico, A, Blanco-Fernandez, B, Carballo-Pedrares, N, Byrne, EM, Mano, JF, (2021). Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules Acs Biomaterials Science & Engineering 7, 4102-4127

A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields. © 2021 American Chemical Society.

JTD Keywords: biodegradable dextran hydrogels, biotherapeutics, bone morphogenetic protein-2, carrageenan-based hydrogels, chitosan-based hydrogels, controlled delivery, controlled-release, cross-linked hydrogels, growth-factor delivery, hydrogels, in-vitro characterization, polysaccharides, self-healing hydrogel, stimuli-responsiveness, tissue engineering, Antibodies, Bioactivity, Biodegradability, Biomedical fields, Biomolecules, Biotherapeutics, Chemical modification, Circular economy, Controlled delivery, Controlled drug delivery, Delivery systems, Drug delivery system, Functional polymers, Hyaluronic-acid hydrogels, Hydrogels, Industrial processs, Polysaccharides, Recent progress, Renewable sources, Stimuli-responsiveness, Targeted drug delivery, Tissue engineering, Waste management


Blanco-Fernandez, B, Castano, O, Mateos-Timoneda, MA, Engel, E, Perez-Amodio, S, (2021). Nanotechnology Approaches in Chronic Wound Healing Advances In Wound Care 10, 234-256

Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.

JTD Keywords: chronic, diabetes, liposomes, nanofibers, nanoparticles, Chronic, Chronic wound, Diabetes, Diabetic wound, Diabetic-rats, Dressings, Drug mechanism, Extracellular-matrix, Growth-factor, Human, In-vitro, Liposome, Liposomes, Mesenchymal stem-cells, Metal nanoparticle, Nanofiber, Nanofibers, Nanofibrous scaffolds, Nanoparticles, Nanotechnology, Nonhuman, Polyester, Polymer, Polysaccharide, Priority journal, Protein, Review, Self assembled protein nanoparticle, Silk fibroin, Skin wounds, Wound healing, Wound healing promoting agent


Vilanova, E., Ciodaro, P. J., Bezerra, F. F., Santos, G. R. C., Valle-Delgado, J. J., Anselmetti, D., Fernàndez-Busquets, X., Mourão, P. A. S., (2020). Adhesion of freshwater sponge cells mediated by carbohydrate-carbohydrate interactions requires low environmental calcium Glycobiology 30, (9), 710-721

Marine ancestors of freshwater sponges had to undergo a series of physiological adaptations to colonize harsh and heterogeneous limnic environments. Besides reduced salinity, river-lake systems also have calcium concentrations far lower than seawater. Cell adhesion in sponges is mediated by calcium-dependent multivalent self-interactions of sulfated polysaccharide components of membrane-bound proteoglycans named aggregation factors. Cells of marine sponges require seawater average calcium concentration (10 mM) to sustain adhesion promoted by aggregation factors. We demonstrate here that the freshwater sponge Spongilla alba can thrive in a calcium-poor aquatic environment and that their cells are able to aggregate and form primmorphs with calcium concentrations 40-fold lower than that required by marine sponges cells. We also find that their gemmules need calcium and other micronutrients to hatch and generate new sponges. The sulfated polysaccharide purified from S. alba has sulfate content and molecular size notably lower than those from marine sponges. Nuclear magnetic resonance analyses indicated that it is composed of a central backbone of non- and 2-sulfated α- and β-glucose units decorated with branches of α-glucose. Assessments with atomic force microscopy/single-molecule force spectroscopy show that S. alba glucan requires 10-fold less calcium than sulfated polysaccharides from marine sponges to self-interact efficiently. Such an ability to retain multicellular morphology with low environmental calcium must have been a crucial evolutionary step for freshwater sponges to successfully colonize inland waters.

JTD Keywords: Carbohydrate interactions, Evolutionary adaptation, Porifera, Proteoglycans, Sulfated polysaccharides


Oliveira, V. R., Uriarte, J. J., Falcones, B., Zin, W. A., Navajas, D., Farré, R., Almendros, I., (2019). Escherichia coli lipopolysaccharide induces alveolar epithelial cell stiffening Journal of Biomechanics 83, 315-318

Introduction: Application of lipopolysaccharide (LPS) is a widely employed model to mimic acute respiratory distress syndrome (ARDS). Available data regarding LPS-induced biomechanical changes on pulmonary epithelial cells are limited only to P. aeruginosa LPS. Considering that LPS from different bacteria could promote a specific mechanical response in epithelial cells, we aim to assess the effect of E. coli LPS, widely employed as a model of ARDS, in the biomechanics of alveolar epithelial cells. Methods: Young’s modulus (E) of alveolar epithelial cells (A549) was measured by atomic force microscopy every 5 min throughout 60 min of experiment after treatment with LPS from E. coli (100 μg/mL). The percentage of cells presenting actin stress fibers (F-actin staining) was also evaluated. Control cells were treated with culture medium and the values obtained were compared with LPS-treated cells for each time-point. Results: Application of LPS induced significant increase in E after 20 min (77%) till 60 min (104%) in comparison to controls. Increase in lung epithelial cell stiffness induced by LPS was associated with a higher number of cells presenting cytoskeletal remodeling. Conclusions: The observed effects of E. coli LPS on alveolar epithelial cells suggest that this widely-used LPS is able to promote a quick formation of actin stress fibers and stiffening cells, thereby facilitating the disruption of the pulmonary epithelial barrier.

JTD Keywords: Acute respiratory distress syndrome model, Alveolar epithelium, Biomechanics, E. coli, Lipopolysaccharide


Valle-Delgado, J. J., Alfonso-Prieto, M., de Groot, N. S., Ventura, S., Samitier, J., Rovira, C., Fernàndez-Busquets, X., (2010). Modulation of A beta(42) fibrillogenesis by glycosaminoglycan structure FASEB Journal , 24, (11), 4250-4261

The role of amyloid beta (A beta) peptide in the onset and progression of Alzheimer's disease is linked to the presence of soluble A beta species. Sulfated glycosaminoglycans (GAGs) promote A beta fibrillogenesis and reduce the toxicity of the peptide in neuronal cell cultures, but a satisfactory rationale to explain these effects at the molecular level has not been provided yet. We have used circular dichroism, Fourier transform infrared spectroscopy, fluorescence microscopy and spectroscopy, protease digestion, atomic force microscopy (AFM), and molecular dynamics simulations to characterize the association of the 42-residue fragment A beta(42) with sulfated GAGs, hyaluronan, chitosan, and poly(vinyl sulfate) (PVS). Our results indicate that the formation of stable A beta(42) fibrils is promoted by polymeric GAGs with negative charges placed in-frame with the 4.8-angstrom separating A beta(42) monomers within protofibrillar beta-sheets. Incubation of A beta(42) with excess sulfated GAGs and hyaluronan increased amyloid fibril content and resistance to proteolysis 2- to 5-fold, whereas in the presence of the cationic polysaccharide chitosan, A beta(42) fibrillar species were reduced by 25% and sensitivity to protease degradation increased similar to 3-fold. Fibrils of intermediate stability were obtained in the presence of PVS, an anionic polymer with more tightly packed charges than GAGs. Important structural differences between A beta(42) fibrils induced by PVS and A beta(42) fibrils obtained in the presence of GAGs and hyaluronan were observed by AFM, whereas mainly precursor protofibrillar forms were detected after incubation with chitosan. Computed binding energies per peptide from -11.2 to -13.5 kcal/mol were calculated for GAGs and PVS, whereas a significantly lower value of -7.4 kcal/mol was obtained for chitosan. Taken together, our data suggest a simple and straightforward mechanism to explain the role of GAGs as enhancers of the formation of insoluble A beta(42) fibrils trapping soluble toxic forms.

JTD Keywords: Alzheimer's disease, Amyloid fibril structure, Fibrillogenesis enhancers and inhibitors, Polysaccharides


Kirchhof, K., Hristova, K., Krasteva, N., Altankov, G., Groth, T., (2009). Multilayer coatings on biomaterials for control of MG-63 osteoblast adhesion and growth Journal of Materials Science: Materials in Medicine , 20, (4), 897-907

Here, the layer-by-layer technique (LbL) was used to modify glass as model biomaterial with multilayers of chitosan and heparin to control the interaction with MG-63 osteoblast-like cells. Different pH values during multilayer formation were applied to control their physico-chemical properties. In the absence of adhesive proteins like plasma fibronectin (pFN) both plain layers were rather cytophobic. Hence, the preadsorption of pFN was used to enhance cell adhesion which was strongly dependent on pH. Comparing the adhesion promoting effects of pFN with an engineered repeat of the FN III fragment and collagen I which both lack a heparin binding domain it was found that multilayers could bind pFN specifically because only this protein was capable of promoting cell adhesion. Multilayer surfaces that inhibited MG-63 adhesion did also cause a decreased cell growth in the presence of serum, while an enhanced adhesion of cells was connected to an improved cell growth.

JTD Keywords: Cell-adhesion, Polyelectrolyte multilayers, Substratum chemistry, Surface-properties, Fibroblast-growth, Fibronectin, Polymers, Chitosan, Polysaccharides, Wettability