by Keyword: survival

Sole-Marti, X, Labay, C, Raymond, Y, Franch, J, Benitez, R, Ginebra, MP, Canal, C, (2023). Ceramic-hydrogel composite as carrier for cold-plasma reactive-species: Safety and osteogenic capacity in vivo Plasma Processes And Polymers 20, 2200155

Plasma-treated hydrogels have been put forward as a potential selective osteosarcoma therapy through the release of reactive species to the diseased site. To allow their translation to the clinics, it is crucial to show that the oxidative stress delivered by such hydrogels does not adversely affect healthy tissues. This is evaluated here by investigating the in vivo performance of a robocasted calcium phosphate cement infiltrated by a plasma-treated hydrogel. The plasma-treated composite implanted in a critical size bone defect of healthy rabbits revealed its safety, allowing equivalent bone ingrowth compared to the control scaffolds and to that of direct plasma treatment of the bone defect. This opens the door for using composite biomaterials containing plasma-generated reactive species in bone therapies.

JTD Keywords: Atmospheric plasma, Bone, Bone graft, Ceramic-hydrogel composite, Cold atmospheric plasma, Local therapy, Osteosarcoma, Plasma-treated polymer solutions, Substitutes, Survival

Romero, Daniel, Blanco-Almazán, Dolores, Groenendaal, Willemijn, Lijnen, Lien, Smeets, Christophe, Ruttens, David, Catthoor, Francky, Jané, Raimon, (2022). Predicting 6-minute walking test outcomes in patients with chronic obstructive pulmonary disease without physical performance measures Computer Methods And Programs In Biomedicine 225, 107020

Rivas, Elisa I., Linares, Jenniffer, Zwick, Melissa, Gómez-Llonin, Andrea, Guiu, Marc, Labernadie, Anna, Badia-Ramentol, Jordi, Lladó, Anna, Bardia, Lídia, Pérez-Núñez, Iván, Martínez-Ciarpaglini, Carolina, Tarazona, Noelia, Sallent-Aragay, Anna, Garrido, Marta, Celià-Terrassa, Toni, Burgués, Octavio, Gomis, Roger R., Albanell, Joan, Calon, Alexandre, (2022). Targeted immunotherapy against distinct cancer-associated fibroblasts overcomes treatment resistance in refractory HER2+ breast tumors Nature Communications 13, 5310

About 50% of human epidermal growth factor receptor 2 (HER2)+ breast cancer patients do not benefit from HER2-targeted therapy and almost 20% of them relapse after treatment. Here, we conduct a detailed analysis of two independent cohorts of HER2+ breast cancer patients treated with trastuzumab to elucidate the mechanisms of resistance to anti-HER2 monoclonal antibodies. In addition, we develop a fully humanized immunocompetent model of HER2+ breast cancer recapitulating ex vivo the biological processes that associate with patients’ response to treatment. Thanks to these two approaches, we uncover a population of TGF-beta-activated cancer-associated fibroblasts (CAF) specific from tumors resistant to therapy. The presence of this cellular subset related to previously described myofibroblastic (CAF-S1) and podoplanin+ CAF subtypes in breast cancer associates with low IL2 activity. Correspondingly, we find that stroma-targeted stimulation of IL2 pathway in unresponsive tumors restores trastuzumab anti-cancer efficiency. Overall, our study underscores the therapeutic potential of exploiting the tumor microenvironment to identify and overcome mechanisms of resistance to anti-cancer treatment.

JTD Keywords: activation, cells, efficacy, enrichment analysis, expression, infiltrating lymphocytes, survival, therapy, trastuzumab, Her2-positive breast-cancer

Clua-Ferre, L, De Chiara, F, Rodriguez-Comas, J, Comelles, J, Martinez, E, Godeau, AL, Garcia-Alaman, A, Gasa, R, Ramon-Azcon, J, (2022). Collagen-Tannic Acid Spheroids for beta-Cell Encapsulation Fabricated Using a 3D Bioprinter Advanced Materials Technologies 7, 2101696

Alcon C, Martín F, Prada E, Mora J, Soriano A, Guillén G, Gallego S, Roma J, Samitier J, Villanueva A, Montero J, (2022). MEK and MCL-1 sequential inhibition synergize to enhance rhabdomyosarcoma treatment Cell Death Discov 8, 172

Targeted agents have emerged as promising molecules for cancer treatment, but most of them fail to achieve complete tumor regression or attain durable remissions due to tumor adaptations. We used dynamic BH3 profiling to identify targeted agents effectiveness and anti-apoptotic adaptations upon targeted treatment in rhabdomyosarcoma. We focused on studying the use of BH3 mimetics to specifically inhibit pro-survival BCL-2 family proteins, overwhelm resistance to therapy and prevent relapse. We observed that the MEK1/2 inhibitor trametinib rapidly depleted the pro-apoptotic protein NOXA, thus increasing MCL-1 availability. Indeed, we found that the MCL-1 inhibitor S63845 synergistically enhanced trametinib cytotoxicity in rhabdomyosarcoma cells in vitro and in vivo. In conclusion, our findings indicate that the combination of a BH3 mimetic targeting MCL-1 with trametinib improves efficiency on rhabdomyosarcoma by blocking tumor adaptation to treatment.

JTD Keywords: apoptosis, bcl-2, combination, expression, pathway, resistance, survival, therapy, tumors, Histone deacetylase inhibitor

Mateu-Sanz, M, Tornin, J, Ginebra, MP, Canal, C, (2021). Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy Journal Of Clinical Medicine 10,

Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.

JTD Keywords: cancer stem cells, cold atmospheric plasma, osteosarcoma, oxidative stress, plasma treated liquids, reactive oxygen and nitrogen species, Antineoplastic activity, Antineoplastic agent, Cancer chemotherapy, Cancer stem cell, Cancer stem cells, Cancer surgery, Cancer survival, Cell therapy, Cold atmospheric plasma, Cold atmospheric plasma therapy, Electromagnetism, Human, In vitro study, Intracellular signaling, Oncogene, Osteosarcoma, Oxidative stress, Plasma treated liquids, Reactive nitrogen species, Reactive oxygen and nitrogen species, Reactive oxygen metabolite, Review, Tumor microenvironment

Alcaraz, J., Carrasco, J. L., Millares, L., Luis, I. C., Fernández-Porras, F. J., Martínez-Romero, A., Diaz-Valdivia, N., De Cos, J. S., Rami-Porta, R., Seijo, L., Ramírez, J., Pajares, M. J., Reguart, N., Barreiro, E., Monsó, E., (2019). Stromal markers of activated tumor associated fibroblasts predict poor survival and are associated with necrosis in non-small cell lung cancer Lung Cancer 135, 151-160

Objectives: Tumor associated fibroblasts (TAFs) are essential contributors of the progression of non-small cell lung cancer (NSCLC). Most lung TAFs exhibit an activated phenotype characterized by the expression of α-SMA and fibrillar collagens. However, the prognostic value of these activation markers in NSCLC remains unclear. Material and Methods: We conducted a quantitative image analysis of α-SMA immunostaining and picrosirius red staining of fibrillar collagens imaged by bright-field and polarized microscopy, respectively, using tissue microarrays with samples from 220 surgical patients, which elicited a percentage of positive staining area for each marker and patient. Results: Kaplan-Meier curves showed that all TAF activation markers were significantly associated with poor survival, and their prognostic value was independent of TNM staging as revealed by multivariate analysis, which elicited an adjusted increased risk of death after 3 years of 129% and 94% for fibrillar collagens imaged with bright-field (p = 0.004) and polarized light (p = 0.003), respectively, and of 89% for α-SMA (p = 0.009). We also found a significant association between all TAF activation markers and tumor necrosis, which is often indicative of hypoxia, supporting a pathologic link between tumor desmoplasia and necrosis/hypoxia. Conclusions: Our findings identify patients with large histologic coverage of fibrillar collagens and α-SMA + TAFs to be at higher risk of recurrence and death, supporting that they could be considered for adjuvant therapy.

JTD Keywords: Cancer associated fibroblast, Collagen, Lung cancer, Necrosis, Survival, α-SMA