by Keyword: trafficking

Lolo FN, Pavón DM, Grande A, Elósegui Artola A, Segatori VI, Sánchez S, Trepat X, Roca-Cusachs P, Ángel Del Pozo M, (2022). Caveolae couple mechanical stress to integrin recycling and activation Elife 11, e82348

Cells are subjected to multiple mechanical inputs throughout their lives. Their ability to detect these environmental cues is called mechanosensing, a process in which integrins play an important role. During cellular mechanosensing, plasma membrane (PM) tension is adjusted to mechanical stress through the buffering action of caveolae; however, little is known about the role of caveolae in early integrin mechanosensing regulation. Here, we show that Cav1KO fibroblasts increase adhesion to FN-coated beads when pulled with magnetic tweezers, as compared to wild type fibroblasts. This phenotype is Rho-independent and mainly derived from increased active b1-integrin content on the surface of Cav1KO fibroblasts. FRAP analysis and endocytosis/recycling assays revealed that active b1-integrin is mostly endocytosed through the CLIC/GEEC pathway and is more rapidly recycled to the PM in Cav1KO fibroblasts, in a Rab4 and PM tension-dependent manner. Moreover, the threshold for PM tension-driven b1-integrin activation is lower in Cav1KO MEFs than in wild type MEFs, through a mechanism dependent on talin activity. Our findings suggest that caveolae couple mechanical stress to integrin cycling and activation, thereby regulating the early steps of the cellular mechanosensing response.© 2022, Lolo et al.

JTD Keywords: adhesion, alpha-v-beta-3, cell, integrin activation, internalization, kinase, mechanosensing, mediated endocytosis, mouse, stiffness, talin, trafficking, Cell biology, Integrin recycling, Membrane tension, Mouse

Solomon M, Loeck M, Silva-Abreu M, Moscoso R, Bautista R, Vigo M, Muro S, (2022). Altered blood-brain barrier transport of nanotherapeutics in lysosomal storage diseases Journal Of Controlled Release 349, 1031-1044

Treatment of neurological lysosomal storage disorders (LSDs) are limited because of impermeability of the blood-brain barrier (BBB) to macromolecules. Nanoformulations targeting BBB transcytosis are being explored, but the status of these routes in LSDs is unknown. We studied nanocarriers (NCs) targeted to the transferrin receptor (TfR), ganglioside GM1 or ICAM1, associated to the clathrin, caveolar or cell adhesion molecule (CAM) routes, respectively. We used brain endothelial cells and mouse models of acid sphingomyelinase-deficient Niemann Pick disease (NPD), and postmortem LSD patients' brains, all compared to respective controls. NC transcytosis across brain endothelial cells and brain distribution in mice were affected, yet through different mechanisms. Reduced TfR and clathrin expression were found, along with decreased transcytosis in cells and mouse brain distribution. Caveolin-1 expression and GM1 transcytosis were also reduced, yet increased GM1 levels seemed to compensate, providing similar NC brain distribution in NPD vs. control mice. A tendency to lower NHE-1 levels was seen, but highly increased ICAM1 expression in cells and human brains correlated with increased transcytosis and brain distribution in mice. Thus, transcytosis-related alterations in NPD and likely other LSDs may impact therapeutic access to the brain, illustrating the need for these mechanistic studies.Copyright © 2022 Elsevier B.V. All rights reserved.

JTD Keywords: acid sphingomyelinase, antibody-affinity, blood -brain barrier, drug-delivery, icam-1-targeted nanocarriers, in-vivo, mediated endocytosis, model, neurological diseases, niemann-pick, targeted nanocarriers, trafficking, transcytosis pathways, Blood-brain barrier, Central-nervous-system, Lysosomal storage disorders, Neurological diseases, Targeted nanocarriers, Transcytosis pathways

Riera, Roger, Tauler, Jana, Feiner Gracia, Natàlia, Borrós, Salvador, Fornaguera, Cristina, Albertazzi, Lorenzo, (2022). Complex pBAE Nanoparticle Cell Trafficking: Tracking Both Position and Composition Using Super Resolution Microscopy Chemmedchem 17, e202100633

Nanomedicine emerged some decades ago with the hope to be the solution for most unmet medical needs. However, tracking materials at nanoscale is challenging to their reduced size, below the resolution limit of most conventional techniques. In this context, we propose the use of direct stochastic optical reconstruction microscopy (dSTORM) to study time stability and cell trafficking after transfection of oligopeptide end-modified poly(?-aminoester) (OM-pBAE) nanoparticles. We selected different combinations of cationic end oligopeptides (arginine - R; histidine - H; and lysine - K) among polymer libraries, since the oligopeptide combination demonstrated to be useful for different applications, such as vaccination and gene silencing. We demonstrate that their time evolution as well as their cell uptake and trafficking are dependent on the oligopeptide. This study opens the pave to broad mechanistic studies at nanoscale that could enable a rational selection of specific pBAE nanoparticles composition after determining their stability and cell trafficking.© 2022 The Authors. ChemMedChem published by Wiley-VCH GmbH.

JTD Keywords: cancer nanomedicine, cell trafficking, delivery, direct stochastic optical reconstruction microscopy (dstorm), nanoparticle stability, poly(beta-aminoester) nanoparticles, Direct stochastic optical reconstruction microscopy (dstorm), Poly(?-aminoester) nanoparticles, Poly(beta-amino ester)s

Baranov, M. V., Olea, R. A., van den Bogaart, G., (2019). Chasing uptake: Super-resolution microscopy in endocytosis and phagocytosis Trends in Cell Biology 29, (9), 727-739

Since their invention about two decades ago, super-resolution microscopes have become a method of choice in cell biology. Owing to a spatial resolution below 50 nm, smaller than the size of most organelles, and an order of magnitude better than the diffraction limit of conventional light microscopes, superresolution microscopy is a powerful technique for resolving intracellular trafficking. In this review we discuss discoveries in endocytosis and phagocytosis that have been made possible by super-resolution microscopy – from uptake at the plasma membrane, endocytic coat formation, and cytoskeletal rearrangements to endosomal maturation. The detailed visualization of the diverse molecular assemblies that mediate endocytic uptake will provide a better understanding of how cells ingest extracellular material.

JTD Keywords: Endocytosis, Endosomes, Organelles, Super-resolution microscopy, Trafficking

Muro, Silvia, (2018). Alterations in cellular processes involving vesicular trafficking and implications in drug delivery Biomimetics 3, (3), 19

Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.

JTD Keywords: Cellular vesicles, Vesicle fusion, Fission and intracellular trafficking, Drug delivery systems and nanomedicines, Transcytosis and endocytosis of drugs carriers, Disease effects on vesicular trafficking, Drug effects on vesicular trafficking, Role of the biological environment