Great success of the 13th IBEC Symposium

The Institute for Bioengineering of Catalonia (IBEC) organized from the 27th to the 28th October its 13th Symposium. The event, that this year took place for the first time online, was focused on Bioengineering for Future & Precision Medicine. With more than 400 registered attendees, 18 flash presentations and 106 posters, the event also counted with contributions from top international speakers such as Robert Langer from the MIT, Ada Cavalcanti of the University of Heidelberg or Raquel Yotti, Director of the Carlos III Health Institute, among others.

New method could help to find the best treatment for a pediatric cancer

A study led by IBEC researchers from the Nanobioengineering group, uses a functional predictive biomarker to anticipate the effect of treatments against rhabdomyosarcoma, the most common soft-tissue cancer affecting childhood and adolescence.

This advance can help in predicting treatment efficiency thus, avoiding tumor resistance and decreasing undesired secondary effects.

Josep Samitier, awarded with the Narcís Monturiol medal for his contribution to science and technology

The Catalan Government announced yesterday the Narcís Monturiol Medal award for scientific and technological merit to the Director of the IBEC, Josep Samitier Martí, for his contribution to the development of the Catalan system of science and technology.

In total, ten researchers from the Catalan knowledge system (six men and four women) have received this distinction, as well as a research center that has been awarded the Narcís Monturiol Plaque, which recognizes an institution in the country.

Bioengineering against the most resistant and deadly bacterial infections

An international team, led by Profs Giuseppe Battaglia and Loris Rizzello from the Institute for Bioengineering of Catalonia (IBEC), carried out out a study that opens the door to a new therapy capable of quickly and effectively eliminating infections caused by intracellular bacteria, the most resistant to immune defenses.

This therapy, based on synthetic vesicles, could considerably reduce the dose and duration of antimicrobial treatments, thus reducing the danger of generating resistance to antibiotics of pathogens such as those leading to tuberculosis.