DONATE

Cells communicate by changing their environment

Researchers at IBEC and MIT have shown that cells could use their environment to mechanically communicate with each other within tissues. It’s a bit like when an army cadet pulls some rope netting taut so that his friend can safely ascend.

To nourish our organs and tissues, cells need to constantly detect and respond to the mechanical stimuli from their environment. Generally, cells that make up the tissues in our bodies are immersed in an extracellular matrix (ECM), ​​a biopolymer made of proteins and glycoproteins such as collagen or fibrin. This ECM provides the cells with a way to interact with other cells, obtain nutrients, eliminate waste and ultimately form an integral and functional tissue.

Synthetic enzymes for controlled drug delivery in cells

The Nanoscopy for Nanomedicine group has studied Single-Chain Polymeric Nanoparticles (SCPNs) mimicking enzymes as possible drug activators in biological environments, like the living cell.

The bio-inspired nanoparticles could be used to spatially control drug delivery in the treatment of diseases such as cancer.

Through their study, published in JACS, the researchers have optimized the delivery strategies of dynamic SCPNs so that they retain their catalytic activity at the cellular environment. This paves the way towards the rational design of nanosystems that can perform effective catalysis in vivo.

Shedding light on metastasis in the brain

Researchers have shown for the first time that ion channels that are capable of detecting changes in the physical properties of the cellular environment play a key role in tumor invasion and metastasis.

The discovery, led by led by Miguel Angel Valverde from the Department of Experimental and Health Sciences of the UPF and involving IBEC’s Integrative Cell and Tissue Dynamics group, could open new avenues in the development of new drugs that reduce the risk of metastasis.

Oxidation necessary for recovery after spine injuries

Researchers at IBEC, in collaboration with Imperial College London, have discovered that oxidizing species – chemicals such as peroxides that form during the metabolism of oxygen – regulate the regeneration of damaged neurons after spinal cord injuries.

Anti-inflammatories and antioxidants: these are the treatments usually given to nerve or spinal injury patients to mitigate the damage. When a nerve is injured, inflammation occurs and the immune system is activated,

A mechanism that regulates neurogenesis in the adult brain

Scientists from IBEC’s Molecular and Cellular Neurobiotechnology group have discovered a protein and its receptor that control the spread of adult stem cells in the hippocampus, the part of the brain responsible for memory.

The discovery could shed light on the mechanisms involved in memory, the development of neurodegenerative diseases such as Alzheimers, or in the development of brain tumors caused by the uncontrolled proliferation of various cell types.

Obesity study on front cover of Proteomics – Clinical Applications

Researchers working at the Signal and Information Processing for Sensing Systems group and at the Nestlé Institute of Health Sciences have published a study selected as the front cover of a special issue of the journal Proteomics: Clinical Applications.

The paper, whose first author is PhD student Sergio Oller, identifies proteins associated with weight loss and maintenance, and explores their relation to body mass index, fat mass, and insulin resistance and sensitivity, identifying potential biomarkers for weight loss and maintenance.

A material that encourages blood vessels to form

In a further step forward in their quest to achieve functional biomaterials for tissue regeneration, IBEC’s Biomaterials for Regenerative Therapies group has revealed a new construct that enhances blood vessel formation and maturation in vivo.

In the paper published in Acta Biomaterialia at the end of last year, the group and their collaborators at the Georgia Institute of Technology present a new implantable hydrogel that contains both human mesenchymal stromal cells (hMSCs) and calcium-releasing microparticles.

Nanomotors can be propelled by light

Researchers working at IBEC and the Max Planck Institute for Intelligent Systems have developed nanomotors that are powered by a fuel-free, biofriendly and unlimited power source: light.

How perception shapes our actions

Last Saturday, another “Classico” saw Messi and Ronaldo display their other-worldly skills and ball control. At the heart of their performance stands the amazing ability to control their bodies in anticipation of the movements of their team members, opponents – and especially the football.

These anticipatory motor actions are essential for sport, but also underlie our everyday behavior, from walking or grasping to riding a bicycle or typing on a keyboard. But how exactly are these actions controlled?

A molecular mechanism could explain how bacteria resist antibiotics

IBEC researchers have shown for the first time how bacteria make DNA under stressful conditions, such as drug treatments.

This new knowledge could help develop new antibiotics that work, tackling the urgent problem of antibiotic resistance.

The Bacterial infections: antimicrobial therapies group led by Dr. Eduard Torrents was studying the bacterial strain Pseudomonas aeruginosa, which can cause severe chronic lung infections in cystic fibrosis (CF) patients, leading to severely impaired lung function, an increased risk of respiratory failure, and death.