DONATE

Publications

by Keyword: Female

McGill, Kris, Sackley, Catherine, Godwin, Jon, Gavaghan, David, Ali, Myzoon, Ballester, Belen Rubio, Brady, Marian C, Brady, M.C, Ali, M, Ashburn, A, Barer, D, Barzel, A, Bernhardt, J, Bowen, A, Drummond, A, Edmans, J, English, C, Gladman, J, Godecke, E, Hiekkala, S, Hoffman, T, Kalra, L, Kuys, S, Langhorne, P, Laska, A.C, Lees, K, Logan, P, Machner, B, Mead, G, Morris, J, Pandyan, A, Pollock, A, Pomeroy, V, Rodgers, H, Sackley, C, Shaw, L, Stott, D.J, Sunnerhagen, K.S, Tyson, S, van Vliet, P, Walker, M, Whiteley, W, (2022). Using the Barthel Index and modified Rankin Scale as Outcome Measures for Stroke Rehabilitation Trials; A Comparison of Minimum Sample Size Requirements Journal Of Stroke & Cerebrovascular Diseases 31, 106229

Underpowered trials risk inaccurate results. Recruitment to stroke rehabilitation randomised controlled trials (RCTs) is often a challenge. Statistical simulations offer an important opportunity to explore the adequacy of sample sizes in the context of specific outcome measures. We aimed to examine and compare the adequacy of stroke rehabilitation RCT sample sizes using the Barthel Index (BI) or modified Rankin Scale (mRS) as primary outcomes.We conducted computer simulations using typical experimental event rates (EER) and control event rates (CER) based on individual participant data (IPD) from stroke rehabilitation RCTs. Event rates are the proportion of participants who experienced clinically relevant improvements in the RCT experimental and control groups. We examined minimum sample size requirements and estimated the number of participants required to achieve a number needed to treat within clinically acceptable boundaries for the BI and mRS.We secured 2350 IPD (18 RCTs). For a 90% chance of statistical accuracy on the BI a rehabilitation RCT would require 273 participants per randomised group. Accurate interpretation of effect sizes would require 1000s of participants per group. Simulations for the mRS were not possible as a clinically relevant improvement was not detected when using this outcome measure.Stroke rehabilitation RCTs with large sample sizes are required for accurate interpretation of effect sizes based on the BI. The mRS lacked sensitivity to detect change and thus may be unsuitable as a primary outcome in stroke rehabilitation trials.Copyright © 2021 Elsevier Inc. All rights reserved.

JTD Keywords:  , barthel index, design, increasing value, modified rankin scale, randomised controlled trials, recruitment, reducing waste, reliability, sample size calculations, simulations, stroke rehabilitation, Adult, Article, Barthel index, Calculation, Computer simulation, Controlled study, Effect size, Female, Human, Human experiment, Major clinical study, Male, Modified rankin scale, Numbers needed to treat, Outcome assessment, Randomised controlled trials, Randomized controlled trial, Randomized controlled-trials, Rankin scale, Recruitment, Rehabilitation, Sample size, Sample size calculations, Simulations, Stroke rehabilitation


Ballester, BR, Antenucci, F, Maier, M, Coolen, ACC, Verschure, PFMJ, (2021). Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training Journal Of Neuroengineering And Rehabilitation 18,

Introduction: After a stroke, a wide range of deficits can occur with varying onset latencies. As a result, assessing impairment and recovery are enormous challenges in neurorehabilitation. Although several clinical scales are generally accepted, they are time-consuming, show high inter-rater variability, have low ecological validity, and are vulnerable to biases introduced by compensatory movements and action modifications. Alternative methods need to be developed for efficient and objective assessment. In this study, we explore the potential of computer-based body tracking systems and classification tools to estimate the motor impairment of the more affected arm in stroke patients. Methods: We present a method for estimating clinical scores from movement parameters that are extracted from kinematic data recorded during unsupervised computer-based rehabilitation sessions. We identify a number of kinematic descriptors that characterise the patients' hemiparesis (e.g., movement smoothness, work area), we implement a double-noise model and perform a multivariate regression using clinical data from 98 stroke patients who completed a total of 191 sessions with RGS. Results: Our results reveal a new digital biomarker of arm function, the Total Goal-Directed Movement (TGDM), which relates to the patients work area during the execution of goal-oriented reaching movements. The model's performance to estimate FM-UE scores reaches an accuracy of R-2: 0.38 with an error (sigma: 12.8). Next, we evaluate its reliability (r = 0.89 for test-retest), longitudinal external validity (95% true positive rate), sensitivity, and generalisation to other tasks that involve planar reaching movements (R-2: 0.39). The model achieves comparable accuracy also for the Chedoke Arm and Hand Activity Inventory (R-2: 0.40) and Barthel Index (R-2: 0.35). Conclusions: Our results highlight the clinical value of kinematic data collected during unsupervised goal-oriented motor training with the RGS combined with data science techniques, and provide new insight into factors underlying recovery and its biomarkers.

JTD Keywords: interactive feedback, motion classification, motion sensing, multivariate regression, posture monitoring, rehabilitation, stroke, Adult, Aged, Analytic method, Arm movement, Article, Barthel index, Brain hemorrhage, Cerebrovascular accident, Chedoke arm and hand activity inventory, Clinical protocol, Cognitive defect, Computer analysis, Controlled study, Convergent validity, Correlation coefficient, Disease severity, External validity, Female, Fugl meyer assessment for the upper extremity, Functional assessment, Functional status assessment, General health status assessment, Hemiparesis, Human, Interactive feedback, Ischemic stroke, Kinematics, Major clinical study, Male, Mini mental state examination, Motion classification, Motion sensing, Motor analog scale, Movement, Multivariate regression, Muscle function, Posture monitoring, Probability, Recovery, Rehabilitation, Reliability, Retrospective study, Stroke, Stroke patient, Test retest reliability, Therapy, Total goal directed movement, Upper extremities, Upper limb, Upper-limb, Wolf motor function test


Dulay, S, Rivas, L, Pla, L, Berdun, S, Eixarch, E, Gratacos, E, Illa, M, Mir, M, Samitier, J, (2021). Fetal ischemia monitoring with in vivo implanted electrochemical multiparametric microsensors Journal Of Biological Engineering 15,

Under intrauterine growth restriction (IUGR), abnormal attainment of the nutrients and oxygen by the fetus restricts the normal evolution of the prenatal causing in many cases high morbidity being one of the top-ten causes of neonatal death. The current gold standards in hospitals to detect this relevant problem is the clinical observation by echography, cardiotocography and Doppler. These qualitative techniques are not conclusive and requires risky invasive fetal scalp blood testing and/or amniocentesis. We developed micro-implantable multiparametric electrochemical sensors for measuring ischemia in real time in fetal tissue and vascular. This implantable technology is designed to continuous monitoring for an early detection of ischemia to avoid potential fetal injury. Two miniaturized electrochemical sensors were developed based on oxygen and pH detection. The sensors were optimized in vitro under controlled concentration, to assess the selectivity and sensitivity required. The sensors were then validated in vivo in the ewe fetus model, by means of their insertion in the muscle leg and inside the iliac artery of the fetus. Ischemia was achieved by gradually obstructing the umbilical cord to regulate the amount of blood reaching the fetus. An important challenge in fetal monitoring is the detection of low levels of oxygen and pH changes under ischemic conditions, requiring high sensitivity sensors. Significant differences were observed in both; pH and pO(2) sensors under changes from normoxia to hypoxia states in the fetus tissue and vascular with both sensors. Herein, we demonstrate the feasibility of the developed sensors for future fetal monitoring in medical applications.

JTD Keywords: electrochemical biosensor, implantable sensor, in vivo validation, ischemia detection, tissue and vascular monitoring, Animal experiment, Animal model, Animal tissue, Article, Blood-gases, Brain, Classification, Controlled study, Diagnosis, Doppler, Early diagnosis, Electrochemical analysis, Electrochemical biosensor, Ewe, Feasibility study, Female, Fetus, Fetus disease, Fetus monitoring, Gestational age, Hypoxemia, Iliac artery, Implantable sensor, In vivo validation, Intrauterine growth restriction, Intrauterine growth retardation, Ischemia detection, Leg muscle, Management, Nonhuman, Oxygen consumption, Ph, Ph and oxygen detection, Ph measurement, Process optimization, Sheep, Tissue and vascular monitoring, Umbilical-cord occlusion


Grechuta, K, Costa, JD, Ballester, BR, Verschure, P, (2021). Challenging the Boundaries of the Physical Self: Distal Cues Impact Body Ownership Frontiers In Human Neuroscience 15,

The unique ability to identify one's own body and experience it as one's own is fundamental in goal-oriented behavior and survival. However, the mechanisms underlying the so-called body ownership are yet not fully understood. Evidence based on Rubber Hand Illusion (RHI) paradigms has demonstrated that body ownership is a product of reception and integration of self and externally generated multisensory information, feedforward and feedback processing of sensorimotor signals, and prior knowledge about the body. Crucially, however, these designs commonly involve the processing of proximal modalities while the contribution of distal sensory signals to the experience of ownership remains elusive. Here we propose that, like any robust percept, body ownership depends on the integration and prediction across all sensory modalities, including distal sensory signals pertaining to the environment. To test our hypothesis, we created an embodied goal-oriented Virtual Air Hockey Task, in which participants were to hit a virtual puck into a goal. In two conditions, we manipulated the congruency of distal multisensory cues (auditory and visual) while preserving proximal and action-driven signals entirely predictable. Compared to a fully congruent condition, our results revealed a significant decrease on three dimensions of ownership evaluation when distal signals were incongruent, including the subjective report as well as physiological and kinematic responses to an unexpected threat. Together, these findings support the notion that the way we represent our body is contingent upon all the sensory stimuli, including distal and action-independent signals. The present data extend the current framework of body ownership and may also find applications in rehabilitation scenarios.



JTD Keywords: active perception, body ownership, distal sensory cues, embodied cognition, forward model, Active perception, Adult, Article, Body ownership, Brain, Cortex, Distal sensory cues, Embodied cognition, Feel, Female, Forward model, Hockey, Human, Human experiment, Integration, Male, Models, Neurons, Perception, Peripersonal space, Prediction, Rehabilitation, Rubber hand illusion, Sensory prediction error, Touch


Watt, AC, Cejas, P, DeCristo, MJ, Metzger, O, Lam, EYN, Qiu, XT, BrinJones, H, Kesten, N, Coulson, R, Font-Tello, A, Lim, K, Vadhi, R, Daniels, VW, Montero, J, Taing, L, Meyer, CA, Gilan, O, Bell, CC, Korthauer, KD, Giambartolomei, C, Pasaniuc, B, Seo, JH, Freedman, ML, Ma, CT, Ellis, MJ, Krop, I, Winer, E, Letai, A, Brown, M, Dawson, MA, Long, HW, Zhao, JJ, Goel, S, (2021). CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity Nature Cancer 2, 34-+

Goel and colleagues show that CDK4/6 inhibition induces global chromatin changes mediated by AP-1 factors, which mediate key biological and clinical effects in breast cancer. Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that are enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several activator protein-1 transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.

JTD Keywords: Abemaciclib, Androgen receptor, Animal experiment, Animal model, Animal tissue, Apoptosis, Article, Breast cancer, C-jun, Cancer cell, Carcinoembryonic antigen related cell adhesion molecule 1, Caspase 3, Cell cycle arrest, Cells, Chromatin, Chromatin immunoprecipitation, Controlled study, Cyclin dependent kinase 4, Cyclin dependent kinase 6, Dna damage, Epidermal growth factor receptor 2, Estrogen receptor, Female, Flow cytometry, Fulvestrant, Hla drb1 antigen, Human, Human cell, Immunoblotting, Immunogenicity, Immunoprecipitation, Interferon, Luciferase assay, Mcf-7 cell line, Mda-mb-231 cell line, Microarray analysis, Morphogenesis, Mouse, Nonhuman, Palbociclib, Protein, Protein expression, Rb, Resistance, Rna polymerase ii, Rna sequence, Selective-inhibition, Senescence, Short tandem repeat, Signal transduction, Tamoxifen, Transcription elongation, Transcription factor, Transcription factor ap 1, Transcriptome, Tumor biopsy, Tumor differentiation, Tumor spheroid, Tumor xenograft, Vinculin, Whole exome sequencing


Farré, N., Jorba, I., Torres, M., Falcones, B., Martí-Almor, J., Farré, R., Almendros, I., Navajas, D., (2018). Passive stiffness of left ventricular myocardial tissue is reduced by ovariectomy in a post-menopause mouse model Frontiers in Physiology 9, Article 1545

Background: Heart failure (HF) – a very prevalent disease with high morbidity and mortality – usually presents with diastolic dysfunction. Although post-menopause women are at increased risk of HF and diastolic dysfunction, poor attention has been paid to clinically and experimentally investigate this group of patients. Specifically, whether myocardial stiffness is affected by menopause is unknown. Aim: To investigate whether loss of female sexual hormones modifies the Young’s modulus (E) of left ventricular (LV) myocardial tissue in a mouse model of menopause induced by ovariectomy (OVX). Methods: After 6 months of bilateral OVX, eight mice were sacrificed, fresh LV myocardial strips were prepared (∼8 × 1 × 1 mm), and their passive stress–stretch relationship was measured. E was computed by exponential fitting of the stress–stretch relationship. Subsequently, to assess the relative role of cellular and extracellular matrix components in determining OVX-induced changes in E, the tissues strips were decellularized and subjected to the same stretching protocol to measure E. A control group of eight sham-OVX mice was simultaneously studied. Results: E (kPa; m ± SE) in OVX mice was ∼twofold lower than in controls (11.7 ± 1.8 and 22.1 ± 4.4, respectively; p < 0.05). No significant difference between groups was found in E of the decellularized tissue (31.4 ± 12.05 and 40.9 ± 11.5, respectively; p = 0.58). Conclusion: Loss of female sexual hormones in an OVX model induces a reduction in the passive stiffness of myocardial tissue, suggesting that active relaxation should play a counterbalancing role in diastolic dysfunction in post-menopausal women with HF.

JTD Keywords: Decellularized tissue, Female hormones, Heart tissue, Ovariectomy, Stress-strain


Marques, J., Moles, E., Urbán, P., Prohens, R., Busquets, M. A., Sevrin, C., Grandfils, C., Fernàndez-Busquets, X., (2014). Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells Nanomedicine: Nanotechnology, Biology, and Medicine 10, (8), 1719-1728

Heparin had been demonstrated to have antimalarial activity and specific binding affinity for Plasmodium-infected red blood cells (pRBCs) vs. non-infected erythrocytes. Here we have explored if both properties could be joined into a drug delivery strategy where heparin would have a dual role as antimalarial and as a targeting element of drug-loaded nanoparticles. Confocal fluorescence and transmission electron microscopy data show that after 30. min of being added to living pRBCs fluorescein-labeled heparin colocalizes with the intracellular parasites. Heparin electrostatically adsorbed onto positively charged liposomes containing the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane and loaded with the antimalarial drug primaquine was capable of increasing three-fold the activity of encapsulated drug in Plasmodium falciparum cultures. At concentrations below those inducing anticoagulation of mouse blood in vivo, parasiticidal activity was found to be the additive result of the separate activities of free heparin as antimalarial and of liposome-bound heparin as targeting element for encapsulated primaquine. From the Clinical Editor: Malaria remains an enormous global public health concern. In this study, a novel functionalized heparin formulation used as drug delivery agent for primaquine was demonstrated to result in threefold increased drug activity in cell cultures, and in a murine model it was able to provide these benefits in concentrations below what would be required for anticoagulation. Further studies are needed determine if this approach is applicable in the human disease as well.

JTD Keywords: Heparin, Liposomes, Malaria, Plasmodium, Targeted drug delivery, Heparin, Malaria, Plasmodium, Red blood cell, Targeted drug delivery, Liposomes, 1,2 dioleoyl 3 trimethylammoniopropane, fluorescein, heparin, liposome, nanoparticle, primaquine, adsorption, animal experiment, anticoagulation, antimalarial activity, Article, binding affinity, confocal microscopy, controlled study, drug targeting, encapsulation, erythrocyte, female, fluorescence microscopy, human, human cell, in vivo study, liposomal delivery, mouse, nonhuman, Plasmodium falciparum, transmission electron microscopy


Melo, E., Cárdenes, N., Garreta, E., Luque, T., Rojas, M., Navajas, D., Farré, R., (2014). Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs Journal of the Mechanical Behavior of Biomedical Materials , 37, 186-195

Lung disease models are useful to study how cell engraftment, proliferation and differentiation are modulated in lung bioengineering. The aim of this work was to characterize the local stiffness of decellularized lungs in aged and fibrotic mice. Mice (2- and 24-month old; 14 of each) with lung fibrosis (N=20) and healthy controls (N=8) were euthanized after 11 days of intratracheal bleomycin (fibrosis) or saline (controls) infusion. The lungs were excised, decellularized by a conventional detergent-based (sodium-dodecyl sulfate) procedure and slices of the acellular lungs were prepared to measure the local stiffness by means of atomic force microscopy. The local stiffness of the different sites in acellular fibrotic lungs was very inhomogeneous within the lung and increased according to the degree of the structural fibrotic lesion. Local stiffness of the acellular lungs did not show statistically significant differences caused by age. The group of mice most affected by fibrosis exhibited local stiffness that were ~2-fold higher than in the control mice: from 27.2±1.64 to 64.8±7.1. kPa in the alveolar septa, from 56.6±4.6 to 99.9±11.7. kPa in the visceral pleura, from 41.1±8.0 to 105.2±13.6. kPa in the tunica adventitia, and from 79.3±7.2 to 146.6±28.8. kPa in the tunica intima. Since acellular lungs from mice with bleomycin-induced fibrosis present considerable micromechanical inhomogeneity, this model can be a useful tool to better investigate how different degrees of extracellular matrix lesion modulate cell fate in the process of organ bioengineering from decellularized lungs.

JTD Keywords: Ageing, Atomic force microscopy, Decellularization, Lung fibrosis, Tissue engineering, Atomic force microscopy, Biological organs, Peptides, Sodium dodecyl sulfate, Sodium sulfate, Tissue engineering, Ageing, Decellularization, Extracellular matrices, Healthy controls, Inhomogeneities, Lung fibrosis, Micro-mechanical, Statistically significant difference, Mammals, bleomycin, adventitia, animal experiment, animal model, article, atomic force microscopy, bleomycin-induced pulmonary fibrosis, cell fate, controlled study, extracellular matrix, female, intima, lung alveolus, lung fibrosis, lung mechanics, mechanical probe, microenvironment, mouse, nonhuman, pleura, priority journal, rigidity, tissue engineering


Nonaka, P. N., Uriarte, J. J., Campillo, N., Melo, E., Navajas, D., Farré, R., Oliveira, L. V. F., (2014). Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate Respiratory Physiology & Neurobiology , 200, 1-5

Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (RL) and elastance (EL) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step.

JTD Keywords: Lung bioengineering, Lung decellularization, Organ scaffold, dodecyl sulfate sodium, animal tissue, article, artificial ventilation, compliance (physical), controlled study, enzyme chemistry, extracellular matrix, female, flow, lung, lung decellularization, lung pressure, lung resistance, mouse, nonhuman, positive end expiratory pressure, priority journal, rigidity, tissue engineering, trachea pressure


Diez, Pablo F., Laciar, Eric, Mut, Vicente, Avila, Enrique, Torres, Abel, (2008). A comparative study of the performance of different spectral estimation methods for classification of mental tasks IEEE Engineering in Medicine and Biology Society Conference Proceedings 30th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (ed. IEEE), IEEE (Vancouver, Canada) 1-8, 1155-1158

In this paper we compare three different spectral estimation techniques for the classification of mental tasks. These techniques are the standard periodogram, the Welch periodogram and the Burg method, applied to electroencephalographic (EEG) signals. For each one of these methods we compute two parameters: the mean power and the root mean square (RMS), in various frequency bands. The classification of the mental tasks was conducted with a linear discriminate analysis. The Welch periodogram and the Burg method performed better than the standard periodogram. The use of the RMS allows better classification accuracy than the obtained with the power of EEG signals.

JTD Keywords: Adult, Algorithms, Artificial Intelligence, Cognition, Electroencephalography, Female, Humans, Male, Pattern Recognition, Automated, Reproducibility of Results, Sensitivity and Specificity, Task Performance and Analysis, User-Computer Interface