DONATE

Publications

by Keyword: State

López-Ortiz, M, Zamora, RA, Giannotti, MI, Gorostiza, P, (2023). The Protein Matrix of Plastocyanin Supports Long-Distance Charge Transport with Photosystem I and the Copper Ion Regulates Its Spatial Span and Conductance Acs Nano 17, 20334-20344

Charge exchange is the fundamental process that sustains cellular respiration and photosynthesis by shuttling electrons in a cascade of electron transfer (ET) steps between redox cofactors. While intraprotein charge exchange is well characterized in protein complexes bearing multiple redox sites, interprotein processes are less understood due to the lack of suitable experimental approaches and the dynamic nature of the interactions. Proteins constrained between electrodes are known to support electron transport (ETp) through the protein matrix even without redox cofactors, as the charges housed by the redox sites in ET are furnished by the electrodes. However, it is unknown whether protein ETp mechanisms apply to the interprotein medium present under physiological conditions. We study interprotein charge exchange between plant photosystem I (PSI) and its soluble redox partner plastocyanin (Pc) and address the role of the Pc copper center. Using electrochemical scanning tunneling spectroscopy (ECSTS) current-distance and blinking measurements, we quantify the spatial span of charge exchange between individual Pc/PSI pairs and ETp through transient Pc/PSI complexes. Pc devoid of the redox center (Pcapo) can exchange charge with PSI at longer distances than with the copper ion (Pcholo). Conductance bursts associated with Pcapo/PSI complex formation are higher than in Pcholo/PSI. Thus, copper ions are not required for long-distance Pc/PSI ETp but regulate its spatial span and conductance. Our results suggest that the redox center that carries the charge in Pc is not necessary to exchange it in interprotein ET through the aqueous solution and question the canonical view of tight complex binding between redox protein partners.

JTD Keywords: azurin, binding, blinking, crystal-structure, cupredoxin, current distance spectroscopy, electrochemical tunneling microscopy, proteinconductance, reduction, single metalloprotein, single molecule measurements, site, spectroscopy, Blinking, Cupredoxin, Current distance spectroscopy, Electrochemical tunneling microscopy, Interprotein electron transfer, Protein conductance, Single molecule measurements, State electron-transport


Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV, (2023). Spin Hyperpolarization in Modern Magnetic Resonance Chemical Reviews 123, 1417-1551

Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.

JTD Keywords: electron-paramagnetic-resonance, high-resolution nmr, hydrogen-induced polarization, level anti-crossings, long-lived states, parahydrogen-induced polarization, photosynthetic reaction-center, reversible exchange catalysis, solid-state nmr, Dynamic-nuclear-polarization


Dias JMS, Estima D, Punte H, Klingner A, Marques L, Magdanz V, Khalil ISM, (2022). Modeling and Characterization of the Passive Bending Stiffness of Nanoparticle-Coated Sperm Cells using Magnetic Excitation Advanced Theory And Simulations 5,

Of all the various locomotion strategies in low- (Formula presented.), traveling-wave propulsion methods with an elastic tail are preferred because they can be developed using simple designs and fabrication procedures. The only intrinsic property of the elastic tail that governs the form and rate of wave propagation along its length is the bending stiffness. Such traveling wave motion is performed by spermatozoa, which possess a tail that is characterized by intrinsic variable stiffness along its length. In this paper, the passive bending stiffness of the magnetic nanoparticle-coated flagella of bull sperm cells is measured using a contactless electromagnetic-based excitation method. Numerical elasto-hydrodynamic models are first developed to predict the magnetic excitation and relaxation of nanoparticle-coated nonuniform flagella. Then solutions are provided for various groups of nonuniform flagella with disparate nanoparticle coatings that relate their bending stiffness to their decay rate after the magnetic field is removed and the flagellum restores its original configuration. The numerical models are verified experimentally, and capture the effect of the nanoparticle coating on the bending stiffness. It is also shown that electrostatic self-assembly enables arbitrarily magnetizable cellular segments with variable stiffness along the flagellum. The bending stiffness is found to depend on the number and location of the magnetized cellular segments. © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH.

JTD Keywords: cilia, flagella, flagellar propulsion, low reynolds numbers, magnetic, microswimmers, passive, sperm cell, Bending stiffness, Cells, Cellulars, Coatings, Decay (organic), Electric excitation, Excited states, Flagellar propulsion, Locomotion strategies, Low reynolds numbers, Magnetic, Magnetic excitations, Nanoparticle coatings, Passive, Propulsion methods, Self assembly, Simple++, Sperm cell, Sperm cells, Stiffness, Travelling waves, Variable stiffness, Wave propagation, Younǵs modulus


Páscoa dos Santos F, Verschure PFMJ, (2022). Excitatory-Inhibitory Homeostasis and Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex Frontiers In Systems Neuroscience 15, 806544

Maintaining a balance between excitatory and inhibitory activity is an essential feature of neural networks of the neocortex. In the face of perturbations in the levels of excitation to cortical neurons, synapses adjust to maintain excitatory-inhibitory (EI) balance. In this review, we summarize research on this EI homeostasis in the neocortex, using stroke as our case study, and in particular the loss of excitation to distant cortical regions after focal lesions. Widespread changes following a localized lesion, a phenomenon known as diaschisis, are not only related to excitability, but also observed with respect to functional connectivity. Here, we highlight the main findings regarding the evolution of excitability and functional cortical networks during the process of post-stroke recovery, and how both are related to functional recovery. We show that cortical reorganization at a global scale can be explained from the perspective of EI homeostasis. Indeed, recovery of functional networks is paralleled by increases in excitability across the cortex. These adaptive changes likely result from plasticity mechanisms such as synaptic scaling and are linked to EI homeostasis, providing a possible target for future therapeutic strategies in the process of rehabilitation. In addition, we address the difficulty of simultaneously studying these multiscale processes by presenting recent advances in large-scale modeling of the human cortex in the contexts of stroke and EI homeostasis, suggesting computational modeling as a powerful tool to tie the meso- and macro-scale processes of recovery in stroke patients. Copyright © 2022 Páscoa dos Santos and Verschure.

JTD Keywords: balanced excitation, canonical microcircuit, cerebral-cortex, cortical excitability, cortical reorganization, diaschisis, excitability, excitatory-inhibitory balance, functional networks, homeostatic plasticity, ischemic-stroke, neuronal avalanches, photothrombotic lesions, state functional connectivity, whole-brain models, Algorithm, Biological marker, Brain, Brain cell, Brain cortex, Brain function, Brain radiography, Cerebrovascular accident, Cortical reorganization, Diaschisis, Down regulation, Excitability, Excitatory-inhibitory balance, Fluorine magnetic resonance imaging, Functional networks, Homeostasis, Homeostatic plasticity, Human, Motor dysfunction, Neuromodulation, Plasticity, Pyramidal nerve cell, Review, Simulation, Stroke, Stroke patient, Theta-burst stimulation, Visual cortex


Ballester, BR, Antenucci, F, Maier, M, Coolen, ACC, Verschure, PFMJ, (2021). Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training Journal Of Neuroengineering And Rehabilitation 18, 186

Introduction: After a stroke, a wide range of deficits can occur with varying onset latencies. As a result, assessing impairment and recovery are enormous challenges in neurorehabilitation. Although several clinical scales are generally accepted, they are time-consuming, show high inter-rater variability, have low ecological validity, and are vulnerable to biases introduced by compensatory movements and action modifications. Alternative methods need to be developed for efficient and objective assessment. In this study, we explore the potential of computer-based body tracking systems and classification tools to estimate the motor impairment of the more affected arm in stroke patients. Methods: We present a method for estimating clinical scores from movement parameters that are extracted from kinematic data recorded during unsupervised computer-based rehabilitation sessions. We identify a number of kinematic descriptors that characterise the patients' hemiparesis (e.g., movement smoothness, work area), we implement a double-noise model and perform a multivariate regression using clinical data from 98 stroke patients who completed a total of 191 sessions with RGS. Results: Our results reveal a new digital biomarker of arm function, the Total Goal-Directed Movement (TGDM), which relates to the patients work area during the execution of goal-oriented reaching movements. The model's performance to estimate FM-UE scores reaches an accuracy of R-2: 0.38 with an error (sigma: 12.8). Next, we evaluate its reliability (r = 0.89 for test-retest), longitudinal external validity (95% true positive rate), sensitivity, and generalisation to other tasks that involve planar reaching movements (R-2: 0.39). The model achieves comparable accuracy also for the Chedoke Arm and Hand Activity Inventory (R-2: 0.40) and Barthel Index (R-2: 0.35). Conclusions: Our results highlight the clinical value of kinematic data collected during unsupervised goal-oriented motor training with the RGS combined with data science techniques, and provide new insight into factors underlying recovery and its biomarkers.

JTD Keywords: interactive feedback, motion classification, motion sensing, multivariate regression, posture monitoring, rehabilitation, stroke, Adult, Aged, Analytic method, Arm movement, Article, Barthel index, Brain hemorrhage, Cerebrovascular accident, Chedoke arm and hand activity inventory, Clinical protocol, Cognitive defect, Computer analysis, Controlled study, Convergent validity, Correlation coefficient, Disease severity, External validity, Female, Fugl meyer assessment for the upper extremity, Functional assessment, Functional status assessment, General health status assessment, Hemiparesis, Human, Interactive feedback, Ischemic stroke, Kinematics, Major clinical study, Male, Mini mental state examination, Motion classification, Motion sensing, Motor analog scale, Movement, Multivariate regression, Muscle function, Posture monitoring, Probability, Recovery, Rehabilitation, Reliability, Retrospective study, Stroke, Stroke patient, Test retest reliability, Therapy, Total goal directed movement, Upper extremities, Upper limb, Upper-limb, Wolf motor function test


Barbero-Castillo, A, Riefolo, F, Matera, C, Caldas-Martínez, S, Mateos-Aparicio, P, Weinert, JF, Garrido-Charles, A, Claro, E, Sanchez-Vives, MV, Gorostiza, P, (2021). Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist Advanced Science 8, 2005027

The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.

JTD Keywords: brain states, light-mediated control, muscarinic acetylcholine receptors, neuromodulation, Activation, Alternating/direct currents, Basal forebrain, Brain, Brain states, Clinical research, Clinical translation, Controlled drug delivery, Cortex, Forebrain cholinergic system, Genetic manipulations, Higher frequencies, Hz oscillation, Light‐, Light-mediated control, Mediated control, Muscarinic acetylcholine receptors, Muscarinic agonists, Muscarinic receptor, Neurology, Neuromodulation, Neurons, Noradrenergic modulation, Parvalbumin-positive interneurons, Photopharmacology, Receptor-binding, Slow, Spatiotemporal control, Spatiotemporal patterns


Seuma, M, Faure, AJ, Badia, M, Lehner, B, Bolognesi, B, (2021). The genetic landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer's disease mutations Elife 10, e63364

Plaques of the amyloid beta (A beta) peptide are a pathological hallmark of Alzheimer's disease (AD), the most common form of dementia. Mutations in A beta also cause familial forms of AD (fAD). Here, we use deep mutational scanning to quantify the effects of >14,000 mutations on the aggregation of A beta. The resulting genetic landscape reveals mechanistic insights into fibril nucleation, including the importance of charge and gatekeeper residues in the disordered region outside of the amyloid core in preventing nucleation. Strikingly, unlike computational predictors and previous measurements, the empirical nucleation scores accurately identify all known dominant fAD mutations in A beta, genetically validating that the mechanism of nucleation in a cell-based assay is likely to be very similar to the mechanism that causes the human disease. These results provide the first comprehensive atlas of how mutations alter the formation of any amyloid fibril and a resource for the interpretation of genetic variation in A beta.

JTD Keywords: aggregation, kinetics, oligomers, onset, rates, state, Aggregation, Alzheimer's, Amyloid, Computational biology, Deep mutagenesis, Genetics, Genomics, Kinetics, Nucleation, Oligomers, Onset, Precursor protein, Rates, S. cerevisiae, State, Systems biology


Parra-Cabrera, C., Samitier, J., Homs-Corbera, A., (2016). Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection Biosensors and Bioelectronics 77, 1192-1200

We present a novel lab-on-a-chip (LOC) device for the simultaneous detection of multiple biomarkers using simple voltage measurements. The biosensor functionalization is performed in-situ, immediately before its use, facilitating reagents storage and massive devices fabrication. Sensitivity, limit of detection (LOD) and limit of quantification (LOQ) are tunable depending on the in-chip flown sample volumes. As a proof-of-concept, the system has been tested and adjusted to quantify two proteins found in blood that are susceptible to be used combined, as a screening tool, to diagnose prostate cancer (PCa): prostate-specific antigen (PSA) and spondin-2 (SPON2). This combination of biomarkers has been reported to be more specific for PCa diagnostics than the currently accepted but rather controversial PSA indicator. The range of detection for PSA and SPON2 could be adjusted to the clinically relevant range of 1 to 10. ng/ml. The system was tested for specificity to the evaluated biomarkers. This multiplex system can be modified and adapted to detect a larger quantity of biomarkers, or different ones, of relevance to other specific diseases.

JTD Keywords: Adjustable sensing, Impedance measurements, In situ functionalization, Microfluidics, Prostate specific antigen, Self-assembled monolayers


Morales, R., Badesa, F. J., Garcia-Aracil, N., Aranda, J., Casals, A., (2015). Autoadaptive neurorehabilitation robotic system assessment with a post-stroke patient Revista Iberoamericana de Automatica e Informatica Industrial , 12, (1), 92-98

This paper presents a new rehabilitation system that is able to adapt its performance to patient's psychophysiological state during the execution of robotic rehabilitation tasks. Using this approach, the motivation and participation of the patient during rehabilitation activity can be maximized. In this paper, the results of the study with healthy subjects presented in (Badesa et al., 2014b) have been extended for using them with patients who have suffered a stroke. In the first part of the article, the different components of the adaptive system are exposed, as well as a comparison of different machine learning techniques to classify the patient's psychophysiological state between three possible states: stressed, average excitation level and relaxed are presented. Finally, the results of the auto-adaptive system which modifies the behavior of the rehabilitation robot and virtual task in function of measured physiological signals are shown for a patient in the chronic phase of stroke.

JTD Keywords: Physiological state multimodal interfaces rehabilitation robotics control


McLenachan, S., Menchon, C., Raya, A., Consiglio, A., Edel, M. J., (2012). Cyclin A(1) is essential for setting the pluripotent state and reducing tumorigenicity of induced pluripotent stem cells Stem Cells and Development , 21, (15), 2891-2899

The proper differentiation and threat of cancer rising from the application of induced pluripotent stem (iPS) cells are major bottlenecks in the field and are thought to be inherently linked to the pluripotent nature of iPS cells. To address this question, we have compared iPS cells to embryonic stem cells (ESCs), the gold standard of ground state pluripotency, in search for proteins that may improve pluripotency of iPS cells. We have found that when reprogramming somatic cells toward pluripotency, 1%-5% of proteins of 5 important cell functions are not set to the correct expression levels compared to ESCs, including mainly cell cycle proteins. We have shown that resetting cyclin A1 protein expression of early- passage iPS cells closer to the ground state pluripotent state of mouse ESCs improves the pluripotency and reduces the threat of cancer of iPS cells. This work is a proof of principle that reveals that setting expression of certain proteins correctly during reprogramming is essential for achieving ESC- state pluripotency. This finding would be of immediate help to those researchers in different fields of iPS cell work that specializes in cell cycle, apoptosis, cell adhesion, cell signaling, and cytoskeleton.

JTD Keywords: Self-renewal, IPS cells, Ground-state, C-MYC, Generation, Pathway, Disease, Mice, Link, P53


Arimon, M., Sanz, F., Giralt, E., Carulla, N., (2012). Template-assisted lateral growth of amyloid-β42 fibrils studied by differential labeling with gold nanoparticles Bioconjugate Chemistry , 23, (1), 27-32

Amyloid-β protein (Aβ) aggregation into amyloid fibrils is central to the origin and development of Alzheimer’s disease (AD), yet this highly complex process is poorly understood at the molecular level. Extensive studies have shown that Aβ fibril growth occurs through fibril elongation, whereby soluble molecules add to the fibril ends. Nevertheless, fibril morphology strongly depends on aggregation conditions. For example, at high ionic strength, Aβ fibrils laterally associate into bundles. To further study the mechanisms leading to fibril growth, we developed a single-fibril growth assay based on differential labeling of two Aβ42 variants with gold nanoparticles. We used this assay to study Aβ42 fibril growth under different conditions and observed that bundle formation is preceded by lateral interaction of soluble Aβ42 molecules with pre-existing fibrils. Based on this data, we propose template-assisted lateral fibril growth as an additional mechanism to elongation for Aβ42 fibril growth.

JTD Keywords: AFM, Beta-Amyloid Fibrils, Polymorphism, Association, Elongation, Dynamics, State


Mir, M., Homs, A., Samitier, J., (2009). Integrated electrochemical DNA biosensors for lab-on-a-chip devices Electrophoresis , 30, (19), 3386-3397

Analytical devices able to perform accurate and fast automatic DNA detection or sequencing procedures have many potential benefits in the biomedical and environmental fields. The conversion of biological or biochemical responses into quantifiable optical, mechanical or electronic signals is achieved by means of biosensors. Most of these transducing elements can be miniaturized and incorporated into lab-on-a-chip devices, also known as Micro Total Analysis Systems. The use of multiple DNA biosensors integrated in these miniaturized laboratories, which perform several analytical operations at the microscale, has many cost and efficiency advantages. Tiny amounts of reagents and samples are needed and highly sensitive, fast and parallel assays can be done at low cost. A particular type of DNA biosensors are the ones used based on electrochemical principles. These sensors offer several advantages over the popular fluorescence-based detection schemes. The resulting signal is electrical and can be processed by conventional electronics in a very cheap and fast manner. Furthermore, the integration and miniaturization of electrochemical transducers in a microsystem makes easier its fabrication in front of the most common currently used detection method. In this review, different electrochemical DNA biosensors integrated in analytical microfluidic devices are discussed and some early stage commercial products based on this strategy are presented.

JTD Keywords: DNA, Electrochemical DNA biosensors, Electrochemistry, Lab-on-a-chip, Micro Total Analysis systems, Field-effect transistors, Sequence-specific detection, Chemical-analysis systems, Solid-state nanopores, Carbon nanotubes, Microfluidic device, Electrical detection, Hybridization, Molecules, Sensor


de Oliveira, I. A. M., Risco, D., Vocanson, F., Crespo, E., Teixidor, F., Zine, N., Bausells, J., Samitier, J., Errachid, A., (2008). Sodium ion sensitive microelectrode based on a p-tert-butylcalix[4]arene ethyl ester Sensors and Actuators B: Chemical 130, (1), 295-299

Planar sodium-selective potentiometric microelectrodes with a conducting polymer (polypyrrole doped with cobaltabis(dicarbollide) ions ([3,3'-Co(1,2-C2B9-H-11)(2)](-))) as solid contact layer between the polymeric sensitive membrane and the platinum substrate have been constructed. The p-tert-butylcalix[4]arene ethyl ester was used as ionophore for sodium recognition. The microelectrode shows a linear response for Na+ concentrations between 3.0 x 10(-6) and 1.0 x 10(-1) M with a Nernstian slope of 58.65 +/- 2 mV per decade and a detection limit of 1.45 x 10(-6) M. The response time was 14 s, and the electrode is suitable for use within the pH range of 3-10.

JTD Keywords: Sodium, Polypyrrole, Calix[4]arene, Solid-state ion selective microelectrode, Potentiometric


Castellarnau, M., Zine, N., Bausells, J., Madrid, C., Juarez, A., Samitier, J., Errachid, A., (2008). ISFET-based biosensor to monitor sugar metabolism in bacteria Materials Science & Engineering C 5th Maghreb-Europe Meeting on Materials and their Applicatons for Devices and Physical, Chemical and Biological Sensors (ed. -----), Elsevier Science (Mahdia, Tunisia) 28, (5-6), 680-685

We report the use of ion-selective field effect transistor devices (ISFETs) with an integrated pseudo-reference electrode for on-line monitoring of bacterial metabolism by monitoring of the pH variation. As a model we tested the ability of Lactobacillus strains to ferment sugars, producing lactic acid, which results in a decrease in pH in the suspension medium. We have tested and compared sugar uptake by L. sakei and a L. curvatus strains. The results obtained show that it is possible to distinguish between both types of Lactobacillus strains through their pattern of ribose uptake. The use of ISFETs represents a non-invasive methodology that can be used to monitor biological activity in a wide variety of systems.

JTD Keywords: Lactobacillus-sakei, Technology, Sensors, System, Growth, Cells, State, Meat


Díez-Pérez, Ismael, Vericat, Carolina, Gorostiza, Pau, Sanz, Fausto, (2006). The iron passive film breakdown in chloride media may be mediated by transient chloride-induced surface states located within the band gap Electrochemistry Communications , 8, (4), 627-632

Despite its tremendous scientific and economic impact, the mechanism that triggers metal passive film breakdown in the presence of aggressive ions remains under discussion. We have studied the iron passive film in chloride media using X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy and electrochemical tunneling spectroscopy (ECTS). Ex situ XPS reveal that the film consists exclusively of an Fe(III) oxide without chloride content. In situ ECTS has been used to build up conductance maps of the Fe electrode during its electrochemical oxidation in a borate buffer solution and its breakdown when the film is grown in the presence of chloride. This conductograms provide direct and in situ experimental evidence of chloride-induced surface states within the band gap of the oxide film (~3.3eV). These states enable new charge exchange pathways that allow hole capture at the surface of the n-type Fe(III) oxide. The blocking of VB processes that occurs in the iron passive film is no longer present in chloride media, and electrode corrosion can proceed through these new states. We propose a simple 3-step mechanism for the process, in which chloride anions form an oxidizing Fe(II) surface intermediate but do not participate directly in the reaction.

JTD Keywords: Electrochemical tunneling spectroscopy, Electronic band structure, Fe passive film, Aqueous chloride corrosion, Semiconductor decomposition, Interface states