DONATE

Publications

by Keyword: breast

Duch, P, Díaz-Valdivia, N, Gabasa, M, Ikemori, R, Arshakyan, M, Fernández-Nogueira, P, Llorente, A, Teixido, C, Ramírez, J, Pereda, J, Chuliá-Peris, L, Galbis, JM, Hilberg, F, Reguart, N, Radisky, DC, Alcaraz, J, (2024). Aberrant TIMP-1 production in tumor-associated fibroblasts drives the selective benefits of nintedanib in lung adenocarcinoma Cancer Science ,

The fibrotic tumor microenvironment is a pivotal therapeutic target. Nintedanib, a clinically approved multikinase antifibrotic inhibitor, is effective against lung adenocarcinoma (ADC) but not squamous cell carcinoma (SCC). Previous studies have implicated the secretome of tumor-associated fibroblasts (TAFs) in the selective effects of nintedanib in ADC, but the driving factor(s) remained unidentified. Here we examined the role of tissue inhibitor of metalloproteinase-1 (TIMP-1), a tumor-promoting cytokine overproduced in ADC-TAFs. To this aim, we combined genetic approaches with in vitro and in vivo preclinical models based on patient-derived TAFs. Nintedanib reduced TIMP-1 production more efficiently in ADC-TAFs than SCC-TAFs through a SMAD3-dependent mechanism. Cell culture experiments indicated that silencing TIMP1 in ADC-TAFs abolished the therapeutic effects of nintedanib on cancer cell growth and invasion, which were otherwise enhanced by the TAF secretome. Consistently, co-injecting ADC cells with TIMP1-knockdown ADC-TAFs into immunocompromised mice elicited a less effective reduction of tumor growth and invasion under nintedanib treatment compared to tumors bearing unmodified fibroblasts. Our results unveil a key mechanism underlying the selective mode of action of nintedanib in ADC based on the excessive production of TIMP-1 in ADC-TAFs. We further pinpoint reduced SMAD3 expression and consequent limited TIMP-1 production in SCC-TAFs as key for the resistance of SCC to nintedanib. These observations strongly support the emerging role of TIMP-1 as a critical regulator of therapy response in solid tumors.

JTD Keywords: Cancer-associated fibroblast,fibrosis,nintedanib,non-small-cell lung cancer,smad3,therapy resistance,timp-, Cell carcinoma,breast-cancer,expression,progression,inhibitor,blockade,efficac


Cassani, M, Fernandes, S, Cruz, JOD, Durikova, H, Vrbsky, J, Patocka, M, Hegrova, V, Klimovic, S, Pribyl, J, Debellis, D, Skladal, P, Cavalieri, F, Caruso, F, Forte, G, (2024). YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles Advanced Science 11, e2302965

Interactions between living cells and nanoparticles are extensively studied to enhance the delivery of therapeutics. Nanoparticles size, shape, stiffness, and surface charge are regarded as the main features able to control the fate of cell-nanoparticle interactions. However, the clinical translation of nanotherapies has so far been limited, and there is a need to better understand the biology of cell-nanoparticle interactions. This study investigates the role of cellular mechanosensitive components in cell-nanoparticle interactions. It is demonstrated that the genetic and pharmacologic inhibition of yes-associated protein (YAP), a key component of cancer cell mechanosensing apparatus and Hippo pathway effector, improves nanoparticle internalization in triple-negative breast cancer cells regardless of nanoparticle properties or substrate characteristics. This process occurs through YAP-dependent regulation of endocytic pathways, cell mechanics, and membrane organization. Hence, the study proposes targeting YAP may sensitize triple-negative breast cancer cells to chemotherapy and increase the selectivity of nanotherapy.© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.

JTD Keywords: cancer treatment, cells, differentiation, hippo pathway, mechanics, mechanobiology, mechanotransduction, nanoparticles, progression, protein, resistance, yap-signaling, yap/taz, Adaptor proteins, signal transducing, Bio-nano interaction, Bio-nano interactions, Breast cancer cells, Cancer cells, Cancer treatment, Cells, Cellular therapeutics, Cellular uptake, Chemotherapy, Cytology, Diseases, Extracellular-matrix, Human, Humans, Mechano-biology, Mechanobiology, Metabolism, Nanoparticle, Nanoparticle interaction, Nanoparticles, Physiology, Protein serine threonine kinase, Protein serine-threonine kinases, Protein signaling, Signal transducing adaptor protein, Signal transduction, Therapeutic effects, Triple negative breast cancer, Triple negative breast neoplasms, Triple-negative breast cancers, Yap-signaling, Yes-associated protein-signaling


Gallo, J, Villasante, A, (2023). Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment International Journal Of Molecular Sciences 24, 15484

Nanomedicine presents innovative solutions for cancer treatment, including photothermal therapy (PTT). PTT centers on the design of photoactivatable nanoparticles capable of absorbing non-toxic near-infrared light, generating heat within target cells to induce cell death. The successful transition from benchside to bedside application of PTT critically depends on the core properties of nanoparticles responsible for converting light into heat and the surface properties for precise cell-specific targeting. Precisely targeting the intended cells remains a primary challenge in PTT. In recent years, a groundbreaking approach has emerged to address this challenge by functionalizing nanocarriers and enhancing cell targeting. This strategy involves the creation of biomimetic nanoparticles that combine desired biocompatibility properties with the immune evasion mechanisms of natural materials. This review comprehensively outlines various strategies for designing biomimetic photoactivatable nanocarriers for PTT, with a primary focus on its application in cancer therapy. Additionally, we shed light on the hurdles involved in translating PTT from research to clinical practice, along with an overview of current clinical applications.

JTD Keywords: biomimetic nanoparticles, cancer treatment, diagnosis, drug-delivery, erythrocyte-membrane, facile synthesis, iron-oxide nanoparticles, magnetic nanoparticles, membrane-camouflaged nanoparticles, metastatic breast-cancer, size, stem-cells, Biomimetic nanoparticles, Cancer treatment, Membrane-camouflaged nanoparticles, Photothermal therapy


González-Callejo, P, Gener, P, Díaz-Riascos, Z, Conti, S, Cámara-Sánchez, P, Riera, R, Mancilla, S, García-Gabilondo, M, Peg, V, Arango, D, Rosell, A, Labernadie, A, Trepat, X, Albertazzi, L, Schwartz, S Jr, Seras-Franzoso, J, Abasolo, I, (2023). Extracellular vesicles secreted by triple-negative breast cancer stem cells trigger premetastatic niche remodeling and metastatic growth in the lungs International Journal Of Cancer 152, 2153-2165

Tumor secreted extracellular vesicles (EVs) are potent intercellular signaling platforms. They are responsible for the accommodation of the premetastatic niche (PMN) to support cancer cell engraftment and metastatic growth. However, complex cancer cell composition within the tumor increases also the heterogeneity among cancer secreted EVs subsets, a functional diversity that has been poorly explored. This phenomenon is particularly relevant in highly plastic and heterogenous triple-negative breast cancer (TNBC), in which a significant representation of malignant cancer stem cells (CSCs) is displayed. Herein, we selectively isolated and characterized EVs from CSC or differentiated cancer cells (DCC; EVsCSC and EVsDCC , respectively) from the MDA-MB-231 TNBC cell line. Our results showed that EVsCSC and EVsDCC contain distinct bioactive cargos and therefore elicit a differential effect on stromal cells in the TME. Specifically, EVsDCC activated secretory cancer associated fibroblasts (CAFs), triggering IL-6/IL-8 signaling and sustaining CSC phenotype maintenance. Complementarily, EVsCSC promoted the activation of α-SMA+ myofibroblastic CAFs subpopulations and increased the endothelial remodeling, enhancing the invasive potential of TNBC cells in vitro and in vivo. In addition, solely the EVsCSC mediated signaling prompted the transformation of healthy lungs into receptive niches able to support metastatic growth of breast cancer cells.© 2023 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

JTD Keywords: chemoresistance, dormancy, drives, extracellular vesicles, invasion, plasticity, premetastatic niche, triple-negative breast cancer, tumor microenvironment, Cancer cell plasticity, Extracellular vesicles, Fibroblasts, Premetastatic niche, Triple-negative breast cancer, Tumor microenvironment


Narciso, M, Martínez, A, Júnior, C, Díaz-Valdivia, N, Ulldemolins, A, Berardi, M, Neal, K, Navajas, D, Farré, R, Alcaraz, J, Almendros, I, Gavara, N, (2023). Lung Micrometastases Display ECM Depletion and Softening While Macrometastases Are 30-Fold Stiffer and Enriched in Fibronectin Cancers 15, 2404

Mechanical changes in tumors have long been linked to increased malignancy and therapy resistance and attributed to mechanical changes in the tumor extracellular matrix (ECM). However, to the best of our knowledge, there have been no mechanical studies on decellularized tumors. Here, we studied the biochemical and mechanical progression of the tumor ECM in two models of lung metastases: lung carcinoma (CAR) and melanoma (MEL). We decellularized the metastatic lung sections, measured the micromechanics of the tumor ECM, and stained the sections for ECM proteins, proliferation, and cell death markers. The same methodology was applied to MEL mice treated with the clinically approved anti-fibrotic drug nintedanib. When compared to healthy ECM (~0.40 kPa), CAR and MEL lung macrometastases produced a highly dense and stiff ECM (1.79 ± 1.32 kPa, CAR and 6.39 ± 3.37 kPa, MEL). Fibronectin was overexpressed from the early stages (~118%) to developed macrometastases (~260%) in both models. Surprisingly, nintedanib caused a 4-fold increase in ECM-occupied tumor area (5.1 ± 1.6% to 18.6 ± 8.9%) and a 2-fold in-crease in ECM stiffness (6.39 ± 3.37 kPa to 12.35 ± 5.74 kPa). This increase in stiffness strongly correlated with an increase in necrosis, which reveals a potential link between tumor hypoxia and ECM deposition and stiffness. Our findings highlight fibronectin and tumor ECM mechanics as attractive targets in cancer therapy and support the need to identify new anti-fibrotic drugs to abrogate aberrant ECM mechanics in metastases.

JTD Keywords: atomic force microscopy, basement membrane, breast-cancer, decellularization, expression, extracellular matrix, extracellular-matrix, fibronectin, intermittent hypoxia, lung carcinoma, lung metastases, melanoma, metastatic niche formation, micromechanical properties, nintedanib, signature, stiffness, tumor-growth, Colorectal-cancer progression, Lung metastases, Stiffness


El Hauadi, K, Resina, L, Zanuy, D, Esteves, T, Ferreira, FC, Pérez-Madrigal, MM, Alemán, C, (2022). Dendritic Self-assembled Structures from Therapeutic Charged Pentapeptides Langmuir 38, 12905-12914

CRENKA [Cys-Arg-(NMe)Glu-Lys-Ala, where (NMe)Glu refers to N-methyl-Glu], an anti-cancer pentapeptide that induces prostate tumor necrosis and significant reduction in tumor growth, was engineered to increase the resistance to endogenous proteases of its parent peptide, CREKA (Cys-Arg-Glu-Lys-Ala). Considering their high tendency to aggregate, the self-assembly of CRENKA and CREKA into well-defined and ordered structures has been examined as a function of peptide concentration and pH. Spectroscopic studies and atomistic molecular dynamics simulations reveal significant differences between the secondary structures of CREKA and CRENKA. Thus, the restrictions imposed by the (NMe)Glu residue reduce the conformational variability of CRENKA with respect to CREKA, which significantly affects the formation of well-defined and ordered self-assembly morphologies. Aggregates with poorly defined morphology are obtained from solutions with low and moderate CREKA concentrations at pH 4, whereas well-defined dendritic microstructures with fractal geometry are obtained from CRENKA solutions with similar peptide concentrations at pH 4 and 7. The formation of dendritic structures is proposed to follow a two-step mechanism: (1) pseudo-spherical particles are pre-nucleated through a diffusion-limited aggregation process, pre-defining the dendritic geometry, and (2) such pre-nucleated structures coalesce by incorporating conformationally restrained CRENKA molecules from the solution to their surfaces, forming a continuous dendritic structure. Instead, no regular assembly is obtained from solutions with high peptide concentrations, as their dynamics is dominated by strong repulsive peptide-peptide electrostatic interactions, and from solutions at pH 10, in which the total peptide charge is zero. Overall, results demonstrate that dendritic structures are only obtained when the molecular charge of CRENKA, which is controlled through the pH, favors kinetics over thermodynamics during the self-assembly process.

JTD Keywords: aggregation, amphiphilic peptides, breast-cancer, cells, design, oxidative stress, resistance, strategy, Molecular-dynamics


Rivas, EI, Linares, J, Zwick, M, Gómez-Llonin, A, Guiu, M, Labernadie, A, Badia-Ramentol, J, Lladó, A, Bardia, L, Pérez-Núñez, I, Martínez-Ciarpaglini, C, Tarazona, N, Sallent-Aragay, A, Garrido, M, Celià-Terrassa, T, Burgués, O, Gomis, RR, Albanell, J, Calon, A, (2022). Targeted immunotherapy against distinct cancer-associated fibroblasts overcomes treatment resistance in refractory HER2+ breast tumors Nature Communications 13, 5310

About 50% of human epidermal growth factor receptor 2 (HER2)+ breast cancer patients do not benefit from HER2-targeted therapy and almost 20% of them relapse after treatment. Here, we conduct a detailed analysis of two independent cohorts of HER2+ breast cancer patients treated with trastuzumab to elucidate the mechanisms of resistance to anti-HER2 monoclonal antibodies. In addition, we develop a fully humanized immunocompetent model of HER2+ breast cancer recapitulating ex vivo the biological processes that associate with patients’ response to treatment. Thanks to these two approaches, we uncover a population of TGF-beta-activated cancer-associated fibroblasts (CAF) specific from tumors resistant to therapy. The presence of this cellular subset related to previously described myofibroblastic (CAF-S1) and podoplanin+ CAF subtypes in breast cancer associates with low IL2 activity. Correspondingly, we find that stroma-targeted stimulation of IL2 pathway in unresponsive tumors restores trastuzumab anti-cancer efficiency. Overall, our study underscores the therapeutic potential of exploiting the tumor microenvironment to identify and overcome mechanisms of resistance to anti-cancer treatment.

JTD Keywords: activation, cells, efficacy, enrichment analysis, expression, infiltrating lymphocytes, survival, therapy, trastuzumab, Her2-positive breast-cancer


Blanco-Fernandez, B, Rey-Vinolas, S, Bagci, G, Rubi-Sans, G, Otero, J, Navajas, D, Perez-Amodio, S, Engel, E, (2022). Bioprinting Decellularized Breast Tissue for the Development of Three-Dimensional Breast Cancer Models Acs Applied Materials & Interfaces 14, 29467-29482

The tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation. The addition of gelatin methacrylamide and alginate allows this TDM to be bioprinted by itself with good printability, shape fidelity, and cytocompatibility. Furthermore, this bioink has been tuned to more closely recreate the breast tumor by incorporating collagen type I (Col1). Breast cancer cells (BCCs) proliferate in both TDM bioinks forming cell clusters and spheroids. The addition of Col1 improves the printability of the bioink as well as increases BCC proliferation and reduces doxorubicin sensitivity due to a downregulation of HSP90. TDM bioinks also allow a precise three-dimensional printing of scaffolds containing BCCs and stromal cells and could be used to fabricate artificial tumors. Taken together, we have proven that these novel bioinks are good candidates for biofabricating breast cancer models.

JTD Keywords: 3d in vitro cancer model, bioprinting, breast tissue, 3d in vitro cancer model, Bioink, Bioprinting, Breast tissue, Crosstalk, Decellularization, Extracellular-matrix, Growth, Hydrogels, In-vitro, Inhibition, Mechanical-properties, Metastasis, Proliferation


Blanco-Fernandez, B, Ibanez-Fonseca, A, Orbanic, D, Perez-Amodio, S, Rodriguez-Cabello, JC, Engel, E, (2022). RECREATING THE BREAST CANCER MICROENVIROMENT USING ELASTIN-LIKE RECOMBINAMER HYDROGELS (Abstract 1118) Tissue Engineering Part a 28, S313-S314

Pepe, G, Sfogliarini, C, Rizzello, L, Battaglia, G, Pinna, C, Rovati, G, Ciana, P, Brunialti, E, Mornata, F, Maggi, A, Locati, M, Vegeto, E, (2021). ER alpha-independent NRF2-mediated immunoregulatory activity of tamoxifen Biomedicine & Pharmacotherapy 144, 112274

Sex differences in immune-mediated diseases are linked to the activity of estrogens on innate immunity cells, including macrophages. Tamoxifen (TAM) is a selective estrogen receptor modulator (SERM) used in estrogen receptor-alpha (ER alpha)-dependent breast cancers and off-target indications such as infections, although the immune activity of TAM and its active metabolite, 4-OH tamoxifen (4HT), is poorly characterized. Here, we aimed at investigating the endocrine and immune activity of these SERMs in macrophages. Using primary cultures of female mouse macrophages, we analyzed the expression of immune mediators and activation of effector functions in competition experiments with SERMs and 17 beta-estradiol (E2) or the bacterial endotoxin LPS. We observed that 4HT and TAM induce estrogen antagonist effects when used at nanomolar concentrations, while pharmacological concentrations that are reached by TAM in clinical settings regulate the expression of VEGF alpha and other immune activation genes by ER alpha- and G protein-coupled receptor 1 (GPER1)-independent mechanisms that involve NRF2 through PI3K/Akt-dependent mechanisms. Importantly, we observed that SERMs potentiate cell phagocytosis and modify the effects of LPS on the expression of inflammatory cytokines, such as TNF alpha and IL1 beta, with an overall increase in cell inflammatory phenotype, further sustained by potentiation of IL1 beta secretion through caspase-1 activation.

JTD Keywords: drug repurposing, inflammation, macrophage, nrf2, Apoptosis, Breast-cancer, Drug repurposing, Expression, Inflammation, Macrophage, Nrf2, Resistance, Sex-differences, Tamoxifen, Tumor-associated macrophages


Alcon, C, Zañudo, JGT, Albert, R, Wagle, N, Scaltriti, M, Letai, A, Samitier, J, Montero, J, (2021). ER+ Breast Cancer Strongly Depends on MCL-1 and BCL-xL Anti-Apoptotic Proteins Cells 10, 1659

Breast cancer is the most frequent type of cancer and the major cause of mortality in women. The rapid development of various therapeutic options has led to the improvement of treatment outcomes; nevertheless, one-third of estrogen receptor (ER)-positive patients relapse due to cancer cell acquired resistance. Here, we use dynamic BH3 profiling (DBP), a functional predictive assay that measures net changes in apoptotic priming, to find new effective treatments for ER+ breast cancer. We observed anti-apoptotic adaptations upon treatment that pointed to metronomic therapeutic combinations to enhance cytotoxicity and avoid resistance. Indeed, we found that the anti-apoptotic proteins BCL-xL and MCL-1 are crucial for ER+ breast cancer cells resistance to therapy, as they exert a dual inhibition of the pro-apoptotic protein BIM and compensate for each other. In addition, we identified the AKT inhibitor ipatasertib and two BH3 mimetics targeting these anti-apoptotic proteins, S63845 and A-1331852, as new potential therapies for this type of cancer. Therefore, we postulate the sequential inhibition of both proteins using BH3 mimetics as a new treatment option for refractory and relapsed ER+ breast cancer tumors.

JTD Keywords: apoptosis, bh3 mimetics, cell-line, chemotherapy, classification, dbp, death, er+ breast cancer, fulvestrant, her2, inhibitor, kinase, pik3ca, priming, resistance, targeted therapies, Apoptosis, Bh3 mimetics, Dbp, Endocrine therapy, Er plus breast cancer, Er+ breast cancer, Priming, Resistance, Targeted therapies


Mallafré-Muro, C, Llambrich, M, Cumeras, R, Pardo, A, Brezmes, J, Marco, S, Gumà, J, (2021). Comprehensive volatilome and metabolome signatures of colorectal cancer in urine: A systematic review and meta‐analysis Cancers 13, 2534

To increase compliance with colorectal cancer screening programs and to reduce the recommended screening age, cheaper and easy non‐invasiveness alternatives to the fecal immunochemical test should be provided. Following the PRISMA procedure of studies that evaluated the metabolome and volatilome signatures of colorectal cancer in human urine samples, an exhaustive search in PubMed, Web of Science, and Scopus found 28 studies that met the required criteria. There were no restrictions on the query for the type of study, leading to not only colorectal cancer samples versus control comparison but also polyps versus control and prospective studies of surgical effects, CRC staging and comparisons of CRC with other cancers. With this systematic review, we identified up to 244 compounds in urine samples (3 shared compounds between the volatilome and metabolome), and 10 of them were relevant in more than three articles. In the meta-analysis, nine studies met the criteria for inclusion, and the results combining the case‐control and the pre‐/post‐surgery groups, eleven compounds were found to be relevant. Four upregulated metabolites were identified, 3‐hydroxybutyric acid, L‐dopa, L‐histidinol, and N1, N12‐ diacetylspermine and seven downregulated compounds were identified, pyruvic acid, hydroquinone, tartaric acid, and hippuric acid as metabolites and butyraldehyde, ether, and 1,1,6‐ trimethyl‐1,2‐dihydronaphthalene as volatiles.

JTD Keywords: biomarkers, breast, chromatography, colorectal cancer, diagnosis, markers, meta-analysis, metabolomics, metabonomics, n-1,n-12-diacetylspermine, nucleosides, systematic review, urine, validation, volatilomics, Colorectal cancer, Early-stage, Metabolomics, Meta‐analysis, Systematic review, Urine, Volatilomics


Watt, AC, Cejas, P, DeCristo, MJ, Metzger, O, Lam, EYN, Qiu, XT, BrinJones, H, Kesten, N, Coulson, R, Font-Tello, A, Lim, K, Vadhi, R, Daniels, VW, Montero, J, Taing, L, Meyer, CA, Gilan, O, Bell, CC, Korthauer, KD, Giambartolomei, C, Pasaniuc, B, Seo, JH, Freedman, ML, Ma, CT, Ellis, MJ, Krop, I, Winer, E, Letai, A, Brown, M, Dawson, MA, Long, HW, Zhao, JJ, Goel, S, (2021). CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity Nature Cancer 2, 34-+

Goel and colleagues show that CDK4/6 inhibition induces global chromatin changes mediated by AP-1 factors, which mediate key biological and clinical effects in breast cancer. Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that are enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several activator protein-1 transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.

JTD Keywords: Abemaciclib, Androgen receptor, Animal experiment, Animal model, Animal tissue, Apoptosis, Article, Breast cancer, C-jun, Cancer cell, Carcinoembryonic antigen related cell adhesion molecule 1, Caspase 3, Cell cycle arrest, Cells, Chromatin, Chromatin immunoprecipitation, Controlled study, Cyclin dependent kinase 4, Cyclin dependent kinase 6, Dna damage, Epidermal growth factor receptor 2, Estrogen receptor, Female, Flow cytometry, Fulvestrant, Hla drb1 antigen, Human, Human cell, Immunoblotting, Immunogenicity, Immunoprecipitation, Interferon, Luciferase assay, Mcf-7 cell line, Mda-mb-231 cell line, Microarray analysis, Morphogenesis, Mouse, Nonhuman, Palbociclib, Protein, Protein expression, Rb, Resistance, Rna polymerase ii, Rna sequence, Selective-inhibition, Senescence, Short tandem repeat, Signal transduction, Tamoxifen, Transcription elongation, Transcription factor, Transcription factor ap 1, Transcriptome, Tumor biopsy, Tumor differentiation, Tumor spheroid, Tumor xenograft, Vinculin, Whole exome sequencing


Perez-Balaguer, Ariadna, Ortiz-Martínez, Fernando, García-Martínez, Araceli, Pomares-Navarro, Critina, Lerma, Enrique, Peiró, Gloria, (2015). FOXA2 mRNA expression is associated with relapse in patients with Triple-Negative/Basal-like breast carcinoma Breast Cancer Research and Treatment , 153, (2), 465-474

The FOXA family of transcription factors regulates chromatin structure and gene expression especially during embryonic development. In normal breast tissue FOXA1 acts throughout mammary development; whereas in breast carcinoma its expression promotes luminal phenotype and correlates with good prognosis. However, the role of FOXA2 has not been previously studied in breast cancer. Our purpose was to analyze the expression of FOXA2 in breast cancer cells, to explore its role in breast cancer stem cells, and to correlate its mRNA expression with clinicopathological features and outcome in a series of patients diagnosed with breast carcinoma. We analyzed FOXA2 mRNA expression in a retrospective cohort of 230 breast cancer patients and in cell lines. We also knocked down FOXA2 mRNA expression by siRNA to determine the impact on cell proliferation and mammospheres formation using a cancer stem cells culture assay. In vitro studies demonstrated higher FOXA2 mRNA expression in Triple-Negative/Basal-like cells. Further, when it was knocked down, cells decreased proliferation and its capability of forming mammospheres. Similarly, FOXA2 mRNA expression was detected in 10 % (23/230) of the tumors, especially in Triple-Negative/Basal-like phenotype (p < 0.001, Fisher's test). Patients whose tumors expressed FOXA2 had increased relapses (59 vs. 79 %, p = 0.024, log-rank test) that revealed an independent prognostic value (HR = 3.29, C.I.95 % = 1.45-7.45, p = 0.004, Cox regression). Our results suggest that FOXA2 promotes cell proliferation, maintains cancer stem cells, favors the development of Triple-Negative/Basal-like tumors, and is associated with increase relapses.

JTD Keywords: Breast carcinoma, Cancer stem cells, FOXA2, Prognosis