Staff member publications
Longarzo, Maria L, Vazquez, Romina F, Bellini, Maria J, Zamora, Ricardo A, Redondo-Morata, Lorena, Giannotti, Marina I, Oliveira Jr, Osvaldo N, Fanani, Maria L, Mate, Sabina M, (2024). Understanding the effects of omega-3 fatty acid supplementation on the physical properties of brain lipid membranes Iscience 27, 110362
A deficiency in omega-3 fatty acids ( to 3 FAs) in the brain has been correlated with cognitive impairment, learning deficiencies, and behavioral changes. In this study, we provided to 3 FAs as a supplement to spontaneously hypertensive rats (SHR+ to 3). Our focus was on examining the impact of dietary supplementation on the physicochemical properties of the brain-cell membranes. Significant increases in to 3 levels in the cerebral cortex of SHR+ to 3 were observed, leading to alterations in brain lipid membranes molecular packing, elasticity, and lipid miscibility, resulting in an augmented phase disparity. Results from synthetic lipid mixtures confirmed the disordering effect introduced by to 3 lipids, showing its consequences on the hydration levels of the monolayers and the organization of the membrane domains. These findings suggest that dietary to 3 FAs influence the organization of brain membranes, providing insight into a potential mechanism for the broad effects of dietary fat on brain health and disease.
JTD Keywords: Behavio, Bilayers, Docosahexaenoic acid, Metabolism, Molecular packing, Phosphatidylcholine, Phosphatidylethanolamine, Polyunsaturated fatty-acids, Raft, Spectroscopy, Sphingomyelin
Rodriguez-Lejarraga, Paula, Martin-Iglesias, Sara, Moneo-Corcuera, Andrea, Colom, Adai, Redondo-Morata, Lorena, Giannotti, Marina I., Petrenko, Viktor, Monleón-Guinot, Irene, Mata, Manuel, Silvan, Unai, Lanceros-Mendez, Senentxu, (2024). The surface charge of electroactive materials governs cell behaviour through its effect on protein deposition Acta Biomaterialia
López-Ortiz, M, Zamora, RA, Giannotti, MI, Gorostiza, P, (2023). The Protein Matrix of Plastocyanin Supports Long-Distance Charge Transport with Photosystem I and the Copper Ion Regulates Its Spatial Span and Conductance Acs Nano 17, 20334-20344
Charge exchange is the fundamental process that sustains cellular respiration and photosynthesis by shuttling electrons in a cascade of electron transfer (ET) steps between redox cofactors. While intraprotein charge exchange is well characterized in protein complexes bearing multiple redox sites, interprotein processes are less understood due to the lack of suitable experimental approaches and the dynamic nature of the interactions. Proteins constrained between electrodes are known to support electron transport (ETp) through the protein matrix even without redox cofactors, as the charges housed by the redox sites in ET are furnished by the electrodes. However, it is unknown whether protein ETp mechanisms apply to the interprotein medium present under physiological conditions. We study interprotein charge exchange between plant photosystem I (PSI) and its soluble redox partner plastocyanin (Pc) and address the role of the Pc copper center. Using electrochemical scanning tunneling spectroscopy (ECSTS) current-distance and blinking measurements, we quantify the spatial span of charge exchange between individual Pc/PSI pairs and ETp through transient Pc/PSI complexes. Pc devoid of the redox center (Pcapo) can exchange charge with PSI at longer distances than with the copper ion (Pcholo). Conductance bursts associated with Pcapo/PSI complex formation are higher than in Pcholo/PSI. Thus, copper ions are not required for long-distance Pc/PSI ETp but regulate its spatial span and conductance. Our results suggest that the redox center that carries the charge in Pc is not necessary to exchange it in interprotein ET through the aqueous solution and question the canonical view of tight complex binding between redox protein partners.
JTD Keywords: azurin, binding, blinking, crystal-structure, cupredoxin, current distance spectroscopy, electrochemical tunneling microscopy, proteinconductance, reduction, single metalloprotein, single molecule measurements, site, spectroscopy, Blinking, Cupredoxin, Current distance spectroscopy, Electrochemical tunneling microscopy, Interprotein electron transfer, Protein conductance, Single molecule measurements, State electron-transport
Placci, M, Giannotti, MI, Muro, S, (2023). Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders Advanced Drug Delivery Reviews 197, 114683
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that consti-tute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their per-formance, and important items to consider for their clinical translation. Overall, polymeric nanocon-structs hold considerable promise to advance treatment for LSDs.(c) 2023 Elsevier B.V. All rights reserved.
JTD Keywords: cellular and animal models, enzyme replacement therapy, lysosomal storage disorders, nanoemulsions, nanoparticles, Beta-glucuronidase deficiency, Blood-brain-barrier, Cellular and animal models, Central-nervous-system, Drug delivery systems, Enzyme replacement therapy, Feline gm1 gangliosidosis, Human acid sphingomyelinase, Human alpha-galactosidase, Humans, Lysosomal storage diseases, Lysosomal storage disorders, Lysosomes, Mucopolysaccharidosis type-ii, Nanoemulsions, Nanoparticles, Neuronal ceroid-lipofuscinosis, Niemann-pick-disease, Pluripotent stem-cells, Polymer-based drug delivery systems, Polymers, Tissue distribution
Gomila, AMJ, Pérez-Mejías, G, Nin-Hill, A, Guerra-Castellano, A, Casas-Ferrer, L, Ortiz-Tescari, S, Díaz-Quintana, A, Samitier, J, Rovira, C, De la Rosa, MA, Díaz-Moreno, I, Gorostiza, P, Giannotti, MI, Lagunas, A, (2022). Phosphorylation disrupts long-distance electron transport in cytochrome c Nature Communications 13, 7100
It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c1 subunit of the cytochrome bc1 can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c1 and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation. We demonstrate that phosphorylation impairs long-range electron transfer, shortens the long-distance charge conduit between the partners, strengthens their interaction, and departs it from equilibrium. These results unveil a nanoscopic view of the interaction between redox protein partners in electron transport chains and its mechanisms of regulation.© 2022. The Author(s).
JTD Keywords: apoptosis, binding, cardiolipin, complex, dynamics, force, respiration, structural basis, tyrosine phosphorylation, Histone chaperone activity
Martínez-Miguel, M, Castellote-Borrell, M, Köber, M, Kyvik, AR, Tomsen-Melero, J, Vargas-Nadal, G, Muñoz, J, Pulido, D, Cristóbal-Lecina, E, Passemard, S, Royo, M, Mas-Torrent, M, Veciana, J, Giannotti, MI, Guasch, J, Ventosa, N, Ratera, I, (2022). Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion Acs Applied Materials & Interfaces 14, 48179-48193
The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.
JTD Keywords: activation, arg-gly-asp (rgd), cell adhesion, extracellular-matrix, growth, integrins, ligands, nanopatterns, quatsomes, scaffolds, self-assembled monolayers, surface engineering, tissue engineering, Arg-gly-asp (rgd), Cell adhesion, Integrins, Nano-structured surfaces, Nanovesicles, Quatsomes, Self-assembled monolayers, Surface engineering, Tissue engineering
Zamora, RA, López-Ortiz, M, Sales-Mateo, M, Hu, C, Croce, R, Maniyara, RA, Pruneri, V, Giannotti, MI, Gorostiza, P, (2022). Light- and Redox-Dependent Force Spectroscopy Reveals that the Interaction between Plastocyanin and Plant Photosystem I Is Favored when One Partner Is Ready for Electron Transfer Acs Nano 16, 15155-15164
Photosynthesis is a fundamental process that converts photons into chemical energy, driven by large protein complexes at the thylakoid membranes of plants, cyanobacteria, and algae. In plants, water-soluble plastocyanin (Pc) is responsible for shuttling electrons between cytochrome b6f complex and the photosystem I (PSI) complex in the photosynthetic electron transport chain (PETC). For an efficient turnover, a transient complex must form between PSI and Pc in the PETC, which implies a balance between specificity and binding strength. Here, we studied the binding frequency and the unbinding force between suitably oriented plant PSI and Pc under redox control using single molecule force spectroscopy (SMFS). The binding frequency (observation of binding-unbinding events) between PSI and Pc depends on their respective redox states. The interaction between PSI and Pc is independent of the redox state of PSI when Pc is reduced, and it is disfavored in the dark (reduced P700) when Pc is oxidized. The frequency of interaction between PSI and Pc is higher when at least one of the partners is in a redox state ready for electron transfer (ET), and the post-ET situation (PSIRed-PcOx) leads to lower binding. In addition, we show that the binding of ET-ready PcRed to PSI can be regulated externally by Mg2+ ions in solution.
JTD Keywords: architecture, binding-site, complexes, ferredoxin, force spectroscopy, induced structural-changes, interprotein electron transfer, light-dependent interaction, mg2+ concentration, photosystem i, plastocyanin, probe, recognition, reduction, Force spectroscopy, Interprotein electron transfer, Light-dependent interaction, Photosynthetic reaction-center, Photosystem i, Plastocyanin, Single molecule measurements
Wagner, AM, Eto, H, Joseph, A, Kohyama, S, Haraszti, T, Zamora, RA, Vorobii, M, Giannotti, MI, Schwille, P, Rodriguez-Emmenegger, C, (2022). Dendrimersome Synthetic Cells Harbor Cell Division Machinery of Bacteria Advanced Materials 34, 2202364
The integration of active cell machinery with synthetic building blocks is the bridge toward developing synthetic cells with biological functions and beyond. Self-replication is one of the most important tasks of living systems, and various complex machineries exist to execute it. In Escherichia coli, a contractile division ring is positioned to mid-cell by concentration oscillations of self-organizing proteins (MinCDE), where it severs membrane and cell wall. So far, the reconstitution of any cell division machinery has exclusively been tied to liposomes. Here, the reconstitution of a rudimentary bacterial divisome in fully synthetic bicomponent dendrimersomes is shown. By tuning the membrane composition, the interaction of biological machinery with synthetic membranes can be tailored to reproduce its dynamic behavior. This constitutes an important breakthrough in the assembly of synthetic cells with biological elements, as tuning of membrane-divisome interactions is the key to engineering emergent biological behavior from the bottom-up.
JTD Keywords: bacterial cell division, bottom-up synthetic biology, dendrimersomes, dynamic min patterns, ftsz assembly, Bacterial cell division, Bottom-up synthetic biology, Dendrimersomes, Dynamic min patterns, Dynamics, Ftsz assembly, Ftsz filaments, Mind, Organization, Pole oscillation, Polymersome membranes, Proteins, Rapid pole, Synthetic cells, Vesicles
López-Ortiz, M, Zamora, RA, Giannotti, MI, Hu, C, Croce, R, Gorostiza, P, (2022). Distance and Potential Dependence of Charge Transport Through the Reaction Center of Individual Photosynthetic Complexes Small 18, 2104366
Charge separation and transport through the reaction center of photosystem I (PSI) is an essential part of the photosynthetic electron transport chain. A strategy is developed to immobilize and orient PSI complexes on gold electrodes allowing to probe the complex's electron acceptor side, the chlorophyll special pair P700. Electrochemical scanning tunneling microscopy (ECSTM) imaging and current-distance spectroscopy of single protein complex shows lateral size in agreement with its known dimensions, and a PSI apparent height that depends on the probe potential revealing a gating effect in protein conductance. In current-distance spectroscopy, it is observed that the distance-decay constant of the current between PSI and the ECSTM probe depends on the sample and probe electrode potentials. The longest charge exchange distance (lowest distance-decay constant ?) is observed at sample potential 0 mV/SSC (SSC: reference electrode silver/silver chloride) and probe potential 400 mV/SSC. These potentials correspond to hole injection into an electronic state that is available in the absence of illumination. It is proposed that a pair of tryptophan residues located at the interface between P700 and the solution and known to support the hydrophobic recognition of the PSI redox partner plastocyanin, may have an additional role as hole exchange mediator in charge transport through PSI.© 2021 Wiley-VCH GmbH.
JTD Keywords: azurin, current distance decay spectroscopy, cytochrome c(6), electrochemical scanning tunneling microscopy (ecstm), electrochemistry, photosystem i, photosystem-i, plastocyanin, protein electron transfer, recognition, single metalloprotein, single molecules, structural basis, tunneling spectroscopy, 'current, Amino acids, Charge transfer, Chlorine compounds, Current distance decay spectroscopy, Decay spectroscopies, Distance decay, Electrochemical scanning tunneling microscopy, Electrochemical scanning tunneling microscopy (ecstm), Electrodes, Electron transfer, Electron transport properties, Gold compounds, Photosystem i, Photosystems, Protein electron transfer, Protein electron-transfer, Proteins, Scanning tunneling microscopy, Silver halides, Single molecule, Single molecules
Bar, L, Perissinotto, F, Redondo-Morata, L, Giannotti, MI, Goole, J, Losada-Pérez, P, (2022). Interactions of hydrophilic quantum dots with defect-free and defect containing supported lipid membranes Colloids And Surfaces B-Biointerfaces 210, 112239
Quantum dots (QDs) are semiconductor nanoparticles with unique optical and electronic properties, whose interest as potential nano-theranostic platforms for imaging and sensing is increasing. The design and use of QDs requires the understanding of cell-nanoparticle interactions at a microscopic and nanoscale level. Model systems such as supported lipid bilayers (SLBs) are useful, less complex platforms mimicking physico-chemical properties of cell membranes. In this work, we investigated the effect of topographical homogeneity of SLBs bearing different surface charge in the adsorption of hydrophilic QDs. Using quartz-crystal microbalance, a label-free surface sensitive technique, we show significant differences in the interactions of QDs onto homogeneous and inhomogeneous SLBs formed following different strategies. Within short time scales, QDs adsorb onto topographically homogeneous, defect-free SLBs is driven by electrostatic interactions, leading to no layer disruption. After prolonged QD exposure, the nanomechanical stability of the SLB decreases suggesting nanoparticle insertion. In the case of inhomogeneous, defect containing layers, QDs target preferentially membrane defects, driven by a subtle interplay of electrostatic and entropic effects, inducing local vesicle rupture and QD insertion at membrane edges. © 2021
JTD Keywords: adsorption, atomic force microscopy, bilayer formation, gold nanoparticles, hydrophilic quantum dots, lipid membrane defects, model, nanomechanics, quartz crystal microbalance with dissipation, size, supported lipid bilayers, surfaces, Atomic force microscopy, Atomic-force-microscopy, Cytology, Defect-free, Electronic properties, Electrostatics, Hydrophilic quantum dot, Hydrophilic quantum dots, Hydrophilicity, Hydrophilics, Lipid bilayers, Lipid membrane defect, Lipid membrane defects, Lipid membranes, Lipids, Nanocrystals, Nanomechanics, Optical and electronic properties, Quartz, Quartz crystal microbalance with dissipation, Quartz crystal microbalances, Quartz-crystal microbalance, Semiconductor nanoparticles, Semiconductor quantum dots, Supported lipid bilayers
Winkler, PM, Campelo, F, Garcia-Parajo, MF, Giannotti, MI, (2021). Impact of Glycans on Lipid Membrane Dynamics at the Nanoscale Unveiled by Planar Plasmonic Nanogap Antennas and Atomic Force Spectroscopy Journal Of Physical Chemistry Letters 12, 1175-1181
© 2021 The Authors. Published by American Chemical Society. Lateral compartmentalization of the plasma membrane is a prominent feature present at multiple spatiotemporal scales that regulates key cellular functions. The extracellular glycocalyx matrix has recently emerged as an important player that modulates the organization of specific receptors and patterns the lipid bilayer itself. However, experimental limitations in investigating its impact on the membrane nanoscale dynamics have hampered detailed studies. Here, we used photonic nanoantenna arrays combined with fluorescence correlation spectroscopy to investigate the influence of hyaluronic acid (HA), a prominent glycosaminoglycan, on the nanoscale organization of mimetic lipid bilayers. Using atomic force microscopy and force spectroscopy, we further correlated our dynamic measurements with the morphology and mechanical properties of bilayers at the nanoscale. Overall, we find that HA has a profound effect on the dynamics, nanoscale organization, and mechanical properties of lipid bilayers that are enriched in sphingolipids and/or cholesterol, such as those present in living cells.
JTD
Landa-Castro, Midori, Sebastián, Paula, Giannotti, Marina I., Serrà, Albert, Gómez, Elvira, (2020). Electrodeposition of nanostructured cobalt films from a deep eutectic solvent: Influence of the substrate and deposition potential range Electrochimica Acta 359, 136928
The purpose of this systematic study was to investigate the effects of specific substrates and potential conditions applied while tailoring the morphology and chemical composition of nanostructured Co films. In particular, Co electrodeposition in sustainable choline chloride-urea deep eutectic solvent was assessed, using glassy carbon and two metals widely employed in electrocatalysis and biocompatible purposes, Pt and Au, as substrates for modification with Co. Various in situ electrochemical techniques were combined with a broad range of ex-situ characterization and chemical-composition techniques for a detailed analysis of the prepared Co films. Among the results, nanostructured Co films with high extended active surface areas and variable composition of oxo and hydroxyl species could be tuned by simply modulating the applied potential limits, and without using additives or surfactant agents. The study highlights the effectiveness of using deep eutectic solvent as suitable electrolyte for surface modification by controlled deposition of nanostructured Co films with further application in electrocatalysis.
JTD Keywords: Cobalt electrodeposition, Deep eutectic solvent, First growth stages, Substrate influence
Winkler, Pamina, Campelo, Felix, Giannotti, Marina, García-Parajo, María, (2020). Planar plasmonic antenna arrays resolve transient nanoscopic heterogeneities in biological membranes Single Molecule Spectroscopy and Superresolution Imaging XIII SPIE BiOS 2020 , SPIE (San Francisco, USA) 11246, 112460F
We introduce an innovative design of planar plasmonic nanogap antenna arrays and demonstrate its potential to study the spatiotemporal organization of mimetic biological membranes at the nanoscale. We exploit our novel nanogap antenna platform with different nanogap sizes (10-45 nm) combined with fluorescence correlation spectroscopy to reveal the existence of nanoscopic domains in mimetic biological membranes. Our approach takes advantage of the highly enhanced and confined excitation light provided by the antennas together with their extreme planarity to investigate membrane regions as small as 10 nm in size with microsecond temporal resolution. We first demonstrate the ultra-high confinement of photonic antennas on biological membranes. Moreover, we show that cholesterol slows down the diffusion of individual fluorescent molecules embedded in the lipid bilayer, consistent with the formation of nanoscopic domains enriched by cholesterol. Incorporation of hyaluronic acid (HA) to the ternary lipid mixture further slows down molecular diffusion, suggesting a synergistic effect of cholesterol and HA on the dynamic partitioning of mimetic biological membranes.
JTD
Redondo-Morata, Lorena, Losada-Pérez, Patricia, Giannotti, Marina Inés, (2020). Lipid bilayers: Phase behavior and nanomechanics Current Topics in Membranes (ed. Levitan, Irena, Trache, Andreea), Academic Press (Berlin, Germany) 86, 1-55
Lipid membranes are involved in many physiological processes like recognition, signaling, fusion or remodeling of the cell membrane or some of its internal compartments. Within the cell, they are the ultimate barrier, while maintaining the fluidity or flexibility required for a myriad of processes, including membrane protein assembly. The physical properties of in vitro model membranes as model cell membranes have been extensively studied with a variety of techniques, from classical thermodynamics to advanced modern microscopies. Here we review the nanomechanics of solid-supported lipid membranes with a focus in their phase behavior. Relevant information obtained by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) as complementary techniques in the nano/mesoscale interface is presented. Membrane morphological and mechanical characterization will be discussed in the framework of its phase behavior, phase transitions and coexistence, in simple and complex models, and upon the presence of cholesterol.
JTD Keywords: Lipid phase behavior, Phase transition, Phase coexistence, Nanomechanics, Thermodynamics, Atomic force microscopy (AFM), Quartz crystal microbalance with dissipation monitoring (QCM-D)
Gumí-Audenis, B., Giannotti, M. I., (2019). Structural and mechanical characterization of supported model membranes by AFM Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization (ed. Kök, Fatma N., Arslan Yildiz, Ahu, Inci, Fatih), Springer International Publishing (Cham, Germany) , 1-27
Several cellular processes, including adhesion, signaling and transcription, endocytosis, and membrane resealing, among others, involve conformational changes such as bending, vesiculation, and tubulation. These mechanisms generally involve membrane separation from the cytoskeleton as well as strong bending, for which the membrane chemical composition and physicochemical properties, often highly localized and dynamic, are key players. The mechanical role of the lipid membrane in force triggered (or sensing) mechanisms in cells is important, and understanding the lipid bilayers’ physical and mechanical properties is essential to comprehend their contribution to the overall membrane. Atomic force microscopy (AFM)-based experimental approaches have been to date very valuable to deepen into these aspects. As a stand-alone, high-resolution imaging technique and force transducer with the possibility to operate in aqueous environment, it defies most other surface instrumentation in ease of use, sensitivity and versatility. In this chapter, we introduce the different AFM-based methods to assess topological and nanomechanical information on model membranes, specifically to supported lipid bilayers (SLBs), including several examples ranging from pure phospholipid homogeneous bilayers to multicomponent and phase-separated SLBs, increasing the bilayer complexity, in the direction of mimicking biological membranes.
JTD Keywords: Atomic force microscopy, Force spectroscopy, Model membranes, Nanomechanics, Supported lipid bilayers
Sebastian, P., Giannotti, M. I., Gómez, E., Feliu, J. M., (2018). Surface sensitive nickel electrodeposition in deep eutectic solvent ACS Applied Energy Materials , 1, (3), 1016-1028
The first steps of nickel electrodeposition in a deep eutectic solvent (DES) are analyzed in detail. Several substrates from glassy carbon to Pt(111) were investigated pointing out the surface sensitivity of the nucleation and growth mechanism. For that, cyclic voltammetry and chronoamperometry, in combination with scanning electron microscopy (SEM), were employed. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to more deeply analyze the Ni deposition on Pt substrates. In a 0.1 M NiCl2 + DES solution (at 70 °C), the nickel deposition on glassy carbon takes place within the potential limits of the electrode in the blank solution. Although, the electrochemical window of Pt|DES is considerably shorter than on glassy carbon|DES, it was still sufficient for the nickel deposition. On the Pt electrode, the negative potential limit was enlarged while the nickel deposit grew, likely because of the lower catalytic activity of the nickel toward the reduction of the DES. At lower overpotentials, different hydrogenated Ni structures were favored, most likely because of the DES co-reduction on the Pt substrate. Nanometric metallic nickel grains of rounded shape were obtained on any substrate, as evidenced by the FE-SEM. Passivation phenomena, related to the formation of Ni oxide and Ni hydroxylated species, were observed at high applied overpotentials. At low deposited charge, on Pt(111) the AFM measurements showed the formation of rounded nanometric particles of Ni, which rearranged and formed small triangular arrays at sufficiently low applied overpotential. This particle pattern was induced by the (111) orientation and related to surface sensitivity of the nickel deposition in DES. The present work provides deep insights into the Ni electrodeposition mechanism in the selected deep eutectic solvent.
JTD Keywords: AFM, Deep eutectic solvent, Glassy carbon, Nanostructures, Nickel electrodeposition, Platinum electrode, Pt(111), SEM, Surface sensitive
Gumi-Audenis, Berta, Costa, Luca, Redondo-Morata, Lorena, Milhiet, Pierre-Emmanuel, Sanz, Fausto, Felici, Roberto, Giannotti, M. I., Carla, Francesco, (2018). In-plane molecular organization of hydrated single lipid bilayers: DPPC:cholesterol Nanoscale 10, 87-92
Understanding the physical properties of the cholesterol-phospholipid systems is essential to get a better knowledge on the function of each membrane constituent. We present a novel, simple and user-friendly setup that allows for straightforward grazing incidence X-rays diffraction characterization of hydrated individual supported lipid bilayers. This configuration minimizes the scattering from the liquid and allows the detection of the extremely weak diffracted signal of the membrane, enabling the differentiation of coexisting domains in DPPC:cholesterol single bilayers.
JTD
Gumí-Audenis, Berta, Illa-Tuset, Sílvia, Grimaldi, Natascia, Pasquina-Lemonche, Laia, Ferrer-Tasies, Lidia, Sanz, Fausto, Veciana, Jaume, Ratera, Imma, Faraudo, Jordi, Ventosa, Nora, Giannotti, M. I., (2018). Insights into the structure and nanomechanics of a quatsome membrane by force spectroscopy measurements and molecular simulations Nanoscale 10, (48), 23001-23011
Quatsomes (QS) are unilamellar nanovesicles constituted by quaternary ammonium surfactants and sterols in defined molar ratios. Unlike conventional liposomes, QS are stable upon long storage such as for several years, they show outstanding vesicle-to-vesicle homogeneity regarding size and lamellarity, and they have the structural and physicochemical requirements to be a potential platform for site-specific delivery of hydrophilic and lipophilic molecules. Knowing in detail the structure and mechanical properties of the QS membrane is of great importance for the design of deformable and flexible nanovesicle alternatives, highly pursued in nanomedicine applications such as the transdermal administration route. In this work, we report the first study on the detailed structure of the cholesterol : CTAB QS membrane at the nanoscale, using atomic force microscopy (AFM) and spectroscopy (AFM-FS) in a controlled liquid environment (ionic medium and temperature) to assess the topography of supported QS membranes (SQMs) and to evaluate the local membrane mechanics. We further perform molecular dynamics (MD) simulations to provide an atomistic interpretation of the obtained results. Our results are direct evidence of the bilayer nature of the QS membrane, with characteristics of a fluid-like membrane, compact and homogeneous in composition, and with structural and mechanical properties that depend on the surrounding environment. We show how ions alter the lateral packing, modifying the membrane mechanics. We observe that according to the ionic environment and temperature, different domains may coexist in the QS membranes, ascribed to variations in molecular tilt angles. Our results indicate that QS membrane properties may be easily tuned by altering the lateral interactions with either different environmental ions or counterions.
JTD
Gumí-Audenis, Berta, Costa, Luca, Ferrer-Tasies, Lidia, Ratera, Imma, Ventosa, Nora, Sanz, Fausto, Giannotti, M. I., (2018). Pulling lipid tubes from supported bilayers unveils the underlying substrate contribution to the membrane mechanics Nanoscale 10, 14763-14770
Cell processes like endocytosis, membrane resealing, signaling and transcription involve conformational changes which depend on the chemical composition and the physicochemical properties of the lipid membrane. The better understanding of the mechanical role of lipids in cell membrane force-triggered and sensing mechanisms has recently become the focus of attention. Different membrane models and experimental methodologies are commonly explored. While general approaches involve controlled vesicle deformation using micropipettes or optical tweezers, due to the local and dynamic nature of the membrane, high spatial resolution atomic force microscopy (AFM) has been widely used to study the mechanical compression and indentation of supported lipid bilayers (SLBs). However, the substrate contribution remains unkown. Here, we demonstrate how pulling lipid tubes with an AFM out of model SLBs can be used to assess the nanomechanics of SLBs through the evaluation of the tube growing force (Ftube), allowing for very local evaluation with high spatial and force resolution of the lipid membrane tension. We first validate this approach to determine the contribution of different phospholipids, by varying the membrane composition, in both one-component and phase-segregated membranes. Finally, we successfully assess the contribution of the underlying substrate to the membrane mechanics, demonstrating that SLB models may represent an intermediate scenario between a free membrane (blebs) and a cytoskeleton supported membrane.
JTD
Crespo-Villanueva, Adrián, Gumí-Audenis, Berta, Sanz, Fausto, Artzner, Franck, Mériadec, Cristelle, Rousseau, Florence, Lopez, Christelle, Giannotti, M. I., Guyomarc'h, Fanny, (2018). Casein interaction with lipid membranes: Are the phase state or charge density of the phospholipids affecting protein adsorption? Biochimica et Biophysica Acta (BBA) - Biomembranes 1860, (12), 2588-2598
Casein micelles are ~200 nm electronegative particles that constitute 80 wt% of the milk proteins. During synthesis in the lactating mammary cells, caseins are thought to interact in the form of ~20 nm assemblies, directly with the biological membranes of the endoplasmic reticulum and/or the Golgi apparatus. However, conditions that drive this interaction are not yet known. Atomic force microscopy imaging and force spectroscopy were used to directly observe the adsorption of casein particles on supported phospholipid bilayers with controlled compositions to vary their phase state and surface charge density, as verified by X-ray diffraction and zetametry. At pH 6.7, the casein particles adsorbed onto bilayer phases with zwitterionic and liquid-disordered phospholipid molecules, but not on phases with anionic or ordered phospholipids. Furthermore, the presence of adsorbed caseins altered the stability of the yet exposed bilayer. Considering their respective compositions and symmetry/asymmetry, these results cast light on the possible interactions of casein assemblies with the organelles’ membranes of the lactating mammary cells.
JTD Keywords: Casein proteins, Phospholipid membrane, Supported lipid bilayer, Atomic force microscopy
Gumí-Audenis, Berta, Costa, Luca, Carlá, Francesco, Comin, Fabio, Sanz, Fausto, Giannotti, M. I., (2016). Structure and nanomechanics of model membranes by atomic force microscopy and spectroscopy: Insights into the role of cholesterol and sphingolipids Membranes , 6, (4), 58
Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information
JTD Keywords: Atomic force microscopy, Force spectroscopy, Lipid membranes, Supported lipid bilayers, Nanomechanics, Cholesterol, Sphingolipids, Membrane structure, XR-AFM combination
Giannotti, M. I., Abasolo, Ibane, Oliva, Mireia, Andrade, Fernanda, García-Aranda, Natalia, Melgarejo, Marta, Pulido, Daniel, Corchero, José Luis, Fernández, Yolanda, Villaverde, Antonio, Royo, Miriam, Garcia-Parajo, Maria F., Sanz, Fausto, Schwartz Jr, Simó, (2016). Highly versatile polyelectrolyte complexes for improving the enzyme replacement therapy of lysosomal storage disorders ACS Applied Materials & Interfaces 8, (39), 25741–25752
Lysosomal storage disorders are currently treated by enzyme replacement therapy (ERT) through the direct administration of the unprotected recombinant protein to the patients. Herein we present an ionically cross-linked polyelectrolyte complex (PEC) composed of trimethyl chitosan (TMC) and α-galactosidase A (GLA), the defective enzyme in Fabry disease, with the capability of directly targeting endothelial cells by incorporating peptide ligands containing the RGD sequence. We assessed the physicochemical properties, cytotoxicity, and hemocompatibility of RGD-targeted and untargeted PECs, the uptake by endothelial cells and the intracellular activity of PECs in cell culture models of Fabry disease. Moreover, we also explored the effect of different freeze-drying procedures in the overall activity of the PECs. Our results indicate that the use of integrin-binding RGD moiety within the PEC increases their uptake and the efficacy of the GLA enzyme, while the freeze-drying allows the activity of the therapeutic protein to remain intact. Overall, these results highlight the potential of TMC-based PECs as a highly versatile and feasible drug delivery system for improving the ERT of lysosomal storage disorders.
JTD Keywords: Enzyme replacement therapy, Fabry disease, Lysosomal delivery, Nanomedicine, Polyelectrolyte complexes, Trimethyl chitosan, α-galactosidase A
Gumi-Audenis, B., Sanz, F., Giannotti, M. I., (2015). Impact of galactosylceramides on the nanomechanical properties of lipid bilayer models: an AFM-force spectroscopy study Soft Matter 11, (27), 5447-5454
Galactosylceramides (GalCer) are glycosphingolipids bound to a monosaccharide group, responsible for inducing extensive hydrogen bonds that yield their alignment and accumulation in the outer leaflet of the biological membrane together with cholesterol (Chol) in rafts. In this work, the influence of GalCer on the nanomechanical properties of supported lipid bilayers (SLBs) based on DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and DLPC (1,2-didodecanoyl-sn-glycero-3-phosphocoline) as model systems was assessed. Phosphatidylcholine (PC):GalCer SLBs were characterized by means of differential scanning calorimetry (DSC) and atomic force microscopy (AFM), in both imaging and force spectroscopy (AFM-FS) modes. Comparing both PC systems, we determined that the behaviour of SLB mixtures is governed by the PC phase-like state at the working temperature. While a phase segregated system is observed for DLPC:GalCer SLBs, GalCer are found to be dissolved in DPPC SLBs for GalCer contents up to 20 mol%. In both systems, the incorporation of GalCer intensifies the nanomechanical properties of SLBs. Interestingly, segregated domains of exceptionally high mechanical stability are formed in DLPC:GalCer SLBs. Finally, the role of 20 mol% Chol in GalCer organization and function in the membranes was assessed. Both PC model systems displayed phase segregation and remarkable nanomechanical stability when GalCer and Chol coexist in SLBs.
JTD Keywords: http://hdl.handle.net/2445/65967
Giannotti, M. I., Cabeza de Vaca, Israel, Artés, Juan Manuel, Sanz, Fausto, Guallar, Victor, Gorostiza, Pau, (2015). Direct measurement of the nanomechanical stability of a redox protein active site and its dependence upon metal binding Journal of Physical Chemistry B , 119, (36), 12050-12058
The structural basis of the low reorganization energy of cupredoxins has long been debated. These proteins reconcile a conformationally heterogeneous and exposed metal-chelating site with the highly rigid copper center required for efficient electron transfer. Here we combine single-molecule mechanical unfolding experiments with statistical analysis and computer simulations to show that the metal-binding region of apo-azurin is mechanically flexible and that high mechanical stability is imparted by copper binding. The unfolding pathway of the metal site depends on the pulling residue and suggests that partial unfolding of the metal binding site could be facilitated by the physical interaction with certain regions of the redox protein.
The structural basis of the low reorganization energy of cupredoxins has long been debated. These proteins reconcile a conformationally heterogeneous and exposed metal-chelating site with the highly rigid copper center required for efficient electron transfer. Here we combine single-molecule mechanical unfolding experiments with statistical analysis and computer simulations to show that the metal-binding region of apo-azurin is mechanically flexible and that high mechanical stability is imparted by copper binding. The unfolding pathway of the metal site depends on the pulling residue and suggests that partial unfolding of the metal binding site could be facilitated by the physical interaction with certain regions of the redox protein.
JTD
Gumí-Audenis, B., Carlà, F., Vitorino, M. V., Panzarella, A., Porcar, L., Boilot, M., Guerber, S., Bernard, P., Rodrigues, M. S., Sanz, F., Giannotti, M. I., Costa, L., (2015). Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions Journal of Synchrotron Radiation , 22, 1364-1371
A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.
JTD Keywords: In situ atomic force microscopy, Grazing-incidence scattering and reflectivity, Radiation damage, Model lipid membranes
Pérez-Madrigal, M. M., Giannotti, M. I., Del Valle, L. J., Franco, L., Armelin, E., Puiggalí, J., Sanz, F., Alemán, C., (2014). Thermoplastic polyurethane:polythiophene nanomembranes for biomedical and biotechnological applications ACS Applied Materials & Interfaces 6, (12), 9719-9732
Nanomembranes have been prepared by spin-coating mixtures of a polythiophene (P3TMA) derivative and thermoplastic polyurethane (TPU) using 20:80, 40:60, and 60:40 TPU:P3TMA weight ratios. After structural, topographical, electrochemical, and thermal characterization, properties typically related with biomedical applications have been investigated: swelling, resistance to both hydrolytic and enzymatic degradation, biocompatibility, and adsorption of type I collagen, which is an extra cellular matrix protein that binds fibronectin favoring cell adhesion processes. The swelling ability and the hydrolytic and enzymatic degradability of TPU:P3TMA membranes increases with the concentration of P3TMA. Moreover, the degradation of the blends is considerably promoted by the presence of enzymes in the hydrolytic medium, TPU:P3TMA blends behaving as biodegradable materials. On the other hand, TPU:P3TMA nanomembranes behave as bioactive platforms stimulating cell adhesion and, especially, cell viability. Type I collagen adsorption largely depends on the substrate employed to support the nanomembrane, whereas it is practically independent of the chemical nature of the polymeric material used to fabricate the nanomembrane. However, detailed microscopy study of the morphology and topography of adsorbed collagen evidence the formation of different organizations, which range from fibrils to pseudoregular honeycomb networks depending on the composition of the nanomembrane that is in contact with the protein. Scaffolds made of electroactive TPU:P3TMA nanomembranes are potential candidates for tissue engineering biomedical applications.
JTD Keywords: Bioactive platform, Biodegradable blend, Collaged adsorption, Scaffolds, Tissue engineering, Ultrathin films
Pérez-Madrigal, M. M., Giannotti, M. I., Armelin, E., Sanz, F., Alemán, C., (2014). Electronic, electric and electrochemical properties of bioactive nanomembranes made of polythiophene:thermoplastic polyurethane Polymer Chemistry 5, (4), 1248-1257
The electronic, electric and electrochemical response of nanomembranes prepared by using spin-coating mixtures of a semiconducting polythiophene derivative (P3TMA) and thermoplastic polyurethane (TPU) has been exhaustively examined by UV-vis spectroscopy, conductive AFM, current/voltage measurements and cyclic voltammetry. TPU:P3TMA nanomembranes were reported to be good substrates for applications related to tissue engineering, acting as a cellular matrix for cell adhesion and proliferation. Both TPU:P3TMA and P3TMA nanomembranes show semiconductor behavior with very similar band gap energy (2.35 and 2.32 eV, respectively), which has been attributed to the influence of the fabrication process on the π-conjugation length and packing interactions of P3TMA chains. This behavior is in opposition to the observations in THF solution, which indicates that the band gap energy of P3TMA is clearly lower than that of the mixture, independently of the concentration. The current and conductivity values determined for the nanomembranes, which range from 0.43 to 1.85 pA and from 2.23 × 10-5 to 5.19 × 10-6 S cm-1, respectively, evidence inhomogeneity in the P3TMA-rich domains. This has been associated with the irregular distribution of the doped chains and the presence of insulating TPU chains. The voltammetric response of TPU:P3TMA and P3TMA nanomembranes is similar in terms of ability to store charge and electrochemical stability. Overall results indicate that TPU:P3TMA nanomembranes are potential candidates for the fabrication of bioactive substrates able to promote cell regeneration through electrical or electrochemical stimulation.
JTD
Redondo-Morata, L., Giannotti, M. I., Sanz, F., (2014). Structural impact of cations on lipid bilayer models: Nanomechanical properties by AFM-force spectroscopy Molecular Membrane Biology , 31, (1), 17-28
Atomic Force Microscopy (AFM) has become an invaluable tool for studying the micro-and nanoworlds. As a stand-alone, high-resolution imaging technique and force transducer, it defies most other surface instrumentation in ease of use, sensitivity and versatility. The main strength of AFM relies on the possibility to operate in an aqueous environment on a wide variety of biological samples, from single molecules-DNA or proteins-to macromolecular assemblies like biological membranes. Understanding the effect of mechanical stress on membranes is of primary importance in biophysics, since cells are known to perform their function under a complex combination of forces. In the later years, AFM-based Force-Spectroscopy (AFM-FS) has provided a new vista on membrane mechanics in a confined area within the nanometer realm, where most of the specific molecular interactions take place. Lipid membranes are electrostatically charged entities that physiologically coexist with electrolyte solutions. Thus, specific interactions with ions are a matter of considerable interest. The distribution of ions in the solution and their interaction with the membranes are factors that substantially modify the structure and dynamics of the cell membranes. Furthermore, signaling processes are modified by the membrane capability of retaining ions. Supported Lipid Bilayers (SLBs) are a versatile tool to investigate phospholipid membranes mimicking biological surfaces. In the present contribution, we review selected experiments on the mechanical stability of SLBs as models of lipid membranes by means of AFM-FS, with special focus on the effect of cations and ionic strength in the overall nanomechanical stability.
JTD Keywords: Atomic force microscopy, Cations, Force spectroscopy, Lipid bilayer, Mechanical stability
Redondo-Morata, L., Giannotti, M. I., Sanz, F., (2013). AFM-based force-clamp indentation: Force-clamp monitors the lipid bilayer failure kinetics Imaging & Microscopy , 15, (4), 25-27
The lipid bilayer rupture was here explored by means of AFM-based force clamp. For the first time to our knowledge, this technique has been used to evaluate how lipid membranes respond when compressed under an external constant force in the range of nN. We were able to directly quantify the kinetics of the membrane rupture event and the associated energy barriers, in distinction to the classic studies performed at constant velocity.
JTD
Punet, X., Mauchauffé, R., Giannotti, M. I., Rodríguez-Cabello, J. C., Sanz, F., Engel, E., Mateos-Timoneda, M. A., Planell, J. A., (2013). Enhanced cell-material interactions through the biofunctionalization of polymeric surfaces with engineered peptides Biomacromolecules 14, (8), 2690-2702
Research on surface modification of polymeric materials to guide the cellular activity in biomaterials designed for tissue engineering applications has mostly focused on the use of natural extracellular matrix (ECM) proteins and short peptides, such as RGD. However, the use of engineered proteins can gather the advantages of these strategies and avoid the main drawbacks. In this study, recombinant engineered proteins called elastin-like recombinamers (ELRs) have been used to functionalize poly(lactic) acid (PLA) model surfaces. The structure of the ELRs has been designed to include the integrin ligand RGDS and the cross-linking module VPGKG. Surface functionalization has been characterized and optimized by means of ELISA and atomic force microscopy (AFM). The results suggest that ELR functionalization creates a nonfouling canvas able to restrict unspecific adsorption of proteins. Moreover, AFM analysis reveals the conformation and disposition of ELRs on the surface. Biological performance of PLA surfaces functionalized with ELRs has been studied and compared with the use of short peptides. Cell response has been assessed for different functionalization conditions in the presence and absence of the bovine serum albumin (BSA) protein, which could interfere with the surface?cell interaction by adsorbing on the interface. Studies have shown that ELRs are able to elicit higher rates of cell attachment, stronger cell anchorages and faster levels of proliferation than peptides. This work has demonstrated that the use of engineered proteins is a more efficient strategy to guide the cellular activity than the use of short peptides, because they not only allow for better cell attachment and proliferation, but also can provide more complex properties such as the creation of nonfouling surfaces.
Research on surface modification of polymeric materials to guide the cellular activity in biomaterials designed for tissue engineering applications has mostly focused on the use of natural extracellular matrix (ECM) proteins and short peptides, such as RGD. However, the use of engineered proteins can gather the advantages of these strategies and avoid the main drawbacks. In this study, recombinant engineered proteins called elastin-like recombinamers (ELRs) have been used to functionalize poly(lactic) acid (PLA) model surfaces. The structure of the ELRs has been designed to include the integrin ligand RGDS and the cross-linking module VPGKG. Surface functionalization has been characterized and optimized by means of ELISA and atomic force microscopy (AFM). The results suggest that ELR functionalization creates a nonfouling canvas able to restrict unspecific adsorption of proteins. Moreover, AFM analysis reveals the conformation and disposition of ELRs on the surface. Biological performance of PLA surfaces functionalized with ELRs has been studied and compared with the use of short peptides. Cell response has been assessed for different functionalization conditions in the presence and absence of the bovine serum albumin (BSA) protein, which could interfere with the surface?cell interaction by adsorbing on the interface. Studies have shown that ELRs are able to elicit higher rates of cell attachment, stronger cell anchorages and faster levels of proliferation than peptides. This work has demonstrated that the use of engineered proteins is a more efficient strategy to guide the cellular activity than the use of short peptides, because they not only allow for better cell attachment and proliferation, but also can provide more complex properties such as the creation of nonfouling surfaces.
JTD
Perez Madrigal, M. M., Giannotti, M. I., Oncins, G., Franco, L., Armelin, E., Puiggali, J., Sanz, F., del Valle, L. J., Aleman, C., (2013). Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties Polymer Chemistry 4, (3), 568-583
Free-standing and supported nanomembranes have been prepared by spin-coating mixtures of a semiconducting polythiophene (P3TMA) derivative and thermoplastic polyurethane (TPU). Thermal studies of TPU:P3TMA blends with 60 : 40, 50 : 50, 40 : 60 and 20 : 80 weight ratios indicate a partial miscibility of the two components. Analysis of the glass transition temperatures allowed us to identify the highest miscibility for the blend with a 40 : 60 weight ratio, this composition being used to prepare both self-standing and supported nanomembranes. The thickness of ultra-thin films made with the 40 : 60 blend ranged from 11 to 93 nm, while the average roughness was 16.3 +/- 0.8 nm. In these films the P3TMA-rich phase forms granules, which are dispersed throughout the rest of the film. Quantitative nanomechanical mapping has been used to determine the Young's modulus value by applying the Derjanguin-Muller-Toporov (DMT) contact mechanics model and the adhesion force of ultra-thin films. The modulus depends on the thickness of the films, values determined for the thicker (80-140 nm)/thinner (10-40 nm) regions of TPU, P3TMA and blend samples being 25/35 MPa, 3.5/12 GPa and 0.9/1.7 GPa, respectively. In contrast the adhesion force is homogeneous through the whole surface of the TPU and P3TMA films (average values: 7.2 and 5.0 nN, respectively), whereas for the blend it depends on the phase distribution. Thus, the adhesion force is higher for the TPU-rich domains than for the P3TMA-rich domains. Finally, the utility of the nanomembranes for tissue engineering applications has been proved by cellular proliferation assays. Results show that the blend is more active as a cellular matrix than each of the two individual polymers.
JTD
Lima, Lia M. C., Giannotti, M. I., Redondo-Morata, L., Vale, M. L. C., Marques, E. F., Sanz, F., (2013). Morphological and nanomechanical behavior of supported lipid bilayers on addition of cationic surfactants Langmuir 29, (30), 9352-9361
The addition of surfactants to lipid bilayers is important for the modulation of lipid bilayer properties (e.g., in protein reconstitution and development of nonviral gene delivery vehicles) and to provide insight on the properties of natural biomembranes. In this work, the thermal behavior, organization, and nanomechanical stability of model cationic lipid?surfactant bilayers have been investigated. Two different cationic surfactants, hexadecyltrimethylammonium bromide (CTAB) and a novel derivative of the amino acid serine (Ser16TFAc), have been added (up to 50 mol %) to both liposomes and supported lipid bilayers (SLBs) composed by the zwitterionic phospholipid DPPC. The thermal phase behavior of mixed liposomes has been probed by differential scanning calorimetry (DSC), and the morphology and nanomechanical properties of mixed SLBs by atomic force microscopy-based force spectroscopy (AFM-FS). Although DSC thermograms show different results for the two mixed liposomes, when both are deposited on mica substrates similar trends on the morphology and the mechanical response of the lipid?surfactant bilayers are observed. DSC thermograms indicate microdomain formation in both systems, but while CTAB decreases the degree of organization on the liposome bilayer, Ser16TFAc ultimately induces the opposite effect. Regarding the AFM-FS studies, they show that microphase segregation occurs for these systems and that the effect is dependent on the surfactant content. In both SLB systems, different microdomains characterized by their height and breakthrough force Fb are formed. The molecular organization and composition is critically discussed in the light of our experimental results and literature data on similar lipid?surfactant systems. The addition of surfactants to lipid bilayers is important for the modulation of lipid bilayer properties (e.g., in protein reconstitution and development of nonviral gene delivery vehicles) and to provide insight on the properties of natural biomembranes. In this work, the thermal behavior, organization, and nanomechanical stability of model cationic lipid?surfactant bilayers have been investigated. Two different cationic surfactants, hexadecyltrimethylammonium bromide (CTAB) and a novel derivative of the amino acid serine (Ser16TFAc), have been added (up to 50 mol %) to both liposomes and supported lipid bilayers (SLBs) composed by the zwitterionic phospholipid DPPC. The thermal phase behavior of mixed liposomes has been probed by differential scanning calorimetry (DSC), and the morphology and nanomechanical properties of mixed SLBs by atomic force microscopy-based force spectroscopy (AFM-FS). Although DSC thermograms show different results for the two mixed liposomes, when both are deposited on mica substrates similar trends on the morphology and the mechanical response of the lipid?surfactant bilayers are observed. DSC thermograms indicate microdomain formation in both systems, but while CTAB decreases the degree of organization on the liposome bilayer, Ser16TFAc ultimately induces the opposite effect. Regarding the AFM-FS studies, they show that microphase segregation occurs for these systems and that the effect is dependent on the surfactant content. In both SLB systems, different microdomains characterized by their height and breakthrough force Fb are formed. The molecular organization and composition is critically discussed in the light of our experimental results and literature data on similar lipid?surfactant systems.
JTD
Stocchi, A., Lauke, B., Giannotti, M. I., Vázquez, A., Bernal, C., (2013). Tensile response and fracture and failure behavior of jute fabrics-flyash-vinylester hybrid composites Fibers and Polymers , 14, (2), 285-291
In this work, hybrid materials consisting on a vinylester matrix simultaneaously reinforced with jute woven fabrics and flyash particles were prepared. The tensile response and the fracture and failure behavior of these hybrid composites were investigated. Thermal stability of these materials was also studied. The aim was to obtain an environmentally friendly hybrid material with a good balance of tensile and fracture properties at relatively low cost. The effect of a novel treatment for the jute fabrics on the hybrids mechanical and fracture properties was investigated. The best balance of tensile and fracture properties was obtained for the hybrid consisting of fabrics treated with alkali under stress and fly ashes which also exhibited relatively high thermal stability.
JTD Keywords: Natural fibers, Fly ash, Hybrid composite, Mechanical properties, Fracture
Redondo-Morata, L., Giannotti, M. I., Sanz, F., (2012). AFM-based force-clamp monitors lipid bilayer failure kinetics Langmuir 28, (15), 6403-6410
The lipid bilayer rupture phenomenon is here explored by means of atomic force microscopy (AFM)-based force clamp, for the first time to our knowledge, to evaluate how lipid membranes respond when compressed under an external constant force, in the range of nanonewtons. Using this method, we were able to directly quantify the kinetics of the membrane rupture event and the associated energy barriers, for both single supported bilayers and multibilayers, in contradistinction to the classic studies performed at constant velocity. Moreover, the affected area of the membrane during the rupture process was calculated using an elastic deformation model. The elucidated information not only contributes to a better understanding of such relevant process, but also proves the suitability of AFM-based force clamp to study model structures as lipid bilayers. These findings on the kinetics of lipid bilayers rupture could be extended and applied to the study of other molecular thin films. Furthermore, systems of higher complexity such as models mimicking cell membranes could be studied by means of AFM-based force-clamp technique.
JTD Keywords: Chain-Length, Spectroscopy, Nanomechanics, Microscopy, Elasticity, Stability, Membranes, Reveals, Fusion, Ions
Redondo-Morata, L., Giannotti, M. I., Sanz, F., (2012). Influence of cholesterol on the phase transition of lipid bilayers: A temperature-controlled force spectroscopy study Langmuir 28, (35), 12851-12860
Cholesterol (Chol) plays the essential function of regulating the physical properties of the cell membrane by controlling the lipid organization and phase behavior and, thus, managing the membrane fluidity and its mechanical strength. Here, we explore the model system DPPC:Chol by means of temperature-controlled atomic force microscopy (AFM) imaging and AFM-based force spectroscopy (AFM-FS) to assess the influence of Chol on the membrane ordering and stability. We analyze the system in a representative range of compositions up to 50 mol % Chol studying the phase evolution upon temperature increase (from room temperature to temperatures high above the T m of the DPPC bilayer) and the corresponding (nano)mechanical stability. By this means, we correlate the mechanical behavior and composition with the lateral order of each phase present in the bilayers. We prove that low Chol contents lead to a phase-segregated system, whereas high contents of Chol can give a homogeneous bilayer. In both cases, Chol enhances the mechanical stability of the membrane, and an extraordinarily stable system is observed for equimolar fractions (50 mol % Chol). In addition, even when no thermal transition is detected by the traditional bulk analysis techniques for liposomes with high Chol content (40 and 50 mol %), we demonstrate that temperature-controlled AFM-FS is capable of identifying a thermal transition for the supported lipid bilayers. Finally, our results validate the AFM-FS technique as an ideal platform to differentiate phase coexistence and transitions in lipid bilayers and bridge the gap between the results obtained by traditional methods for bulk analysis, the theoretical predictions, and the behavior of these systems at the nanoscale.
JTD
Redondo, L., Giannotti, M. I., Sanz, F., (2012). Stability of lipid bilayers as model membranes: Atomic force microscopy and spectroscopy approach Atomic force microscopy in liquid (ed. Baró, A. M., Reifenberger, R. G.), Wiley-VCH Verlag GmbH & Co.KGaA (Weinheim, Germany) Part I: General Atomic Force Microscopy, 259-284
Giannotti, M. I., Esteban, O., Oliva, M., Garcia-Parajo, M. F., Sanz, F., (2011). pH-Responsive polysaccharide-based polyelectrolyte complexes as nanocarriers for lysosomal delivery of therapeutic proteins Biomacromolecules American Chemical Society 12, (7), 2524-2533
Nanopharmaceutics composed of a carrier and a protein have the potential to improve the activity of therapeutical proteins. Therapy for lysosomal diseases is limited by the lack of effective protein delivery systems that allow the controlled release of specific proteins to the lysosomes. Here we address this problem by developing functional polyelectrolyte-based nanoparticles able to promote acidic pH-triggered release of the loaded protein. Trimethyl chitosan (TMC) was synthesized and allowed to form polyelectrolyte complexes (PECs) with the lysosomal enzyme α-GAL through self-assembly and ionotropic gelation, with average particle size <200 nm, polydispersity index (PDI) <0.2, ζ potential of 20 mV, and a protein loading efficiency close to 65%. These polyelectrolyte nanoparticles were stable and active under physiological conditions and able to release the enzyme at acidic pH, as demonstrated by in situ atomic force microscopy (AFM). These nanoparticles were further functionalized with Atto 647N for single-particle characterization and tracking their cellular uptake and fate using high-resolution fluorescence microscopy. In contrast with their precursor, TMC, PECs were efficiently internalized by human endothelial cells and mostly accumulated in lysosomal compartments. The superior physicochemical characteristics of the TMC/α-GAL PECs together with their excellent cellular uptake properties indicate their enormous potential as advanced protein delivery systems for the treatment of lysosomal storage diseases.
JTD Keywords: -----