DONATE

Publications

by Keyword: Cortex

Mesquida-Veny, Francina, Martínez-Torres, Sara, Del Río, José Antonio, Hervera, Arnau, (2022). Genetic control of neuronal activity enhances axonal growth only on permissive substrates Molecular Medicine 28, 97

Abstract Background Neural tissue has limited regenerative ability. To cope with that, in recent years a diverse set of novel tools has been used to tailor neurostimulation therapies and promote functional regeneration after axonal injuries. Method In this report, we explore cell-specific methods to modulate neuronal activity, including opto- and chemogenetics to assess the effect of specific neuronal stimulation in the promotion of axonal regeneration after injury. Results Opto- and chemogenetic stimulations of neuronal activity elicited increased in vitro neurite outgrowth in both sensory and cortical neurons, as well as in vivo regeneration in the sciatic nerve, but not after spinal cord injury. Mechanistically, inhibitory substrates such as chondroitin sulfate proteoglycans block the activity induced increase in axonal growth. Conclusions We found that genetic modulations of neuronal activity on both dorsal root ganglia and corticospinal motor neurons increase their axonal growth capacity but only on permissive environments.

JTD Keywords: activation, chemogenetics, electrical-stimulation, expression, functional recovery, increases, injury, motor cortex, neuronal activity, permissive substrate, promotes recovery, regeneration, Optogenetics, Spinal-cord


F Amil A, Rubio Ballester B, Maier M, FMJ Verschure P, (2022). Chronic use of cannabis might impair sensory error processing in the cerebellum through endocannabinoid dysregulation Addictive Behaviors 131, 107297

Chronic use of cannabis leads to both motor deficits and the downregulation of CB1 receptors (CB1R) in the cerebellum. In turn, cerebellar damage is often related to impairments in motor learning and control. Further, a recent motor learning task that measures cerebellar-dependent adaptation has been shown to distinguish well between healthy subjects and chronic cannabis users. Thus, the deteriorating effects of chronic cannabis use in motor performance point to cerebellar adaptation as a key process to explain such deficits. We review the literature relating chronic cannabis use, the endocannabinoid system in the cerebellum, and different forms of cerebellar-dependent motor learning, to suggest that CB1R downregulation leads to a generalized underestimation and misprocessing of the sensory errors driving synaptic updates in the cerebellar cortex. Further, we test our hypothesis with a computational model performing a motor adaptation task and reproduce the behavioral effect of decreased implicit adaptation that appears to be a sign of chronic cannabis use. Finally, we discuss the potential of our hypothesis to explain similar phenomena related to motor impairments following chronic alcohol dependency. © 2022

JTD Keywords: adaptation, addiction, alcohol-abuse, cerebellum, cognition, deficits, endocannabinoid system, error processing, explicit, modulation, motor learning, release, synaptic plasticity, Adaptation, Adaptation, physiological, Alcoholism, Article, Behavioral science, Cannabinoid 1 receptor, Cannabis, Cannabis addiction, Cerebellum, Cerebellum cortex, Cerebellum disease, Chronic cannabis use, Computer model, Down regulation, Endocannabinoid, Endocannabinoid system, Endocannabinoids, Error processing, Hallucinogens, Human, Humans, Motor dysfunction, Motor learning, Nerve cell plasticity, Nonhuman, Physiology, Psychedelic agent, Purkinje-cells, Regulatory mechanism, Sensation, Sensory dysfunction, Sensory error processing impairment, Synaptic transmission, Task performance


Low, SC, Verschure, PFMJ, Santos-Pata, D, (2022). Saccade rate is associated with recall of items in working memory Learning & Memory 29, 146-154

Working memory has been shown to rely on theta oscillations' phase synchronicity for item encoding and recall. At the same time, saccadic eye movements during visual exploration have been observed to trigger theta-phase resets, raising the question of whether the neuronal substrates of mnemonic processing rely on motor-evoked responses. To quantify the relationship between saccades and working memory load, we recorded eye tracking and behavioral data from human participants simultaneously performing an n-back Sternberg auditory task and a hue-based catch detection task. In addition to task-specific interference in performance, we also found that saccade rate was modulated by working memory load in the Sternberg task's preresponse stage. Our results support the possibility of interplay between saccades and hippocampal theta during working memory retrieval of items.

JTD Keywords: Eeg, Microsaccades, Normality, Parietal cortex, Persistent activity, Prefrontal cortex


Lopez-Mengual, A, Segura-Feliu, M, Sunyer, R, Sanz-Fraile, H, Otero, J, Mesquida-Veny, F, Gil, V, Hervera, A, Ferrer, I, Soriano, J, Trepat, X, Farre, R, Navajas, D, del Rio, JA, (2022). Involvement of Mechanical Cues in the Migration of Cajal-Retzius Cells in the Marginal Zone During Neocortical Development Frontiers In Cell And Developmental Biology 10, 886110

Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the developing cortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.

JTD Keywords: Atomic force microscopy, Cajal-retzius cells, Central-nervous-system, Cortical development, Cortical hem, Developing cerebral-cortex, Expression, Growth, Marginal zone, Mechanical cues, Mouse, Neuronal migration, Nogo receptor, Olfactory ensheathing cells, Tangential migration, Traction force microscopy


Pavlova EL, Semenov RV, Pavlova-Deb MP, Guekht AB, (2022). Transcranial direct current stimulation of the premotor cortex aimed to improve hand motor function in chronic stroke patients Brain Research 1780, 147790

Objective: To investigate the effects of single-session premotor and primary motor tDCS in chronic stroke patients with relation to possible inter-hemispheric interactions. Methods: Anodal tDCS of either M1 or premotor cortex of the side contralateral to the paretic hand, cathodal tDCS of the premotor cortex of the side ipsilateral to the paretic hand and sham stimulation were performed in 12 chronic stroke patients with mild hand paresis in a balanced cross-over design. The Jebsen-Taylor Hand Function test, evaluating the time required for performance of everyday motor tasks, was employed. Results: The repeated-measure ANOVA with Greenhouse-Geisser correction showed significant influence of the stimulation type (factor SESSION; F(2.6, 28.4) = 47.3, p < 0.001), the test performance time relative to stimulation (during or after tDCS; factor TIME, F(1.0, 11.0) = 234.5, p < 0.001) with higher effect after the stimulation and the interaction SESSION*TIME (F(1.7, 1.2) = 30.5, p < 0.001). All active conditions were effective for the modulation of JTT performance, though the highest effect was observed after anodal tDCS of M1, followed by effects after anodal stimulation of the premotor cortex contralateral to the paretic hand. Based on the correlation patterns, the inhibitory input to M1 from premotor cortex of another hemisphere and an excitatory input from the ipsilesional premotor cortex were suggested. Conclusion: The premotor cortex is a promising candidate area for transcranial non-invasive stimulation of chronic stroke patients. © 2022 The Author(s)

JTD Keywords: areas, contralateral primary motor, dorsal premotor, excitability, jtt, lateral premotor, object manipulation, premotor cortex, recovery, stroke, tdcs, time-course, transcranial direct current stimulation, Jtt, Noninvasive brain-stimulation, Premotor cortex, Stroke, Tdcs, Transcranial direct current stimulation


Páscoa dos Santos F, Verschure PFMJ, (2022). Excitatory-Inhibitory Homeostasis and Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex Frontiers In Systems Neuroscience 15, 806544

Maintaining a balance between excitatory and inhibitory activity is an essential feature of neural networks of the neocortex. In the face of perturbations in the levels of excitation to cortical neurons, synapses adjust to maintain excitatory-inhibitory (EI) balance. In this review, we summarize research on this EI homeostasis in the neocortex, using stroke as our case study, and in particular the loss of excitation to distant cortical regions after focal lesions. Widespread changes following a localized lesion, a phenomenon known as diaschisis, are not only related to excitability, but also observed with respect to functional connectivity. Here, we highlight the main findings regarding the evolution of excitability and functional cortical networks during the process of post-stroke recovery, and how both are related to functional recovery. We show that cortical reorganization at a global scale can be explained from the perspective of EI homeostasis. Indeed, recovery of functional networks is paralleled by increases in excitability across the cortex. These adaptive changes likely result from plasticity mechanisms such as synaptic scaling and are linked to EI homeostasis, providing a possible target for future therapeutic strategies in the process of rehabilitation. In addition, we address the difficulty of simultaneously studying these multiscale processes by presenting recent advances in large-scale modeling of the human cortex in the contexts of stroke and EI homeostasis, suggesting computational modeling as a powerful tool to tie the meso- and macro-scale processes of recovery in stroke patients. Copyright © 2022 Páscoa dos Santos and Verschure.

JTD Keywords: balanced excitation, canonical microcircuit, cerebral-cortex, cortical excitability, cortical reorganization, diaschisis, excitability, excitatory-inhibitory balance, functional networks, homeostatic plasticity, ischemic-stroke, neuronal avalanches, photothrombotic lesions, state functional connectivity, whole-brain models, Algorithm, Biological marker, Brain, Brain cell, Brain cortex, Brain function, Brain radiography, Cerebrovascular accident, Cortical reorganization, Diaschisis, Down regulation, Excitability, Excitatory-inhibitory balance, Fluorine magnetic resonance imaging, Functional networks, Homeostasis, Homeostatic plasticity, Human, Motor dysfunction, Neuromodulation, Plasticity, Pyramidal nerve cell, Review, Simulation, Stroke, Stroke patient, Theta-burst stimulation, Visual cortex


Amil, Adrián Fernández, Verschure, Paul F.M.J., (2021). Supercritical dynamics at the edge-of-chaos underlies optimal decision-making Journal Of Physics-Complexity 2,

Abstract Critical dynamics, characterized by scale-free neuronal avalanches, is thought to underlie optimal function in the sensory cortices by maximizing information transmission, capacity, and dynamic range. In contrast, deviations from criticality have not yet been considered to support any cognitive processes. Nonetheless, neocortical areas related to working memory and decision-making seem to rely on long-lasting periods of ignition-like persistent firing. Such firing patterns are reminiscent of supercritical states where runaway excitation dominates the circuit dynamics. In addition, a macroscopic gradient of the relative density of Somatostatin (SST+) and Parvalbumin (PV+) inhibitory interneurons throughout the cortical hierarchy has been suggested to determine the functional specialization of low- versus high-order cortex. These observations thus raise the question of whether persistent activity in high-order areas results from the intrinsic features of the neocortical circuitry. We used an attractor model of the canonical cortical circuit performing a perceptual decision-making task to address this question. Our model reproduces the known saddle-node bifurcation where persistent activity emerges, merely by increasing the SST+/PV+ ratio while keeping the input and recurrent excitation constant. The regime beyond such a phase transition renders the circuit increasingly sensitive to random fluctuations of the inputs -i.e., chaotic-, defining an optimal SST+/PV+ ratio around the edge-of-chaos. Further, we show that both the optimal SST+/PV+ ratio and the region of the phase transition decrease monotonically with increasing input noise. This suggests that cortical circuits regulate their intrinsic dynamics via inhibitory interneurons to attain optimal sensitivity in the face of varying uncertainty. Hence, on the one hand, we link the emergence of supercritical dynamics at the edge-of-chaos to the gradient of the SST+/PV+ ratio along the cortical hierarchy, and, on the other hand, explain the behavioral effects of the differential regulation of SST+ and PV+ interneurons by neuromodulators like acetylcholine in the presence of input uncertainty.

JTD Keywords: attractor model, cortex, cortical networks, edge-of-chaos, model, nmda receptors, Attractor model, Cortical hierarchies, Decision making, Dynamics, Edge of chaos, Edge-of-chaos, High-order, Higher-order, Inhibitory interneurons, Neurons, Optimal decision making, Persistent activities, Persistent activity, Supercritical, Supercriticality


Ferrer I, Andrés-Benito P, Ausín K, Pamplona R, del Rio JA, Fernández-Irigoyen J, Santamaría E, (2021). Dysregulated protein phosphorylation: A determining condition in the continuum of brain aging and Alzheimer's disease Brain Pathology 31,

Tau hyperphosphorylation is the first step of neurofibrillary tangle (NFT) formation. In the present study, samples of the entorhinal cortex (EC) and frontal cortex area 8 (FC) of cases with NFT pathology classified as stages I–II, III–IV, and V–VI without comorbidities, and of middle-aged (MA) individuals with no NFT pathology, were analyzed by conventional label-free and SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) to assess the (phospho)proteomes. The total number of identified dysregulated phosphoproteins was 214 in the EC, 65 of which were dysregulated at the first stages (I–II) of NFT pathology; 167 phosphoproteins were dysregulated in the FC, 81 of them at stages I–II of NFT pathology. A large percentage of dysregulated phosphoproteins were identified in the two regions and at different stages of NFT progression. The main group of dysregulated phosphoproteins was made up of components of the membranes, cytoskeleton, synapses, proteins linked to membrane transport and ion channels, and kinases. The present results show abnormal phosphorylation of proteins at the first stages of NFT pathology in the elderly (in individuals clinically considered representative of normal aging) and sporadic Alzheimer's disease (sAD). Dysregulated protein phosphorylation in the FC precedes the formation of NFTs and SPs. The most active period of dysregulated phosphorylation is at stages III–IV when a subpopulation of individuals might be clinically categorized as suffering from mild cognitive impairment which is a preceding determinant stage in the progression to dementia. Altered phosphorylation of selected proteins, carried out by activation of several kinases, may alter membrane and cytoskeletal functions, among them synaptic transmission and membrane/cytoskeleton signaling. Besides their implications in sAD, the present observations suggest a molecular substrate for “benign” cognitive deterioration in “normal” brain aging.

JTD Keywords: (phospho)proteomics, alzheimer's disease, amyloid-beta, association guidelines, brain aging, cytoskeleton, frontal-cortex, kinases, lipid rafts, membranes, national institute, neuropathologic assessment, pathological process, protein phosphorylation, synapse pathology, synapses, tau, tau pathology, (phospho)proteomics, Age-related tauopathy, Alzheimer's disease, Brain aging, Cytoskeleton, Kinases, Membranes, Protein phosphorylation, Synapses, Tau


Grechuta, K, Costa, JD, Ballester, BR, Verschure, P, (2021). Challenging the Boundaries of the Physical Self: Distal Cues Impact Body Ownership Frontiers In Human Neuroscience 15,

The unique ability to identify one's own body and experience it as one's own is fundamental in goal-oriented behavior and survival. However, the mechanisms underlying the so-called body ownership are yet not fully understood. Evidence based on Rubber Hand Illusion (RHI) paradigms has demonstrated that body ownership is a product of reception and integration of self and externally generated multisensory information, feedforward and feedback processing of sensorimotor signals, and prior knowledge about the body. Crucially, however, these designs commonly involve the processing of proximal modalities while the contribution of distal sensory signals to the experience of ownership remains elusive. Here we propose that, like any robust percept, body ownership depends on the integration and prediction across all sensory modalities, including distal sensory signals pertaining to the environment. To test our hypothesis, we created an embodied goal-oriented Virtual Air Hockey Task, in which participants were to hit a virtual puck into a goal. In two conditions, we manipulated the congruency of distal multisensory cues (auditory and visual) while preserving proximal and action-driven signals entirely predictable. Compared to a fully congruent condition, our results revealed a significant decrease on three dimensions of ownership evaluation when distal signals were incongruent, including the subjective report as well as physiological and kinematic responses to an unexpected threat. Together, these findings support the notion that the way we represent our body is contingent upon all the sensory stimuli, including distal and action-independent signals. The present data extend the current framework of body ownership and may also find applications in rehabilitation scenarios.



JTD Keywords: active perception, body ownership, distal sensory cues, embodied cognition, forward model, Active perception, Adult, Article, Body ownership, Brain, Cortex, Distal sensory cues, Embodied cognition, Feel, Female, Forward model, Hockey, Human, Human experiment, Integration, Male, Models, Neurons, Perception, Peripersonal space, Prediction, Rehabilitation, Rubber hand illusion, Sensory prediction error, Touch


Barbero-Castillo A, Riefolo F, Matera C, Caldas-Martínez S, Mateos-Aparicio P, Weinert JF, Garrido-Charles A, Claro E, Sanchez-Vives MV, Gorostiza P, (2021). Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist Advanced Science 8,

The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.

JTD Keywords: brain states, light-mediated control, muscarinic acetylcholine receptors, neuromodulation, Activation, Alternating/direct currents, Basal forebrain, Brain, Brain states, Clinical research, Clinical translation, Controlled drug delivery, Cortex, Forebrain cholinergic system, Genetic manipulations, Higher frequencies, Hz oscillation, Light‐, Light-mediated control, Mediated control, Muscarinic acetylcholine receptors, Muscarinic agonists, Muscarinic receptor, Neurology, Neuromodulation, Neurons, Noradrenergic modulation, Parvalbumin-positive interneurons, Photopharmacology, Receptor-binding, Slow, Spatiotemporal control, Spatiotemporal patterns


Garcia-Esparcia, P., Koneti, A., Rodríguez-Oroz, M. C., Gago, B., del Rio, J. A., Ferrer, Isidro, (2018). Mitochondrial activity in the frontal cortex area 8 and angular gyrus in Parkinson's disease and Parkinson's disease with dementia Brain Pathology 28, (1), 43-57

Altered mitochondrial function is characteristic in the substantia nigra in Parkinson's disease (PD). Information about mitochondria in other brain regions such as the cerebral cortex is conflicting mainly because most studies have not contemplated the possibility of variable involvement depending on the region, stage of disease progression and clinical symptoms such as the presence or absence of dementia. RT-qPCR of 18 nuclear mRNAs encoding subunits of mitochondrial complexes and 12 mRNAs encoding energy metabolism-related enzymes; western blotting of mitochondrial proteins; and analysis of enzymatic activities of complexes I, II, II, IV and V of the respiratory chain were assessed in frontal cortex area 8 and the angular gyrus of middle-aged individuals (MA), and those with incidental PD (iPD), long-lasting PD with parkinsonism without dementia (PD) and long-lasting PD with dementia (PDD). Up-regulation of several genes was found in frontal cortex area 8 in PD when compared with MA and in the angular gyrus in iPD when compared with MA. Marked down-regulation of genes encoding mitochondrial subunits and energy metabolism-related enzymes occurs in frontal cortex but only of genes coding for energy metabolism-related enzymes in the angular gyrus in PDD. Significant decrease in the protein expression levels of several mitochondrial subunits encoded by these genes occurs in frontal cortex area 8 and angular gyrus in PDD. Moreover, expression of MT-ND1 which is encoded by mitochondrial DNA is also reduced in PDD. Reduced enzymatic activity of complex III in frontal cortex area 8 and angular gyrus is observed in PD, but dramatic reduction in the activity of complexes I, II, II and IV in both regions characterizes PDD. Dementia in the context of PD is linked to region-specific deregulation of genomic genes encoding subunits of mitochondrial complexes and to marked reduction in the activity of mitochondrial complexes I, II, III and IV.

JTD Keywords: Cerebral cortex, Dementia, Energy metabolism, Incidental PD, Mitochondria, Oxidative phosphorylation, Parkinson disease, PDD, Respiratory chain


Menal, M. J., Jorba, I., Torres, M., Montserrat, J. M., Gozal, D., Colell, A., Piñol-Ripoll, G., Navajas, D., Almendros, I., Farré, R., (2018). Alzheimer's disease mutant mice exhibit reduced brain tissue stiffness compared to wild-type mice in both normoxia and following intermittent hypoxia mimicking sleep apnea Frontiers in Neurology 9, Article 1

Background: Evidence from patients and animal models suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer’s disease (AD) and that AD is associated with reduced brain tissue stiffness. Aim: To investigate whether intermittent hypoxia (IH) alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA. Methods: Six-eight month old (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) AD mutant mice and wild-type (WT) littermates were subjected to IH (21% O2 40 s to 5% O2 20 s; 6 h/day) or normoxia for 8 weeks. After euthanasia, the stiffness (E) of 200-μm brain cortex slices was measured by atomic force microscopy. Results: Two-way ANOVA indicated significant cortical softening and weight increase in AD mice compared to WT littermates, but no significant effects of IH on cortical stiffness and weight were detected. In addition, reduced myelin was apparent in AD (vs. WT), but no significant differences emerged in the cortex extracellular matrix components laminin and glycosaminoglycans when comparing baseline AD and WT mice. Conclusion: AD mutant mice exhibit reduced brain tissue stiffness following both normoxia and IH mimicking sleep apnea, and such differences are commensurate with increased edema and demyelination in AD.

JTD Keywords: Animal model, Atomic force microscopy, Brain mechanics, Cortex stiffness, Neurodegenerative disease


Jorba, I., Menal, M. J., Torres, M., Gozal, D., Piñol-Ripoll, G., Colell, A., Montserrat, J. M., Navajas, D., Farré, R., Almendros, I., (2017). Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice Journal of the Mechanical Behavior of Biomedical Materials , 71, 106-113

Recent evidence suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer´s disease (AD), with the latter promoting alterations in brain tissue stiffness, a feature of ageing. Here, we assessed the effects of age and intermittent hypoxia (IH) on brain tissue stiffness in a mouse model of OSA. Two-month-old and 18-month-old mice (N=10 each) were subjected to IH (20% O2 40 s – 6% O2 20 s) for 8 weeks (6 h/day). Corresponding control groups for each age were kept under normoxic conditions in room air (RA). After sacrifice, the brain was excised and 200-micron coronal slices were cut with a vibratome. Local stiffness of the cortex and hippocampus were assessed in brain slices placed in an Atomic Force Microscope. For both brain regions, the Young's modulus (E) in each animal was computed as the average values from 9 force-indentation curves. Cortex E mean (±SE) values were 442±122 Pa (RA) and 455±120 (IH) for young mice and 433±44 (RA) and 405±101 (IH) for old mice. Hippocampal E values were 376±62 (RA) and 474±94 (IH) for young mice and 486±93 (RA) and 521±210 (IH) for old mice. For both cortex and hippocampus, 2-way ANOVA indicated no statistically significant effects of age or challenge (IH vs. RA) on E values. Thus, neither chronic IH mimicking OSA nor ageing up to late middle age appear to modify local brain tissue stiffness in otherwise healthy mice.

JTD Keywords: Atomic Force Microscopy, Brain mechanics, Cortex stiffness, Hippocampus stiffness, Obstructive sleep apnea, Young's modulus


Garcia-Calero, Elena, Botella-Lopez, Arancha, Bahamonde, Olga, Perez-Balaguer, Ariadna, Martinez, Salvador, (2016). FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon Brain Structure and Function , 221, (6), 2905-2917

In the mammalian telencephalon, part of the progenitor cells transition from multipolar to bipolar morphology as they invade the mantle zone. This associates with changing patterns of radial migration. However, the molecules implicated in these morphology transitions are not well known. In the present work, we analyzed the function of FoxP2 protein in this process during telencephalic development in vertebrates. We analyzed the expression of FoxP2 protein and its relation with cell morphology and migratory patterns in mouse and chicken developing striatum. We observed FoxP2 protein expressed in a gradient from the subventricular zone to the mantle layer in mice embryos. In the FoxP2 low domain cells showed multipolar migration. In the striatal mantle layer where FoxP2 protein expression is higher, cells showed locomoting migration and bipolar morphology. In contrast, FoxP2 showed a high and homogenous expression pattern in chicken striatum, thus bipolar morphology predominated. Elevation of FoxP2 in the striatal subventricular zone by in utero electroporation promoted bipolar morphology and impaired multipolar radial migration. In mouse cerebral cortex we obtained similar results. FoxP2 promotes transition from multipolar to bipolar morphology by means of gradiental expression in mouse striatum and cortex. Together these results indicate a role of FoxP2 differential expression in cell morphology control of the vertebrate telencephalon.

JTD Keywords: Radial migration, Bipolar morphology, Striatum, Cortex


Dalmases, M., Torres, M., Márquez-Kisinousky, L., Almendros, I., Planas, A. M., Embid, C., Martínez-Garcia, M. A., Navajas, D., Farré, R., Montserrat, J. M., (2014). Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats Sleep , 37, (7), 1249-1256

Study Objectives: To test the hypotheses that brain oxygen partial pressure (PtO2) in response to obstructive apneas changes with age and that it might lead to different levels of cerebral tissue oxidative stress. Design: Prospective controlled animal study. Setting: University laboratory. Participants: Sixty-four male Wistar rats: 32 young (3 mo old) and 32 aged (18 mo). Interventions: Protocol 1: Twenty-four animals were subjected to obstructive apneas (50 apneas/h, lasting 15 sec each) or to sham procedure for 50 min. Protocol 2: Forty rats were subjected to obstructive apneas or sham procedure for 4 h. Measurements and Results: Protocol 1: Real-time PtO2 measurements were performed using a fast-response oxygen microelectrode. During successive apneas cerebral cortex PtO2 presented a different pattern in the two age groups; there was a fast increase in young rats, whereas it remained without significant changes between the beginning and the end of the protocol in the aged group. Protocol 2: Brain oxidative stress assessed by lipid peroxidation increased after apneas in young rats (1.34 ± 0.17 nmol/mg of protein) compared to old ones (0.63 ± 0.03 nmol/mg), where a higher expression of antioxidant enzymes was observed. Conclusions: The results suggest that brain oxidative stress in aged rats is lower than in young rats in response to recurrent apneas, mimicking obstructive sleep apnea. This could be due to the different PtO2 response observed between age groups and the increased antioxidant expression in aged rats.

JTD Keywords: Aging, Animal model, Obstructive apnea, Oxidative stress, Tissue oxygenation, antioxidant, glutathione disulfide, aged, animal experiment, animal model, animal tissue, apnea, arterial oxygen saturation, article, brain cortex, brain oxygen tension, brain tissue, controlled study, groups by age, hypoxia, lipid peroxidation, male, nonhuman, oxidative stress, pressure, priority journal, rat


Barreto, S., Clausen, C. H., Perrault, C. M., Fletcher, D. A., Lacroix, D., (2013). A multi-structural single cell model of force-induced interactions of cytoskeletal components Biomaterials 34, (26), 6119-6126

Several computational models based on experimental techniques and theories have been proposed to describe cytoskeleton (CSK) mechanics. Tensegrity is a prominent model for force generation, but it cannot predict mechanics of individual CSK components, nor explain the discrepancies from the different single cell stimulating techniques studies combined with cytoskeleton-disruptors. A new numerical concept that defines a multi-structural 3D finite element (FE) model of a single-adherent cell is proposed to investigate the biophysical and biochemical differences of the mechanical role of each cytoskeleton component under loading. The model includes prestressed actin bundles and microtubule within cytoplasm and nucleus surrounded by the actin cortex. We performed numerical simulations of atomic force microscopy (AFM) experiments by subjecting the cell model to compressive loads. The numerical role of the CSK components was corroborated with AFM force measurements on U2OS-osteosarcoma cells and NIH-3T3 fibroblasts exposed to different cytoskeleton-disrupting drugs. Computational simulation showed that actin cortex and microtubules are the major components targeted in resisting compression. This is a new numerical tool that explains the specific role of the cortex and overcomes the difficulty of isolating this component from other networks invitro. This illustrates that a combination ofcytoskeletal structures with their own properties is necessary for a complete description of cellular mechanics.

JTD Keywords: Actin bundles, Actin cortex, AFM (atomic force microscopy), Cytoskeleton, Finite element modeling, Microtubules