DONATE

Publications

by Keyword: Mutation

Cañellas-Socias A, Cortina C, Hernando-Momblona X, Palomo-Ponce S, Mulholland EJ, Turon G, Mateo L, Conti S, Roman O, Sevillano M, Slebe F, Stork D, Caballé-Mestres A, Berenguer-Llergo A, Álvarez-Varela A, Fenderico N, Novellasdemunt L, Jiménez-Gracia L, Sipka T, Bardia L, Lorden P, Colombelli J, Heyn H, Trepat X, Tejpar S, Sancho E, Tauriello DVF, Leedham S, Attolini CS, Batlle E, (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells Nature 611, 603-613

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

JTD Keywords: colonization, defines, human colon, mutations, plasticity, retrieval, stem-cells, subtypes, underlie, Comprehensive molecular characterization


Seuma M, Bolognesi B, (2022). Understanding and evolving prions by yeast multiplexed assays Current Opinion In Genetics & Development 75, 101941

Yeast genetics made it possible to derive the first fundamental insights into prion composition, conformation, and propagation. Fast-forward 30 years and the same model organism is now proving an extremely powerful tool to comprehensively explore the impact of mutations in prion sequences on their function, toxicity, and physical properties. Here, we provide an overview of novel multiplexed strategies where deep mutagenesis is combined to a range of tailored selection assays in yeast, which are particularly amenable for investigating prions and prion-like sequences. By mimicking evolution in a flask, these multiplexed approaches are revealing mechanistic insights on the consequences of prion self-assembly, while also reporting on the structure prion sequences adopt in vivo.Copyright © 2022 Elsevier Ltd. All rights reserved.

JTD Keywords: aggregation, appearance, domains, inheritance, mutations, nucleation, physical basis, propagation, protein, Phase-separation


Hüttener, Mário, Hergueta, Jon, Bernabeu, Manuel, Prieto, Alejandro, Aznar, Sonia, Merino, Susana, Tomás, Joan, Juárez, Antonio, (2022). Roles of Proteins Containing Immunoglobulin-Like Domains in the Conjugation of Bacterial Plasmids Msphere 7, e00978-21

Transmission of a plasmid from one bacterial cell to another, in several instances, underlies the dissemination of antimicrobial resistance (AMR) genes. The process requires well-characterized enzymatic machinery that facilitates cell-to-cell contact and the transfer of the plasmid.

JTD Keywords: antimicrobial resistance, bacterial ig-like proteins, bacterial lg-like proteins, chromosomal genes, identification, inca/c, mutational analysis, plasmid conjugation, products, r-factors, resistance plasmids, salmonella-enterica, sequence, Antimicrobial resistance, Bacterial ig-like proteins, Escherichia-coli, Plasmid conjugation


Gawish R, Starkl P, Pimenov L, Hladik A, Lakovits K, Oberndorfer F, Cronin SJF, Ohradanova-Repic A, Wirnsberger G, Agerer B, Endler L, Capraz T, Perthold JW, Cikes D, Koglgruber R, Hagelkruys A, Montserrat N, Mirazimi A, Boon L, Stockinger H, Bergthaler A, Oostenbrink C, Penninger JM, Knapp S, (2022). ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF-and IFNy-driven immunopathology Elife 11, e74623

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cyto-kines IFN? and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo. © Gawish et al.

JTD Keywords: covid-19 mouse model, covid-19 therapy, cytokine storm, mavie16, mouse, program, recombinant soluble ace2, tmprss2, Adaptive immunity, Angiotensin converting enzyme 2, Angiotensin-converting enzyme 2, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Apoptosis, Article, Bagg albino mouse, Breathing rate, Bronchoalveolar lavage fluid, C57bl mouse, Cell composition, Cell infiltration, Controlled study, Coronavirus disease 2019, Coronavirus spike glycoprotein, Covid-19, Cytokeratin 18, Cytokine production, Dipeptidyl carboxypeptidase, Disease model, Disease models, animal, Disease severity, Drosophila-melanogaster, Enzyme linked immunosorbent assay, Expression vector, Flow cytometry, Gamma interferon, Gene editing, Gene expression, Gene mutation, Genetic engineering, Genetics, Glycosylation, High mobility group b1 protein, Histology, Histopathology, Immune response, Immunocompetent cell, Immunology, Immunopathology, Interferon-gamma, Interleukin 2, Metabolism, Mice, inbred balb c, Mice, inbred c57bl, Mouse-adapted sars-cov-2, Myeloperoxidase, Neuropilin 1, Nonhuman, Nucleocapsid protein, Pathogenicity, Peptidyl-dipeptidase a, Pyroptosis, Renin angiotensin aldosterone system, Rna extraction, Rna isolation, Sars-cov-2, Severe acute respiratory syndrome coronavirus 2, Spike glycoprotein, coronavirus, T lymphocyte activation, Trabecular meshwork, Tumor necrosis factor, Virology, Virus load, Virus replication, Virus transmission, Virus virulence


Soblechero-Martín P, Albiasu-Arteta E, Anton-Martinez A, de la Puente-Ovejero L, Garcia-Jimenez I, González-Iglesias G, Larrañaga-Aiestaran I, López-Martínez A, Poyatos-García J, Ruiz-Del-Yerro E, Gonzalez F, Arechavala-Gomeza V, (2021). Duchenne muscular dystrophy cell culture models created by CRISPR/Cas9 gene editing and their application in drug screening Scientific Reports 11, 18188

Gene editing methods are an attractive therapeutic option for Duchenne muscular dystrophy, and they have an immediate application in the generation of research models. To generate myoblast cultures that could be useful in in vitro drug screening, we have optimised a CRISPR/Cas9 gene edition protocol. We have successfully used it in wild type immortalised myoblasts to delete exon 52 of the dystrophin gene, modelling a common Duchenne muscular dystrophy mutation; and in patient’s immortalised cultures we have deleted an inhibitory microRNA target region of the utrophin UTR, leading to utrophin upregulation. We have characterised these cultures by demonstrating, respectively, inhibition of dystrophin expression and overexpression of utrophin, and evaluating the expression of myogenic factors (Myf5 and MyH3) and components of the dystrophin associated glycoprotein complex (α-sarcoglycan and β-dystroglycan). To demonstrate their use in the assessment of DMD treatments, we have performed exon skipping on the DMDΔ52-Model and have used the unedited DMD cultures/ DMD-UTRN-Model combo to assess utrophin overexpression after drug treatment. While the practical use of DMDΔ52-Model is limited to the validation to our gene editing protocol, DMD-UTRN-Model presents a possible therapeutic gene edition target as well as a useful positive control in the screening of utrophin overexpression drugs.

JTD Keywords: expression, in-vitro, mouse model, muscle, mutations, phenotype, quantification, sarcolemma, therapy, Utrophin up-regulation


Guillem-Marti, J., Gelabert, M., Heras-Parets, A., Pegueroles, M., Ginebra, M. P., Manero, J. M., (2019). RGD mutation of the heparin binding II fragment of fibronectin for guiding mesenchymal stem cell behavior on titanium surfaces ACS Applied Materials and Interfaces 11, (4), 3666-3678

Installing bioactivity on metallic biomaterials by mimicking the extracellular matrix (ECM) is crucial for stimulating specific cellular responses to ultimately promote tissue regeneration. Fibronectin is an ECM protein commonly used for biomaterial functionalization. The use of fibronectin recombinant fragments is an attractive alternate to the use of full-length fibronectin because of the relatively low cost and facility of purification. However, it is necessary to combine more than one fragment, for example, the cell attachment site and the heparin binding II (HBII), either mixed or in one molecule, to obtain complete activity. In the present study, we proposed to install adhesion capacity to the HBII fragment by an RGD gain-of-function DNA mutation, retaining its cell differentiation capacity and thereby producing a small and very active protein fragment. The novel molecule, covalently immobilized onto titanium surfaces, maintained the growth factor-binding capacity and stimulated cell spreading, osteoblastic cell differentiation, and mineralization of human mesenchymal stem cells compared to the HBII native protein. These results highlight the potential capacity of gain-of-function DNA mutations in the design of novel molecules for the improvement of osseointegration properties of metallic implant surfaces.

JTD Keywords: Fibronectin, Growth factor, Mutation, Osseointegration, Recombinant protein, Titanium


A. R. Dalton, J., Lans, I., Rovira, X., Malhaire, F., Gómez-Santacana, X., Pittolo, S., Gorostiza, P., Llebaria, A., Goudet, C., Pin, J-P., Giraldo, J., (2016). Shining light on an mGlu5 photoswitchable NAM: A theoretical perspective Current Neuropharmacology , 14, (5), 441-454

Metabotropic glutamate receptors (mGluRs) are important drug targets because of their involvement in several neurological diseases. Among mGluRs, mGlu5 is a particularly high-profile target because its positive or negative allosteric modulation can potentially treat schizophrenia or anxiety and chronic pain, respectively. Here, we computationally and experimentally probe the functional binding of a novel photoswitchable mGlu5 NAM, termed alloswitch-1, which loses its NAM functionality under violet light. We show alloswitch-1 binds deep in the allosteric pocket in a similar fashion to mavoglurant, the co-crystallized NAM in the mGlu5 transmembrane domain crystal structure. Alloswitch-1, like NAM 2-Methyl-6-(phenylethynyl)pyridine (MPEP), is significantly affected by P655M mutation deep in the allosteric pocket, eradicating its functionality. In MD simulations, we show alloswitch-1 and MPEP stabilize the co-crystallized water molecule located at the bottom of the allosteric site that is seemingly characteristic of the inactive receptor state. Furthermore, both NAMs form H-bonds with S809 on helix 7, which may constitute an important stabilizing interaction for NAM-induced mGlu5 inactivation. Alloswitch-1, through isomerization of its amide group from trans to cis is able to form an additional interaction with N747 on helix 5. This may be an important interaction for amide-containing mGlu5 NAMs, helping to stabilize their binding in a potentially unusual cis-amide state. Simulated conformational switching of alloswitch-1 in silico suggests photoisomerization of its azo group from trans to cis may be possible within the allosteric pocket. However, photoexcited alloswitch-1 binds in an unstable fashion, breaking H-bonds with the protein and destabilizing the co-crystallized water molecule. This suggests photoswitching may have destabilizing effects on mGlu5 binding and functionality.

JTD Keywords: Allosteric modulation, Docking, Metabotropic glutamate receptor, Molecular dynamics, Mutation, Protein structure, Transmembrane domain


Martorell, L., Corrales, I., Ramirez, L., Parra, R., Raya, A., Barquinero, J., Vidal, F., (2015). Molecular characterization of ten F8 splicing mutations in RNA isolated from patient's leucocytes: Assessment of in silico prediction tools accuracy Haemophilia , 21, (2), 249-257

Summary: Although 8% of reported FVIII gene (F8) mutations responsible for haemophilia A (HA) affect mRNA processing, very few have been fully characterized at the mRNA level and/or systematically predicted their biological consequences by in silico analysis. This study is aimed to elucidate the effect of potential splice site mutations (PSSM) on the F8 mRNA processing, investigate its correlation with disease severity, and assess their concordance with in silico predictions. We studied the F8 mRNA from 10 HA patient's leucocytes with PSSM by RT-PCR and compared the experimental results with those predicted in silico. The mRNA analysis could explain all the phenotypes observed and demonstrated exon skipping in six cases (c.222G>A, c.601+1delG, c.602-11T>G, c.671-3C>G, c.6115+9C>G and c.6116-1G>A) and activation of cryptic splicing sites, both donor (c.1009+1G>A and c.1009+3A>C) and acceptor sites (c.266-3delC and c.5587-1G>A). In contrast, the in silico analysis was able to predict the score variation of most of the affected splice site, but the precise mechanism could only be correctly determined in two of the 10 mutations analysed. In addition, we have detected aberrant F8 transcripts, even in healthy controls, so this must be taken into account as they could mask the actual contribution of some PSSM. We conclude that F8 mRNA analysis using leucocytes still constitutes an excellent approach to investigate the transcriptional effects of the PSSM in HA, whereas prediction in silico is not always reliable for diagnostic decision-making.

JTD Keywords: Haemophilia A, Leucocytes, RNA splicing, Splice site mutation, Synonymous mutation


Zaffino, R. L., Mir, M., Samitier, J., (2014). Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor Nanotechnology 25, (10), 105501 (8)

We describe a conductance-based biosensor that exploits DNA-mediated long-range electron transport for the label-free and direct electrical detection of DNA hybridization. This biosensor platform comprises an array of vertical nano-gap biosensors made of gold and fabricated through standard photolithography combined with focused ion beam lithography. The nano-gap walls are covalently modified with short, anti-symmetric thiolated DNA probes, which are terminated by 19 bases complementary to both the ends of a target DNA strand. The nano-gaps are separated by a distance of 50nm, which was adjusted to fit the length of the DNA target plus the DNA probes. The hybridization of the target DNA closes the gap circuit in a switch on/off fashion, in such a way that it is readily detected by an increase in the current after nano-gap closure. The nano-biosensor shows high specificity in the discrimination of base-pair mismatching and does not require signal indicators or enhancing molecules. The design of the biosensor platform is applicable for multiplexed detection in a straightforward manner. The platform is well-suited to mass production, point-of-care diagnostics, and wide-scale DNA analysis applications.

JTD Keywords: Biosensor, DNA hybridization, Labelfree, Nanogap, Single nucleotide mutation


Sánchez-Danés, A., Richaud-Patin, Y., Carballo-Carbajal, I., Jiménez-Delgado, S., Caig, C., Mora, S., Di Guglielmo, C., Ezquerra, M., Patel, B., Giralt, A., Canals, J. M., Memo, M., Alberch, J., López-Barneo, J., Vila, M., Cuervo, A. M., Tolosa, E., Consiglio, A., Raya, A., (2012). Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease EMBO Molecular Medicine 4, (5), 380-395

Induced pluripotent stem cells (iPSC) offer an unprecedented opportunity to model human disease in relevant cell types, but it is unclear whether they could successfully model age-related diseases such as Parkinson's disease (PD). Here, we generated iPSC lines from seven patients with idiopathic PD (ID-PD), four patients with familial PD associated to the G2019S mutation in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene (LRRK2-PD) and four age- and sex-matched healthy individuals (Ctrl). Over long-time culture, dopaminergic neurons (DAn) differentiated from either ID-PD- or LRRK2-PD-iPSC showed morphological alterations, including reduced numbers of neurites and neurite arborization, as well as accumulation of autophagic vacuoles, which were not evident in DAn differentiated from Ctrl-iPSC. Further induction of autophagy and/or inhibition of lysosomal proteolysis greatly exacerbated the DAn morphological alterations, indicating autophagic compromise in DAn from ID-PD- and LRRK2-PD-iPSC, which we demonstrate occurs at the level of autophagosome clearance. Our study provides an iPSC-based in vitro model that captures the patients' genetic complexity and allows investigation of the pathogenesis of both sporadic and familial PD cases in a disease-relevant cell type.

JTD Keywords: Autophagy, Disease modeling, LRRK2 mutation, Neurodegeneration, Pluripotent stem cells