DONATE

Publications

by Keyword: potent

Niro, Francesco, Fernandes, Soraia, Cassani, Marco, Apostolico, Monica, de la Cruz, Jorge, Pereira-Sousa, Daniel, Pagliari, Stefania, Vinarsky, Vladimir, Zdrahal, Zbynek, Potesil, David, Pustka, Vaclav, Pompilio, Giulio, Sommariva, Elena, Rovina, Davide, Maione, Angela Serena, Bersanini, Luca, Becker, Malin, Rasponi, Marco, Forte, Giancarlo, (2024). Fibrotic extracellular matrix impacts cardiomyocyte phenotype and function in an iPSC-derived isogenic model of cardiac fibrosis Translational Research 273, 58-77

Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. Here, we devised a single-step decellularization protocol to obtain and thoroughly characterize the biochemical and micro-mechanical properties of the ECM secreted by activated cFbs differentiated from human induced pluripotent stem cells (iPSCs). We activated iPSC-derived cFbs to the myofibroblast phenotype by tuning basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-beta 1) signalling and confirmed that activated cells acquired key features of myofibroblast phenotype, like SMAD2/3 nuclear shuttling, the formation of aligned alpha-smooth muscle actin (alpha- SMA)-rich stress fibres and increased focal adhesions (FAs) assembly. Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.

JTD Keywords: Adhesio, Cardiac fibrosis modelling, Decellularized extracellular matrix, Differentiation, Expression, Fibroblast activation, Fibronectin, Heart, Induced pluripotent stem cells, Ipsc-derived-cardiac fibroblasts, Ipsc-derived-cardiomyocyte, Myocardial-infarction, Neonatal cardiomyocytes, Smooth muscle actin, Substrate stiffness


Palma-Florez, S, Lagunas, A, Mir, M, (2024). Neurovascular unit on a chip: the relevance and maturity as an advanced in vitro model Neural Regeneration Research 19, 1165-1166

Garreta, Elena, Moya-Rull, Daniel, Marco, Andres, Amato, Gaia, Ullate-Agote, Asier, Tarantino, Carolina, Gallo, Maria, Esporrin-Ubieto, David, Centeno, Alberto, Vilas-Zornoza, Amaia, Mestre, Rafael, Kalil, Maria, Gorronogoitia, Izar, Zaldua, Ane Miren, Sanchez, Samuel, Reyes, Laura Izquierdo, Fernandez-Santos, Maria Eugenia, Prosper, Felipe, Montserrat, Nuria, (2024). Natural Hydrogels Support Kidney Organoid Generation and Promote In Vitro Angiogenesis Advanced Materials , 2400306

To date, strategies aiming to modulate cell to extracellular matrix (ECM) interactions during organoid derivation remain largely unexplored. Here renal decellularized ECM (dECM) hydrogels are fabricated from porcine and human renal cortex as biomaterials to enrich cell-to-ECM crosstalk during the onset of kidney organoid differentiation from human pluripotent stem cells (hPSCs). Renal dECM-derived hydrogels are used in combination with hPSC-derived renal progenitor cells to define new approaches for 2D and 3D kidney organoid differentiation, demonstrating that in the presence of these biomaterials the resulting kidney organoids exhibit renal differentiation features and the formation of an endogenous vascular component. Based on these observations, a new method to produce kidney organoids with vascular-like structures is achieved through the assembly of hPSC-derived endothelial-like organoids with kidney organoids in 3D. Major readouts of kidney differentiation and renal cell morphology are assessed exploiting these culture platforms as new models of nephrogenesis. Overall, this work shows that exploiting cell-to-ECM interactions during the onset of kidney differentiation from hPSCs facilitates and optimizes current approaches for kidney organoid derivation thereby increasing the utility of these unique cell culture platforms for personalized medicine. Natural hydrogels derived from decellularized porcine or human kidney tissues are used to generate kidney organoids from human pluripotent stem cells, resulting in the enrichment of organoids' endogenous vascular component and improved renal differentiation. Exploiting the autonomous capacity of kidney organoids to exhibit endogenous vascularization in combination with these biomaterials, a novel approach is established to generate endothelial-kidney assembloids showing vascular-like structures. image

JTD Keywords: Assembloids, Extracellular matrix-derived hydrogels, Extracellular-matrix, Human pluripotent stem cells, Kidney organoids, Pluripotent stem-cells, Tissu, Vascularizatio


Tanwar, S, Millan-Solsona, R, Ruiz-Molina, S, Mas-Torrent, M, Kyndiah, A, Gomila, G, (2024). Nanoscale Operando Characterization of Electrolyte-Gated Organic Field-Effect Transistors Reveals Charge Transport Bottlenecks Advanced Materials 36, 2309767

Charge transport in electrolyte-gated organic field-effect transistors (EGOFETs) is governed by the microstructural property of the semiconducting thin film that is in direct contact with the electrolyte. Therefore, a comprehensive nanoscale operando characterization of the active channel is crucial to pinpoint various charge transport bottlenecks for rational and targeted optimization of the devices. Here, the local electrical properties of EGOFETs are systematically probed by in-liquid scanning dielectric microscopy (in-liquid SDM) and a direct picture of their functional mechanism at the nanoscale is provided across all operational regimes, starting from subthreshold, linear to saturation, until the onset of pinch-off. To this end, a robust interpretation framework of in-liquid SDM is introduced that enables quantitative local electric potential mapping directly from raw experimental data without requiring calibration or numerical simulations. Based on this development, a straightforward nanoscale assessment of various charge transport bottlenecks is performed, like contact access resistances, inter- and intradomain charge transport, microstructural inhomogeneities, and conduction anisotropy, which have been inaccessible earlier. Present results contribute to the fundamental understanding of charge transport in electrolyte-gated transistors and promote the development of direct structure-property-function relationships to guide future design rules. This study delves into the charge transport properties of electrolyte-gated organic field-effect transistors by employing in-liquid scanning dielectric microscopy. By introducing a novel interpretation framework, the research achieves quantitative mapping of the local electric potential, facilitating a detailed assessment of charge transport bottlenecks across all operational regimes. The findings can fosterthe formulation ofstructure-property-function relationships for device optimization.image

JTD Keywords: Conduction anisotropy, Conductivity maps, Electrolyte-gated organic field-effect transistors, Nanoscale, Operando, Operation regimes, Potential maps, Scanning dielectric microscopy


Pahuja, A, Corredera, IG, Moya-Rull, D, Garreta, E, Montserrat, N, (2024). Engineering physiological environments to advance kidney organoid models from human pluripotent stem cells Current Opinion In Cell Biology 86, 102306

During embryogenesis, the mammalian kidney arises because of reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (MM), driving UB branching and nephron induction. These morphogenetic processes involve a series of cellular rearrangements that are tightly controlled by gene regulatory networks and signaling cascades. Here, we discuss how kidney developmental studies have informed the definition of procedures to obtain kidney organoids from human pluripotent stem cells (hPSCs). Moreover, bioengineering techniques have emerged as potential solutions to externally impose controlled microenvironments for organoid generation from hPSCs. Next, we summarize some of these advances with major focus On recent works merging hPSC-derived kidney organoids (hPSC-kidney organoids) with organ-on-chip to develop robust models for drug discovery and disease modeling applications. We foresee that, in the near future, coupling of different organoid models through bioengineering approaches will help advancing to recreate organ-to-organ crosstalk to increase our understanding on kidney disease progression in the human context and search for new therapeutics.Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.

JTD Keywords: Animal, Animals, Bioengineering, Cell differentiation, Embryo development, Embryology, Embryonic structures, Gene regulatory network, Human, Humans, Kidney, Kidney development, Kidney mesenchyme cell, Kidney organoid, Mammal, Mammals, Mesenchyme, Metanephric mesenchyme, Microenvironment, Nephron, Nephrons, Organoid, Organoids, Physiology, Pluripotent stem cell, Pluripotent stem cells, Review, Signal transduction, Ureteric bud


Liu, M, Zhang, C, Gong, XM, Zhang, T, Lian, MM, Chew, EGY, Cardilla, A, Suzuki, K, Wang, HM, Yuan, Y, Li, Y, Naik, MY, Wang, YX, Zhou, BR, Soon, WZ, Aizawa, E, Li, P, Low, JH, Tandiono, M, Montagud, E, Moya-Rull, D, Esteban, CR, Luque, Y, Fang, ML, Khor, CC, Montserrat, N, Campistol, JM, Belmonte, JCI, Foo, JN, Xia, Y, (2024). Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo Cell Stem Cell 31, 52-70.e8

Human pluripotent stem cell -derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single -cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA -approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.

JTD Keywords: Adenylate kinase, Adult, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Autophagosome, Autophagy, Autophagy (cellular), Autosomal-dominant, Calcium homeostasis, Cilia, Cilium, Cohort analysis, Controlled study, Cyclic amp, Disease, Dominant polycystic kidney, Enzyme linked immunosorbent assay, Epithelium, Exon, Expression, Female, Food and drug administration, Framework, Generation, Growth, Hepatitis a virus cellular receptor 1, Human, Human cell, Humans, Immunohistochemistry, In vitro study, In vivo study, Kidney, Kidney organoid, Kidney polycystic disease, Male, Minoxidil, Mouse, Mutations, Nonhuman, Organoid, Organoids, Platelet derived growth factor beta receptor, Pluripotent stem-cells, Polycystic kidney diseases, Protein kinase lkb1, Renin, Sequestosome 1, Single cell analysis, Single cell rna seq, Small nuclear rna, Tunel assay, Upregulation, Western blotting, Whole exome sequencing


Nauryzgaliyeva, Z, Corredera, IG, Garreta, E, Montserrat, N, (2023). Harnessing mechanobiology for kidney organoid research Frontiers In Cell And Developmental Biology 11, 1273923

Recently, organoids have emerged as revolutionizing tools with the unprecedented potential to recreate organ-specific microanatomy in vitro. Upon their derivation from human pluripotent stem cells (hPSCs), organoids reveal the blueprints of human organogenesis, further allowing the faithful recapitulation of their physiology. Nevertheless, along with the evolution of this field, advanced research exposed the organoids' shortcomings, particularly regarding poor reproducibility rates and overall immatureness. To resolve these challenges, many studies have started to underscore the relevance of mechanical cues as a relevant source to induce and externally control hPSCs differentiation. Indeed, established organoid generation protocols from hPSCs have mainly relyed on the biochemical induction of fundamental signalling pathways present during kidney formation in mammals, whereas mechanical cues have largely been unexplored. This review aims to discuss the pertinence of (bio) physical cues within hPSCs-derived organoid cultures, while deciphering their effect on morphogenesis. Moreover, we will explore state-of-the-art mechanobiology techniques as revolutionizing means for understanding the underlying role of mechanical forces in biological processes in organoid model systems.

JTD Keywords: development, hpscs, mechanobiology, nephrogenesis, Activated ion-channel, Development, Extracellular-matrix viscoelasticity, Forces, Hpscs, Ips cells, Mechanical regulation, Mechanobiology, Nephrogenesis, Nephron progenitors, Organoids, Pluripotent stem-cells, Self-renewal, Substrate mechanics, Tissue


Pereira, Ines, Lopez-Martinez, Maria J, Samitier, Josep, (2023). Advances in current in vitro models on neurodegenerative diseases Frontiers In Bioengineering And Biotechnology 11, 1260397

Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.

JTD Keywords: 3d in vitro models, bioprinting, ipsc cell culture, microfluidic device, 3d in vitro models, Bioprinting, Blood-brain-barrier, Cerebral organoids, Culture model, Endothelial-cells, Expression profile, Extracellular-matrix, Ipsc cell culture, Microfluidic device, Neurodegenerative diseases, On-a-chip, Pluripotent stem-cells, Shear-stress, Substrate stiffness


Iglesias-García, O, Flandes-Iparraguirre, M, Montero, M, Larequi, E, Van Mil, A, Castilho, M, Fernández-Santos, ME, Sánchez, A, Montserrat, N, Fernández-Avilés, F, Sluijter, JPG, Malda, J, Mazo, M, Prósper, F, (2023). Development of an advanced tissue-engineering system through novel 3D printing fabrication methods (52354521444) Tissue Engineering Part a 29, 439-440

Placci, M, Giannotti, MI, Muro, S, (2023). Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders Advanced Drug Delivery Reviews 197, 114683

Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that consti-tute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their per-formance, and important items to consider for their clinical translation. Overall, polymeric nanocon-structs hold considerable promise to advance treatment for LSDs.(c) 2023 Elsevier B.V. All rights reserved.

JTD Keywords: cellular and animal models, enzyme replacement therapy, lysosomal storage disorders, nanoemulsions, nanoparticles, Beta-glucuronidase deficiency, Blood-brain-barrier, Cellular and animal models, Central-nervous-system, Drug delivery systems, Enzyme replacement therapy, Feline gm1 gangliosidosis, Human acid sphingomyelinase, Human alpha-galactosidase, Humans, Lysosomal storage diseases, Lysosomal storage disorders, Lysosomes, Mucopolysaccharidosis type-ii, Nanoemulsions, Nanoparticles, Neuronal ceroid-lipofuscinosis, Niemann-pick-disease, Pluripotent stem-cells, Polymer-based drug delivery systems, Polymers, Tissue distribution


Fontcuberta-PiSunyer, M, García-Alamán, A, Prades, É, Téllez, N, Alves-Figueiredo, H, Ramos-Rodríguez, M, Enrich, C, Fernandez-Ruiz, R, Cervantes, S, Clua, L, Ramón-Azcón, J, Broca, C, Wojtusciszyn, A, Montserrat, N, Pasquali, L, Novials, A, Servitja, JM, Vidal, J, Gomis, R, Gasa, R, (2023). Direct reprogramming of human fibroblasts into insulin-producing cells using transcription factors Commun Biol 6, 256

Direct lineage reprogramming of one somatic cell into another without transitioning through a progenitor stage has emerged as a strategy to generate clinically relevant cell types. One cell type of interest is the pancreatic insulin-producing β cell whose loss and/or dysfunction leads to diabetes. To date it has been possible to create β-like cells from related endodermal cell types by forcing the expression of developmental transcription factors, but not from more distant cell lineages like fibroblasts. In light of the therapeutic benefits of choosing an accessible cell type as the cell of origin, in this study we set out to analyze the feasibility of transforming human skin fibroblasts into β-like cells. We describe how the timed-introduction of five developmental transcription factors (Neurog3, Pdx1, MafA, Pax4, and Nkx2-2) promotes conversion of fibroblasts toward a β-cell fate. Reprogrammed cells exhibit β-cell features including β-cell gene expression and glucose-responsive intracellular calcium mobilization. Moreover, reprogrammed cells display glucose-induced insulin secretion in vitro and in vivo. This work provides proof-of-concept of the capacity to make insulin-producing cells from human fibroblasts via transcription factor-mediated direct reprogramming.© 2023. The Author(s).

JTD Keywords: adult, beta-cells, differentiation, direct conversion, genes, in-vivo, islets, maturation, pancreatic progenitors, Pluripotent stem-cells


Tonelli, M, Catto, M, Sabaté, R, Francesconi, V, Laurini, E, Pricl, S, Pisani, L, Miniero, DV, Liuzzi, GM, Gatta, E, Relini, A, Gavín, R, Del Rio, JA, Sparatore, F, Carotti, A, (2023). Thioxanthenone-based derivatives as multitarget therapeutic leads for Alzheimer's disease European Journal Of Medicinal Chemistry 250, 115169

A set of twenty-five thioxanthene-9-one and xanthene-9-one derivatives, that were previously shown to inhibit cholinesterases (ChEs) and amyloid β (Aβ40) aggregation, were evaluated for the inhibition of tau protein aggregation. All compounds exhibited a good activity, and eight of them (5-8, 10, 14, 15 and 20) shared comparable low micromolar inhibitory potency versus Aβ40 aggregation and human acetylcholinesterase (AChE), while inhibiting human butyrylcholinesterase (BChE) even at submicromolar concentration. Compound 20 showed outstanding biological data, inhibiting tau protein and Aβ40 aggregation with IC50 = 1.8 and 1.3 μM, respectively. Moreover, at 0.1-10 μM it also exhibited neuroprotective activity against tau toxicity induced by okadoic acid in human neuroblastoma SH-SY5Y cells, that was comparable to that of estradiol and PD38. In preliminary toxicity studies, these interesting results for compound 20 are somewhat conflicting with a narrow safety window. However, compound 10, although endowed with a little lower potency for tau and Aβ aggregation inhibition additionally demonstrated good inhibition of ChEs and rather low cytotoxicity. Compound 4 is also worth of note for its high potency as hBChE inhibitor (IC50 = 7 nM) and for the three order of magnitude selectivity versus hAChE. Molecular modelling studies were performed to explain the different behavior of compounds 4 and 20 towards hBChE. The observed balance of the inhibitory potencies versus the relevant targets indicates the thioxanthene-9-one derivatives as potential MTDLs for AD therapy, provided that the safety window will be improved by further structural variations, currently under investigation.Copyright © 2023 Elsevier Masson SAS. All rights reserved.

JTD Keywords: a? and tau aggregation inhibition, ache and bche inhibition, aggregation, alzheimer?s disease, butyrylcholinesterase, design, drugs, dual inhibitors, fibrillization, multitarget-directed ligands (mtdls), peptide, polyphenols, potent, rivatives, Ache and bche inhibition, Alzheimer's disease, Amyloid-beta, Aβ and tau aggregation inhibition, Multitarget-directed ligands (mtdls), Thioxanthene-9-one and xanthen-9-one de, Thioxanthene-9-one and xanthen-9-one derivatives


Sanmukh, SG, Admella, J, Moya-Andérico, L, Fehér, T, Arévalo-Jaimes, BV, Blanco-Cabra, N, Torrents, E, (2023). Accessing the In Vivo Efficiency of Clinically Isolated Phages against Uropathogenic and Invasive Biofilm-Forming Escherichia coli Strains for Phage Therapy Cells 12, 344

Escherichia coli is one of the most common members of the intestinal microbiota. Many of its strains are associated with various inflammatory infections, including urinary or gut infections, especially when displaying antibiotic resistance or in patients with suppressed immune systems. According to recent reports, the biofilm-forming potential of E. coli is a crucial factor for its increased resistance against antibiotics. To overcome the limitations of using antibiotics against resistant E. coli strains, the world is turning once more towards bacteriophage therapy, which is becoming a promising candidate amongst the current personalized approaches to target different bacterial infections. Although matured and persistent biofilms pose a serious challenge to phage therapy, they can still become an effective alternative to antibiotic treatment. Here, we assess the efficiency of clinically isolated phages in phage therapy against representative clinical uropathogenic and invasive biofilm-forming E. coli strains. Our results demonstrate that irrespective of host specificity, bacteriophages producing clear plaques with a high burst size, and exhibiting depolymerizing activity, are good candidates against biofilm-producing E. coli pathogens as verified from our in vitro and in vivo experiments using Galleria mellonella where survival was significantly increased for phage-therapy-treated larvae.

JTD Keywords: antibiotic resistance, assay, bacteriophage, bacteriophages, biofilm-forming potential, infection, inflammatory infections, mechanisms, Galleria-mellonella, Intestinal microflora


Badiola-Mateos, M, Osaki, T, Kamm, RD, Samitier, J, (2022). In vitro modelling of human proprioceptive sensory neurons in the neuromuscular system Scientific Reports 12, 21318

Proprioceptive sensory neurons (pSN) are an essential and undervalued part of the neuromuscular circuit. A protocol to differentiate healthy and amyotrophic lateral sclerosis (ALS) human neural stem cells (hNSC) into pSN, and their comparison with the motor neuron (MN) differentiation process from the same hNSC sources, facilitated the development of in vitro co-culture platforms. The obtained pSN spheroids cultured interact with human skeletal myocytes showing the formation of annulospiral wrapping-like structures between TrkC + neurons and a multinucleated muscle fibre, presenting synaptic bouton-like structures in the contact point. The comparative analysis of the genetic profile performed in healthy and sporadic ALS hNSC differentiated to pSN suggested that basal levels of ETV1, critical for motor feedback from pSN, were much lower for ALS samples and that the differences between healthy and ALS samples, suggest the involvement of pSN in ALS pathology development and progression.© 2022. The Author(s).

JTD Keywords: Amyotrophic-lateral-sclerosis,pluripotent stem-cells,peripheral nervous-system,stretch reflex arc,mechanosensory circuit,cellular-localization,molecular-cloning,motor-neurons,muscle,expressio


Cañellas-Socias, A, Cortina, C, Hernando-Momblona, X, Palomo-Ponce, S, Mulholland, EJ, Turon, G, Mateo, L, Conti, S, Roman, O, Sevillano, M, Slebe, F, Stork, D, Caballé-Mestres, A, Berenguer-Llergo, A, Alvarez-Varela, A, Fenderico, N, Novellasdemunt, L, Jiménez-Gracia, L, Sipka, T, Bardia, L, Lorden, P, Colombelli, J, Heyn, H, Trepat, X, Tejpar, S, Sancho, E, Tauriello, DVF, Leedham, S, Attolini, CSO, Batlle, E, (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells Nature 611, 603-613

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

JTD Keywords: colonization, defines, human colon, mutations, plasticity, retrieval, stem-cells, subtypes, underlie, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Article, Cancer, Cancer growth, Cancer immunotherapy, Cancer inhibition, Cancer recurrence, Cancer staging, Cell, Cell adhesion, Cell migration, Cell population, Cell surface receptor, Cohort analysis, Colorectal cancer, Colorectal neoplasms, Colorectal tumor, Comprehensive molecular characterization, Controlled study, Crispr-cas9 system, Cytoskeleton, Disease exacerbation, Disease progression, Dynamics, Emp1 gene, Epithelial membrane protein-1, Extracellular matrix, Flow cytometry, Fluorescence intensity, Gene expression, Genetics, Human, Human cell, Humans, Immune response, Immunofluorescence, In situ hybridization, Marker gene, Metastasis potential, Mice, Minimal residual disease, Mouse, Neoplasm proteins, Neoplasm recurrence, local, Neoplasm, residual, Nonhuman, Pathology, Phenotype, Prevention and control, Protein, Receptors, cell surface, Single cell rna seq, Tumor, Tumor protein, Tumor recurrence


Sala-Jarque, J, Zimkowska, K, Avila, J, Ferrer, I, del Rio, JA, (2022). Towards a Mechanistic Model of Tau-Mediated Pathology in Tauopathies: What Can We Learn from Cell-Based In Vitro Assays? International Journal Of Molecular Sciences 23, 11527

Tauopathies are a group of neurodegenerative diseases characterized by the hyperphosphorylation and deposition of tau proteins in the brain. In Alzheimer's disease, and other related tauopathies, the pattern of tau deposition follows a stereotypical progression between anatomically connected brain regions. Increasing evidence suggests that tau behaves in a "prion-like" manner, and that seeding and spreading of pathological tau drive progressive neurodegeneration. Although several advances have been made in recent years, the exact cellular and molecular mechanisms involved remain largely unknown. Since there are no effective therapies for any tauopathy, there is a growing need for reliable experimental models that would provide us with better knowledge and understanding of their etiology and identify novel molecular targets. In this review, we will summarize the development of cellular models for modeling tau pathology. We will discuss their different applications and contributions to our current understanding of the "prion-like" nature of pathological tau.

JTD Keywords: neurodegeneration, seeding, spreading, Culture model, Efficient generation, Extracellular tau, Familial alzheimers-disease, Microtubule-associated protein, Mouse model, Neurodegeneration, Neurofibrillary tangles, Paired helical filaments, Pathogenic tau, Pluripotent stem-cells, Seeding, Spreading, Tauopathies


Safi, W, Marco, A, Moya, D, Prado, P, Garreta, E, Montserrat, N, (2022). Assessing kidney development and disease using kidney organoids and CRISPR engineering Frontiers In Cell And Developmental Biology 10, 948395

The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.Copyright © 2022 Safi, Marco, Moya, Prado, Garreta and Montserrat.

JTD Keywords: crispr, directed differentiation, epithelial-cells, expression, kidney engineering, kidney organoids, model, mouse, nephrogenesis, nephron number, podocytes, progenitor, Crispr, Kidney engineering, Kidney organoids, Nephrogenesis, Pluripotent stem cells, Pluripotent stem-cells


Ordoño, J, Pérez-Amodio, S, Ball, K, Aguirre, A, Engel, E, (2022). The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes Biomaterials Advances 139, 213035

In situ tissue engineering strategies are a promising approach to activate the endogenous regenerative potential of the cardiac tissue helping the heart to heal itself after an injury. However, the current use of complex reprogramming vectors for the activation of reparative pathways challenges the easy translation of these therapies into the clinic. Here, we evaluated the response of mouse neonatal and human induced pluripotent stem cell-derived cardiomyocytes to the presence of exogenous lactate, thus mimicking the metabolic environment of the fetal heart. An increase in cardiomyocyte cell cycle activity was observed in the presence of lactate, as determined through Ki67 and Aurora-B kinase. Gene expression and RNA-sequencing data revealed that cardiomyocytes incubated with lactate showed upregulation of BMP10, LIN28 or TCIM in tandem with downregulation of GRIK1 or DGKK among others. Lactate also demonstrated a capability to modulate the production of inflammatory cytokines on cardiac fibroblasts, reducing the production of Fas, Fraktalkine or IL-12p40, while stimulating IL-13 and SDF1a. In addition, the generation of a lactate-rich environment improved ex vivo neonatal heart culture, by affecting the contractile activity and sarcomeric structures and inhibiting epicardial cell spreading. Our results also suggested a common link between the effect of lactate and the activation of hypoxia signaling pathways. These findings support a novel use of lactate in cardiac tissue engineering, modulating the metabolic environment of the heart and thus paving the way to the development of lactate-releasing platforms for in situ cardiac regeneration.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

JTD Keywords: cardiac regeneration, cardiac tissue engineering, cell cycle, failure, growth, heart regeneration, induced pluripotent stem cells, ischemia, lactate, metabolic environment, metabolism, mouse, proliferation, repair, Bone morphogenetic protein-10, Cardiac tissue engineering, Cardiomyocytes, Cell cycle, Induced pluripotent stem cells, Lactate, Metabolic environment


Aydin, O, Passaro, AP, Raman, R, Spellicy, SE, Weinberg, RP, Kamm, RD, Sample, M, Truskey, GA, Zartman, J, Dar, RD, Palacios, S, Wang, J, Tordoff, J, Montserrat, N, Bashir, R, Saif, MTA, Weiss, R, (2022). Principles for the design of multicellular engineered living systems Apl Bioengineering 6, 10903

Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell–cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the “black box” of living cells.

JTD Keywords: cell-fate specification, endothelial-cells, escherichia-coli, extracellular-matrix, gene-expression noise, nuclear hormone-receptors, pluripotent stem-cells, primitive endoderm, transcription factors, Artificial tissues, Assembly cells, Biological parts, Biological systems, Bioremediation, Blood-brain-barrier, Cell engineering, Cell/matrix communication, Design principles, Environmental technology, Functional modules, Fundamental design, Genetic circuits, Genetic engineering, Living machines, Living systems, Medical applications, Molecular biology, Synthetic biology


Garreta, E, Nauryzgaliyeva, Z, Montserrat, N, (2021). Human induced pluripotent stem cell-derived kidney organoids toward clinical implementations Curr Opin Biomed Eng 20, 100346

The generation of kidney organoids from human pluripotent stem cells (hPSCs) has represented a relevant scientific achievement in the organoid field. Importantly, hPSC-derived kidney organoids contain multiple nephron-like structures that exhibit some renal functional characteristics and have the capacity to respond to nephrotoxic agents. In this review, we first discuss how bioengineering approaches can help overcome current kidney organoid challenges. Next, we focus on recent works exploiting kidney organoids for drug screening and disease modeling applications. Finally, we provide a state of the art on current research toward the potential application of kidney organoids and renal cells derived from hPSCs for future renal replacement therapies.

JTD Keywords: Bioengineering, Converting enzyme-ii, Crispr/cas9 gene editing, Disease, Disease modeling, Extracellular-matrix, Generation, Human pluripotent stem cells, Kidney organoids, Kidney regeneration, Model, Mouse, Reveals, Scaffold, Transplantation


Hidouri, S, Errachid, AH, Baussels, J, Korpan, YI, Ruiz-Sanchez, O, Baccar, ZM, (2021). Potentiometric sensing of histamine using immobilized enzymes on layered double hydroxides Journal Of Food Science And Technology-Mysore 58, 2936-2942

Diamine oxydase and peroxidase have been co-immobilized onto layered double hydroxide (LDH) thin films for the development of real-time histamine biosensors. The chosen LDH materials are Mg2AlCO3, Mg4FeCl and Ca2AlCl. Prepared bi-enzymatic hybrid nanomaterials are capable of detecting histamine through the electrochemical oxidation of H(2)O(2)and are used as the sensitive membrane for potentiometric microelectrode. Histamine biosensors developed in this work have fast response of less than 20 s, are sensitive and selective, with a large dynamic range of 10(-8)-10(-3) M and a limit of detection of less than 10(-8) M. The detection limit of the developed bi-enzymatic biosensors is relatively higher than those corresponding with gas and liquid chromatography, which are still considered as the reference methods. Finally, the reproducibility, the specificity and the storage stability of the biosensors were studied.

JTD Keywords: Biogenic-amines, Biosensor, Diamine oxidase, Film, Fish, Histamine, Hybrid nanomaterial, Immobilization, Layer double hydroxide, Potentiometric biosensor, Specificity


Falcones, B, Sanz-Fraile, H, Marhuenda, E, Mendizábal, I, Cabrera-Aguilera, I, Malandain, N, Uriarte, JJ, Almendros, I, Navajas, D, Weiss, DJ, Farré, R, Otero, J, (2021). Bioprintable lung extracellular matrix hydrogel scaffolds for 3d culture of mesenchymal stromal cells Polymers 13, 2350

Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.

JTD Keywords: 3d bioprinting, acute lung injury, adhesion, collagen, differentiation, dimension, elastic properties, extracellular matrix, hydrogels, in-vitro, mechanical-properties, mesenchymal stromal cells, microenvironment, potentiate, tissue engineering, 3d bioprinting, Acute lung injury, Extracellular matrix, Hydrogels, Mesenchymal stromal cells, Stem-cells, Tissue engineering


Estrada-Petrocelli, L, Torres, A, Sarlabous, L, Rafols-de-Urquia, M, Ye-Lin, Y, Prats-Boluda, G, Jane, R, Garcia-Casado, J, (2021). Evaluation of Respiratory Muscle Activity by Means of Concentric Ring Electrodes Ieee Transactions On Biomedical Engineering 68, 1005-1014

© 1964-2012 IEEE. Surface electromyography (sEMG) can be used for the evaluation of respiratory muscle activity. Recording sEMG involves the use of surface electrodes in a bipolar configuration. However, electrocardiographic (ECG) interference and electrode orientation represent considerable drawbacks to bipolar acquisition. As an alternative, concentric ring electrodes (CREs) can be used for sEMG acquisition and offer great potential for the evaluation of respiratory muscle activity due to their enhanced spatial resolution and simple placement protocol, which does not depend on muscle fiber orientation. The aim of this work was to analyze the performance of CREs during respiratory sEMG acquisitions. Respiratory muscle sEMG was applied to the diaphragm and sternocleidomastoid muscles using a bipolar and a CRE configuration. Thirty-two subjects underwent four inspiratory load spontaneous breathing tests which was repeated after interchanging the electrode positions. We calculated parameters such as (1) spectral power and (2) median frequency during inspiration, and power ratios of inspiratory sEMG without ECG in relation to (3) basal sEMG without ECG (Rins/noise), (4) basal sEMG with ECG (Rins/cardio) and (5) expiratory sEMG without ECG (Rins/exp). Spectral power, Rins/noise and Rins/cardio increased with the inspiratory load. Significantly higher values (p < 0.05) of Rins/cardio and significantly higher median frequencies were obtained for CREs. Rins/noise and Rins/exp were higher for the bipolar configuration only in diaphragm sEMG recordings, whereas no significant differences were found in the sternocleidomastoid recordings. Our results suggest that the evaluation of respiratory muscle activity by means of sEMG can benefit from the remarkably reduced influence of cardiac activity, the enhanced detection of the shift in frequency content and the axial isotropy of CREs which facilitates its placement.

JTD Keywords: atmospheric measurements, concentric ring electrodes, electrocardiography, electrodes, electromyography, laplacian potential, non-invasive respiratory monitoring, particle measurements, respiratory muscles, surface electromyography, Concentric ring electrodes, Laplacian potential, Muscles, Non-invasive respiratory monitoring, Respiratory muscles, Surface electromyography


Garreta, E, Kamm, RD, Lopes, SMCD, Lancaster, MA, Weiss, R, Trepat, X, Hyun, I, Montserrat, N, (2021). Rethinking organoid technology through bioengineering Nature Materials 20, 145-155

In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine. This Review provides an overview of bioengineering technologies that can be harnessed to facilitate the culture, self-organization and functionality of human pluripotent stem cell-derived organoids.

JTD Keywords: Differentiation, Embryonic-tissues, Extracellular-matrix, In-vitro, Kidney organoids, Model, Neural-tube, Pluripotent stem-cells, Reconstitution, Self-organization


Selfa, IL, Gallo, M, Montserrat, N, Garreta, E, (2021). Directed Differentiation of Human Pluripotent Stem Cells for the Generation of High-Order Kidney Organoids Methods In Molecular Biology 2258, 171-192

© 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature. Our understanding in the inherent properties of human pluripotent stem cells (hPSCs) have made possible the development of differentiation procedures to generate three-dimensional tissue-like cultures, so-called organoids. Here we detail a stepwise methodology to generate kidney organoids from hPSCs. This is achieved through direct differentiation of hPSCs in two-dimensional monolayer culture toward the posterior primitive streak fate, followed by induction of intermediate mesoderm-committed cells, which are further aggregated and cultured in three-dimensions to generate kidney organoids containing segmented nephron-like structures in a process that lasts 20 days. We also provide a concise description on how to assess renal commitment during the time course of kidney organoid generation. This includes the use of flow cytometry and immunocytochemistry analyses for the detection of specific renal differentiation markers.

JTD Keywords: 2d monolayer, 3d organotypic culture, differentiation, flow cytometry, human pluripotent stem cells, immunocytochemistry, intermediate mesoderm, kidney organoid, nephron progenitor cells, nephrons, primitive streak, 2d monolayer, 3d organotypic culture, Differentiation, Flow cytometry, Human pluripotent stem cells, Immunocytochemistry, Intermediate mesoderm, Kidney organoid, Nephron progenitor cells, Nephrons, Primitive streak, Tissue


Duran, Jordi, Brewer, M. Kathryn, Hervera, Arnau, Gruart, Agnès, del Rio, Jose Antonio, Delgado-García, José M., Guinovart, Joan J., (2020). Lack of astrocytic glycogen alters synaptic plasticity but not seizure susceptibility Molecular Neurobiology 57, 4657–4666

Brain glycogen is mainly stored in astrocytes. However, recent studies both in vitro and in vivo indicate that glycogen also plays important roles in neurons. By conditional deletion of glycogen synthase (GYS1), we previously developed a mouse model entirely devoid of glycogen in the central nervous system (GYS1Nestin-KO). These mice displayed altered electrophysiological properties in the hippocampus and increased susceptibility to kainate-induced seizures. To understand which of these functions are related to astrocytic glycogen, in the present study, we generated a mouse model in which glycogen synthesis is eliminated specifically in astrocytes (GYS1Gfap-KO). Electrophysiological recordings of awake behaving mice revealed alterations in input/output curves and impaired long-term potentiation, similar, but to a lesser extent, to those obtained with GYS1Nestin-KO mice. Surprisingly, GYS1Gfap-KO mice displayed no change in susceptibility to kainate-induced seizures as determined by fEPSP recordings and video monitoring. These results confirm the importance of astrocytic glycogen in synaptic plasticity.

JTD Keywords: Astrocyte, Epilepsy, Glycogen, Long-term potentiation, Metabolism, Plasticity.


Valls-Margarit, M., Iglesias-García, O., Di Guglielmo, C., Sarlabous, L., Tadevosyan, K., Paoli, R., Comelles, J., Blanco-Almazán, D., Jiménez-Delgado, S., Castillo-Fernández, O., Samitier, J., Jané, R., Martínez, Elena, Raya, Á., (2019). Engineered macroscale cardiac constructs elicit human myocardial tissue-like functionality Stem Cell Reports 13, (1), 207-220

In vitro surrogate models of human cardiac tissue hold great promise in disease modeling, cardiotoxicity testing, and future applications in regenerative medicine. However, the generation of engineered human cardiac constructs with tissue-like functionality is currently thwarted by difficulties in achieving efficient maturation at the cellular and/or tissular level. Here, we report on the design and implementation of a platform for the production of engineered cardiac macrotissues from human pluripotent stem cells (PSCs), which we term “CardioSlice.” PSC-derived cardiomyocytes, together with human fibroblasts, are seeded into large 3D porous scaffolds and cultured using a parallelized perfusion bioreactor with custom-made culture chambers. Continuous electrical stimulation for 2 weeks promotes cardiomyocyte alignment and synchronization, and the emergence of cardiac tissue-like properties. These include electrocardiogram-like signals that can be readily measured on the surface of CardioSlice constructs, and a response to proarrhythmic drugs that is predictive of their effect in human patients.

JTD Keywords: Cardiac tissue engineering, CardioSlice, ECG-like signals, Electrical stimulation, Heart physiology, Human induced pluripotent stem cells, Perfusion bioreactor, Tissue-like properties


Matamoros-Angles, A., Gayosso, L. M., Richaud-Patin, Y., Di Domenico, A., Vergara, C., Hervera, A., Sousa, A., Fernández-Borges, N., Consiglio, A., Gavín, R., López de Maturana, R., Ferrer, Isidro, López de Munain, A., Raya, A., Castilla, J., Sánchez-Pernaute, R., Del Río, J. A., (2018). iPS cell cultures from a Gerstmann-Sträussler-Scheinker patient with the Y218N PRNP mutation recapitulate tau pathology Molecular Neurobiology 55, (4), 3033-3048

Gerstmann-Sträussler-Scheinker (GSS) syndrome is a fatal autosomal dominant neurodegenerative prionopathy clinically characterized by ataxia, spastic paraparesis, extrapyramidal signs and dementia. In some GSS familiar cases carrying point mutations in the PRNP gene, patients also showed comorbid tauopathy leading to mixed pathologies. In this study we developed an induced pluripotent stem (iPS) cell model derived from fibroblasts of a GSS patient harboring the Y218N PRNP mutation, as well as an age-matched healthy control. This particular PRNP mutation is unique with very few described cases. One of the cases presented neurofibrillary degeneration with relevant Tau hyperphosphorylation. Y218N iPS-derived cultures showed relevant astrogliosis, increased phospho-Tau, altered microtubule-associated transport and cell death. However, they failed to generate proteinase K-resistant prion. In this study we set out to test, for the first time, whether iPS cell-derived neurons could be used to investigate the appearance of disease-related phenotypes (i.e, tauopathy) identified in the GSS patient.

JTD Keywords: Cellular prion protein, Gerstmann-Sträussler-Scheinker, Induced pluripotent stem cells, Tau


Garreta, E., González, F., Montserrat, N., (2018). Studying kidney disease using tissue and genome engineering in human pluripotent stem cells Nephron 138, 48-59

Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease.

JTD Keywords: Clustered regularly interspaced short palindromic repeats/CRISPR-associated systems 9, Disease modeling, Gene editing, Human pluripotent stem cells, Kidney genetics, Tissue engineering


Garreta, Elena, Marco, Andrés, Eguizábal, Cristina, Tarantino, Carolina, Samitier, Mireia, Badiola, Maider, Gutiérrez, Joaquín, Samitier, Josep, Montserrat, Nuria, (2017). Pluripotent stem cells and skeletal muscle differentiation: Challenges and immediate applications The Plasticity of Skeletal Muscle: From Molecular Mechanism to Clinical Applications (ed. Sakuma, Kunihiro), Springer Singapore (Singapore, Singapore) 2018, 1-35

Recent advances in the generation of skeletal muscle derivatives from pluripotent stem cells (PSCs) provide innovative tools for muscle development, disease modeling, and cell replacement therapies. Here, we revise major relevant findings that have contributed to these advances in the field, by the revision of how early findings using mouse embryonic stem cells (ESCs) set the bases for the derivation of skeletal muscle cells from human pluripotent stem cells (hPSCs) and patient-derived human-induced pluripotent stem cells (hiPSCs) to the use of genome editing platforms allowing for disease modeling in the petri dish.

JTD Keywords: Pluripotent stem cells, Differentiation, Genome editing, Disease modeling


Garreta, E., de Oñate, L., Fernández-Santos, M. E., Oria, R., Tarantino, C., Climent, A. M., Marco, A., Samitier, M., Martínez, Elena, Valls-Margarit, M., Matesanz, R., Taylor, D. A., Fernández-Avilés, F., Izpisua Belmonte, J. C., Montserrat, N., (2016). Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts Biomaterials 98, 64-78

Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.

JTD Keywords: Cardiac function, Extracellular matrix, Gene targeting, Pluripotent stem cells


Montserrat, N., Garreta, E., Izpisua Belmonte, J. C., (2016). Regenerative strategies for kidney engineering FEBS Journal , 283, (18), 3303-3324

The kidney is the most important organ for water homeostasis and waste excretion. It performs several important physiological functions for homeostasis: it filters the metabolic waste out of circulation, regulates body fluid balances, and acts as an immune regulator and modulator of cardiovascular physiology. The development of in vitro renal disease models with pluripotent stem cells (both human embryonic stem cells and induced pluripotent stem cells) and the generation of robust protocols for in vitro derivation of renal-specific-like cells from patient induced pluripotent stem cells have just emerged. Here we review major findings in the field of kidney regeneration with a major focus on the development of stepwise protocols for kidney cell production from human pluripotent stem cells and the latest advances in kidney bioengineering (i.e. decellularized kidney scaffolds and bioprinting). The possibility of generating renal-like three-dimensional structures to be recellularized with renal-derived induced pluripotent stem cells may offer new avenues to develop functional kidney grafts on-demand.

JTD Keywords: Induced pluripotent stem cells, Kidney disease, Kidney engineering, Pluripotent stem cells, Renal differentiation


González, F., (2016). CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish Developmental Dynamics , 245, (7), 788-806

Abstract: Because of their extraordinary differentiation potential, human pluripotent stem cells (hPSCs) can differentiate into virtually any cell type of the human body, providing a powerful platform not only for generating relevant cell types useful for cell replacement therapies, but also for modeling human development and disease. Expanding this potential, structures resembling human organs, termed organoids, have been recently obtained from hPSCs through tissue engineering. Organoids exhibit multiple cell types self-organizing into structures recapitulating in part the physiology and the cellular interactions observed in the organ in vivo, offering unprecedented opportunities for human disease modeling. To fulfill this promise, tissue engineering in hPSCs needs to be supported by robust and scalable genome editing technologies. With the advent of the CRISPR/Cas9 technology, manipulating the genome of hPSCs has now become an easy task, allowing modifying their genome with superior precision, speed, and throughput. Here we review current and potential applications of the CRISPR/Cas9 technology in hPSCs and how they contribute to establish hPSCs as a model of choice for studying human genetics.

JTD Keywords: CRISPR/Cas9, Disease modeling, Human genetics, Human pluripotent stem cells, Tissue and genome engineering


de Oñate, L., Garreta, E., Tarantino, C., Martínez, Elena, Capilla, E., Navarro, I., Gutiérrez, J., Samitier, J., Campistol, J.M., Muñoz-Cánovas, P., Montserrat, N., (2015). Research on skeletal muscle diseases using pluripotent stem cells Muscle Cell and Tissue (ed. Sakuma, K.), InTech (Rijeka, Croatia) , 333-357

The generation of induced pluripotent stem cells (iPSCs), especially the generation of patient-derived pluripotent stem cells (PSCs) suitable for disease modelling in vitro, opens the door for the potential translation of stem-cell related studies into the clinic. Successful replacement, or augmentation, of the function of damaged cells by patient-derived differentiated stem cells would provide a novel cell-based therapy for skeletal muscle-related diseases. Since iPSCs resemble human embryonic stem cells (hESCs) in their ability to generate cells of the three germ layers, patient-specific iPSCs offer definitive solutions for the ethical and histo-incompatibility issues related to hESCs. Indeed human iPSC (hiPSC)-based autologous transplantation is heralded as the future of regenerative medicine. Interestingly, during the last years intense research has been published on disease-specific hiPSCs derivation and differentiation into relevant tissues/organs providing a unique scenario for modelling disease progression, to screen patient-specific drugs and enabling immunosupression-free cell replacement therapies. Here, we revise the most relevant findings in skeletal muscle differentiation using mouse and human PSCs. Finally and in an effort to bring iPSC technology to the daily routine of the laboratory, we provide two different protocols for the generation of patient-derived iPSCs.

JTD Keywords: Pluripotent stem cells, Myogenic differentiation, Disease modelling, Patient-specific induced pluripotent stem cells, Muscular dystrophy


Navarro, S., Moleiro, V., Molina-Estevez, F. J., Lozano, M. L., Chinchon, R., Almarza, E., Quintana-Bustamante, O., Mostoslavsky, G., Maetzig, T., Galla, M., Heinz, N., Schiedlmeier, B., Torres, Y., Modlich, U., Samper, E., Río, P., Segovia, J. C., Raya, A., Güenechea, G., Izpisua-Belmonte, J. C., Bueren, J. A., (2014). Generation of iPSCs from genetically corrected Brca2 hypomorphic cells: Implications in cell reprogramming and stem cell therapy Stem Cells , 32, (2), 436-446

Fanconi anemia (FA) is a complex genetic disease associated with a defective DNA repair pathway known as the FA pathway. In contrast to many other FA proteins, BRCA2 participates downstream in this pathway and has a critical role in homology-directed recombination (HDR). In our current studies, we have observed an extremely low reprogramming efficiency in cells with a hypomorphic mutation in Brca2 (Brca2Δ27/Δ27), that was associated with increased apoptosis and defective generation of nuclear RAD51 foci during the reprogramming process. Gene complementation facilitated the generation of Brca2Δ27/Δ27 induced pluripotent stem cells (iPSCs) with a disease-free FA phenotype. Karyotype analyses and comparative genome hybridization arrays of complemented Brca2Δ27/Δ27 iPSCs showed, however, the presence of different genetic alterations in these cells, most of which were not evident in their parental Brca2 Δ27/Δ27 mouse embryonic fibroblasts. Gene-corrected Brca2Δ27/Δ27 iPSCs could be differentiated in vitro toward the hematopoietic lineage, although with a more limited efficacy than WT iPSCs or mouse embryonic stem cells, and did not engraft in irradiated Brca2Δ27/Δ27 recipients. Our results are consistent with previous studies proposing that HDR is critical for cell reprogramming and demonstrate that reprogramming defects characteristic of Brca2 mutant cells can be efficiently overcome by gene complementation. Finally, based on analysis of the phenotype, genetic stability, and hematopoietic differentiation potential of gene-corrected Brca2Δ27/Δ27 iPSCs, achievements and limitations in the application of current reprogramming approaches in hematopoietic stem cell therapy are also discussed.

JTD Keywords: Bone marrow aplasia, Cellular therapy, Fanconi anemia, Gene therapy, Hematopoietic stem cells, Induced pluripotent stem cells


Estrada, L., Torres, A., Garcia-Casado, J., Prats-Boluda, G., Yiyao, Ye-Lin, Jané, R., (2014). Evaluation of Laplacian diaphragm electromyographic recording in a dynamic inspiratory maneuver Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 2201-2204

The analysis of the electromyographic signal of the diaphragm muscle (EMGdi) can provide important information for evaluating the respiratory muscular function. The EMGdi can be recorded using surface Ag/AgCl disc electrodes in monopolar or bipolar configuration. However, these non-invasive EMGdi recordings are usually contaminated by the electrocardiographic (ECG) signal. EMGdi signal can also be noninvasively recorded using concentric ring electrodes in bipolar configuration (CRE) that estimate Laplacian surface potential. Laplacian recordings increase spatial resolution and attenuate distant bioelectric interferences, such as the ECG. Thus, the objective of this work is to compare and to evaluate CRE and traditional bipolar EMGdi recordings in a healthy subject during a dynamic inspiratory maneuver with incremental inspiratory loads. In the conducted study, it was calculated the cumulative percentage of power spectrum of EMGdi recordings to determine the signal bandwidth, and the power ratio between the EMGdi signal segments with and without cardiac activity. The results of this study suggest that EMGdi acquired with CRE electrodes is less affected by the ECG interference, achieves a wider bandwidth and a higher power ratio between segments without cardiac activity and with cardiac activity.

JTD Keywords: Bandwidth, Electric potential, Electrocardiography, Electrodes, Interference, Laplace equations, Muscles


Sánchez-Danes, A., Benzoni, P., Memo, M., Dell'Era, P., Raya, A., Consiglio, A., (2013). Induced pluripotent stem cell-based studies of Parkinson's disease: Challenges and promises CNS and Neurological Disorders - Drug Targets , 12, (8), 1114-1127

A critical step in the development of effective therapeutics to treat Parkinson's disease (PD) is the identification of molecular pathogenic mechanisms underlying this chronically progressive neurodegenerative disease. However, while animal models have provided valuable information about the molecular basis of PD, the lack of faithful cellular and animal models that recapitulate human pathophysiology is delaying the development of new therapeutics. The reprogramming of somatic cells to induced pluripotent stem cells (iPSC) using delivery of defined combinations of transcription factors is a groundbreaking discovery that opens great opportunities for modeling human diseases, including PD, since iPSC can be generated from patients and differentiated into disease-relevant cell types, which would capture the patients' genetic complexity. Furthermore, human iPSC-derived neuronal models offer unprecedented access to early stages of the disease, allowing the investigation of the events that initiate the pathologic process in PD. Recently, human iPSC-derived neurons from patients with familial and sporadic PD have been generated and importantly they recapitulate some PD-related cell phenotypes, including abnormal α-synuclein accumulation in vitro, and alterations in the autophagy machinery. This review highlights the current PD iPSC-based models and discusses the potential future research directions of this field.

JTD Keywords: Human cellular model, Induced pluripotent stem cells, Neurodegenerative disease, Parkinson's disease


Sánchez-Danés, A., Richaud-Patin, Y., Carballo-Carbajal, I., Jiménez-Delgado, S., Caig, C., Mora, S., Di Guglielmo, C., Ezquerra, M., Patel, B., Giralt, A., Canals, J. M., Memo, M., Alberch, J., López-Barneo, J., Vila, M., Cuervo, A. M., Tolosa, E., Consiglio, A., Raya, A., (2012). Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease EMBO Molecular Medicine 4, (5), 380-395

Induced pluripotent stem cells (iPSC) offer an unprecedented opportunity to model human disease in relevant cell types, but it is unclear whether they could successfully model age-related diseases such as Parkinson's disease (PD). Here, we generated iPSC lines from seven patients with idiopathic PD (ID-PD), four patients with familial PD associated to the G2019S mutation in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene (LRRK2-PD) and four age- and sex-matched healthy individuals (Ctrl). Over long-time culture, dopaminergic neurons (DAn) differentiated from either ID-PD- or LRRK2-PD-iPSC showed morphological alterations, including reduced numbers of neurites and neurite arborization, as well as accumulation of autophagic vacuoles, which were not evident in DAn differentiated from Ctrl-iPSC. Further induction of autophagy and/or inhibition of lysosomal proteolysis greatly exacerbated the DAn morphological alterations, indicating autophagic compromise in DAn from ID-PD- and LRRK2-PD-iPSC, which we demonstrate occurs at the level of autophagosome clearance. Our study provides an iPSC-based in vitro model that captures the patients' genetic complexity and allows investigation of the pathogenesis of both sporadic and familial PD cases in a disease-relevant cell type.

JTD Keywords: Autophagy, Disease modeling, LRRK2 mutation, Neurodegeneration, Pluripotent stem cells


Woods, N. B., Parker, A. S., Moraghebi, R., Lutz, M. K., Firth, A. L., Brennand, K. J., Berggren, W. T., Raya, A., Belmonte, J. C. I., Gage, F. H., Verma, I. M., (2011). Brief report: Efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines Stem Cells , 29, (7), 1158-1164

By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines, extra cellular matrix components, and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% +/- 16%, from seven pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38- hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays, were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability.

JTD Keywords: Differentiation, Hematopoiesis, Hematopoietic progenitors, Pluripotent stem cells


Madronal, Noelia, Lopez-Aracil, Cristina, Rangel, Alejandra, del Rio, Jose A., Delgado-Garcia, Jose M., Gruart, Agnes, (2010). Effects of Enriched Physical and Social Environments on Motor Performance, Associative Learning, and Hippocampal Neurogenesis in Mice PLoS ONE 5, (6), e11130

We have studied the motor abilities and associative learning capabilities of adult mice placed in different enriched environments. Three-month-old animals were maintained for a month alone (AL), alone in a physically enriched environment (PHY), and, finally, in groups in the absence (SO) or presence (SOPHY) of an enriched environment. The animals' capabilities were subsequently checked in the rotarod test, and for classical and instrumental learning. The PHY and SOPHY groups presented better performances in the rotarod test and in the acquisition of the instrumental learning task. In contrast, no significant differences between groups were observed for classical eyeblink conditioning. The four groups presented similar increases in the strength of field EPSPs (fEPSPs) evoked at the hippocampal CA3-CA1 synapse across classical conditioning sessions, with no significant differences between groups. These trained animals were pulse-injected with bromodeoxyuridine (BrdU) to determine hippocampal neurogenesis. No significant differences were found in the number of NeuN/BrdU double-labeled neurons. We repeated the same BrdU study in one-month-old mice raised for an additional month in the above-mentioned four different environments. These animals were not submitted to rotarod or conditioned tests. Non-trained PHY and SOPHY groups presented more neurogenesis than the other two groups. Thus, neurogenesis seems to be related to physical enrichment at early ages, but not to learning acquisition in adult mice.

JTD Keywords: Long-term potentiation, Adult neurogenesis, Synaptic transmission, Cell proliferation, CA3-CA1 synapse, Granule cells


de Oliveira, I. A. M., Risco, D., Vocanson, F., Crespo, E., Teixidor, F., Zine, N., Bausells, J., Samitier, J., Errachid, A., (2008). Sodium ion sensitive microelectrode based on a p-tert-butylcalix[4]arene ethyl ester Sensors and Actuators B: Chemical 130, (1), 295-299

Planar sodium-selective potentiometric microelectrodes with a conducting polymer (polypyrrole doped with cobaltabis(dicarbollide) ions ([3,3'-Co(1,2-C2B9-H-11)(2)](-))) as solid contact layer between the polymeric sensitive membrane and the platinum substrate have been constructed. The p-tert-butylcalix[4]arene ethyl ester was used as ionophore for sodium recognition. The microelectrode shows a linear response for Na+ concentrations between 3.0 x 10(-6) and 1.0 x 10(-1) M with a Nernstian slope of 58.65 +/- 2 mV per decade and a detection limit of 1.45 x 10(-6) M. The response time was 14 s, and the electrode is suitable for use within the pH range of 3-10.

JTD Keywords: Sodium, Polypyrrole, Calix[4]arene, Solid-state ion selective microelectrode, Potentiometric