DONATE

Publications

by Keyword: Damage

Wagner, AM, Kostina, NY, Xiao, Q, Klein, ML, Percec, V, Rodriguez-Emmenegger, C, (2024). Glycan-Driven Formation of Raft-Like Domains with Hierarchical Periodic Nanoarrays on Dendrimersome Synthetic Cells Biomacromolecules 25, 366-378

The accurate spatial segregation into distinct phases within cell membranes coordinates vital biochemical processes and functionalities in living organisms. One of nature's strategies to localize reactivity is the formation of dynamic raft domains. Most raft models rely on liquid-ordered L-0 phases in a liquid-disordered L-d phase lacking correlation and remaining static, often necessitating external agents for phase separation. Here, we introduce a synthetic system of bicomponent glycodendrimersomes coassembled from Janus dendrimers and Janus glycodendrimers (JGDs), where lactose-lactose interactions exclusively drive lateral organization. This mechanism results in modulated phases across two length scales, yielding raft-like microdomains featuring nanoarrays at the nanoscale. By varying the density of lactose and molecular architecture of JGDs, the nanoarray type and size, shape, and spacing of the domains were controlled. Our findings offer insight into the potential primordial origins of rudimentary raft domains and highlight the crucial role of glycans within the glycocalyx.

JTD Keywords: Article, Artificial cells, Atomic force microscopy, Bicomponents, Bilayer, Bilayer membrane, Biochemical functionality, Biochemical process, Biological-membranes, Cell component, Cell membrane, Cellular parameters, Chemical interaction, Chemical structure, Chemistry, Cytology, Defined janus glycodendrimers, Dehydration, Dendrimer, Dendrimers, Dilution, Dimer, External agents, Fourier transform, Giant vesicles, Glycan, Glycans, Glycocalyx, Glycodendrimers, Janus dendrimer, Janus glycodendrimer, Lactose, Lateral organization, Lectin, Lipid rafts, Living organisms, Membrane damage, Membrane microdomain, Membrane microdomains, Membrane structure, Metabolism, Modulated phases, Molecule, Monomer, Nanoarrays, Oligosaccharide, Organization, Periodicity, Phase separation, Phase-separation, Phospholipids, Polysaccharide, Polysaccharides, Raft like domain, Relative humidity, Spatial segregation, Structure analysis, Sugars, Synthetic systems, Tetramer, Unclassified drug, Unilamellar vesicles, Water


Garcia-de-Albeniz, N, Ginebra, MP, Jimenez-Piqué, E, Roa, JJ, Mas-Moruno, C, (2024). Influence of nanosecond laser surface patterning on dental 3Y-TZP: Effects on the topography, hydrothermal degradation and cell response Dental Materials 40, 139-150

Laser surface micropatterning of dental-grade zirconia (3Y-TZP) was explored with the objective of providing defined linear patterns capable of guiding bone-cell response.A nanosecond (ns-) laser was employed to fabricate microgrooves on the surface of 3Y-TZP discs, yielding three different groove periodicities (i.e., 30, 50 and 100 µm). The resulting topography and surface damage were characterized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). X-Ray diffraction (XRD) and Raman spectroscopy techniques were employed to assess the hydrothermal degradation resistance of the modified topographies. Preliminary biological studies were conducted to evaluate adhesion (6 h) of human mesenchymal stem cells (hMSC) to the patterns in terms of cell number and morphology. Finally, Staphylococcus aureus adhesion (4 h) to the microgrooves was investigated.The surface analysis showed grooves of approximately 1.8 µm height that exhibited surface damage in the form of pile-up at the edge of the microgrooves, microcracks and cavities. Accelerated aging tests revealed a slight decrease of the hydrothermal degradation resistance after laser patterning, and the Raman mapping showed the presence of monoclinic phase heterogeneously distributed along the patterned surfaces. An increase of the hMSC area was identified on all the microgrooved surfaces, although only the 50 µm periodicity, which is closer to the cell size, significantly favored cell elongation and alignment along the grooves. A decrease in Staphylococcus aureus adhesion was observed on the investigated micropatterns.The study suggests that linear microgrooves of 50 µm periodicity may help in promoting hMSC adhesion and alignment, while reducing bacterial cell attachment.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

JTD Keywords: abutment material, alumina toughened zirconia, antibacterial, bacterial adhesion, biofilm growth, cell adhesion, dental implants, hydrothermal degradation, implant surfaces, in-vitro, laser patterning, osseointegration, osteogenic differentiation, part 1, surface topography, y-tzp ceramics, Antibacterial, Antibacterials, Bacteria, Bone, Cell adhesion, Cell culture, Cells adhesion, Ceramics, Chemistry, Degradation resistance, Dental implants, Dental material, Dental materials, Dental prostheses, Human, Human mesenchymal stem cells, Humans, Hydrothermal degradation, Laser patterning, Laser surface, Lasers, Low-temperature degradation, Materials testing, Microscopy, electron, scanning, Nanosecond lasers, Osseointegration, Piles, Scanning electron microscopy, Staphylococcus aureus, Stem cells, Surface analysis, Surface damages, Surface properties, Surface property, Surface topography, Topography, Yttrium, Zirconia, Zirconium


Tejedera-Villafranca, A, Montolio, M, Ramón-Azcón, J, Fernández-Costa, JM, (2023). Mimicking sarcolemmal damage in vitro: a contractile 3D model of skeletal muscle for drug testing in Duchenne muscular dystrophy Biofabrication 15, 45024

Duchenne muscular dystrophy (DMD) is the most prevalent neuromuscular disease diagnosed in childhood. It is a progressive and wasting disease, characterized by a degeneration of skeletal and cardiac muscles caused by the lack of dystrophin protein. The absence of this crucial structural protein leads to sarcolemmal fragility, resulting in muscle fiber damage during contraction. Despite ongoing efforts, there is no cure available for DMD patients. One of the primary challenges is the limited efficacy of current preclinical tools, which fail in modeling the biological complexity of the disease. Human-based three-dimensional (3D) cell culture methods appear as a novel approach to accelerate preclinical research by enhancing the reproduction of pathophysiological processes in skeletal muscle. In this work, we developed a patient-derived functional 3D skeletal muscle model of DMD that reproduces the sarcolemmal damage found in the native DMD muscle. These bioengineered skeletal muscle tissues exhibit contractile functionality, as they responded to electrical pulse stimulation. Sustained contractile regimes induced the loss of myotube integrity, mirroring the pathological myotube breakdown inherent in DMD due to sarcolemmal instability. Moreover, damaged DMD tissues showed disease functional phenotypes, such as tetanic fatigue. We also evaluated the therapeutic effect of utrophin upregulator drug candidates on the functionality of the skeletal muscle tissues, thus providing deeper insight into the real impact of these treatments. Overall, our findings underscore the potential of bioengineered 3D skeletal muscle technology to advance DMD research and facilitate the development of novel therapies for DMD and related neuromuscular disorders.

JTD Keywords: 3d cell culture, disease modeling, drug testing, duchenne muscular dystrophy, sarcolemmal damage, skeletal muscle, 3d cell culture, Animal-models, Disease modeling, Dmso, Drug testing, Duchenne muscular dystrophy, Gene, Humans, Image, Mechanisms, Muscle fibers, skeletal, Muscle, skeletal, Muscular dystrophy, duchenne, Myocardium, Sarcolemmal damage, Skeletal muscle, Tissue engineering, Utrophin


Bertran, O, Martí, D, Torras, J, Turon, P, Alemán, C, (2022). Computer simulations on oxidative stress-induced reactions in SARS-CoV-2 spike glycoprotein: a multi-scale approach Molecular Diversity 26, 3143-3155

Abstract Oxidative stress, which occurs when an organism is exposed to an adverse stimulus that results in a misbalance of antioxidant and pro-oxidants species, is the common denominator of diseases considered as a risk factor for SARS-CoV-2 lethality. Indeed, reactive oxygen species caused by oxidative stress have been related to many virus pathogenicity. In this work, simulations have been performed on the receptor binding domain of SARS-CoV-2 spike glycoprotein to study what residues are more susceptible to be attacked by ·OH, which is one of the most reactive radicals associated to oxidative stress. The results indicate that isoleucine (ILE) probably plays a crucial role in modification processes driven by radicals. Accordingly, QM/MM-MD simulations have been conducted to study both the ·OH-mediated hydrogen abstraction of ILE residues and the induced modification of the resulting ILE radical through hydroxylation or nitrosylation reactions. All in all, in silico studies show the importance of the chemical environment triggered by oxidative stress on the modifications of the virus, which is expected to help for foreseeing the identification or development of antioxidants as therapeutic drugs. Graphic abstract

JTD Keywords: atom abstraction, damage, density functionals, hydrogen abstraction, isoleucine, molecular dynamics, pathogenesis, protein, reactive oxygen species, receptor binding domain, residues, spike protein, Amino-acids, Hydrogen abstraction, Isoleucine, Molecular dynamics, Reactive oxygen species, Receptor binding domain, Spike protein


Caballeria, E, Maier, M, Balcells-Oliveró, M, López-Pelayo, H, Oliveras, C, Ballester, BR, Verschure, PFMJ, Gual, A, (2022). Rehabilitation Gaming System for Alcohol-Related Cognitive Impairment: A Pilot Usability Study Alcohol And Alcoholism 57, 595-601

Aims: Cognitive impairment in patients with alcohol use disorder (AUD) is highly prevalent, and it negatively impacts treatment outcome. However, this condition is neither systematically assessed nor treated. Thus, we aimed to explore the usability of a virtual reality-based protocol ('Rehabilitation Gaming System', RGS) for patients with AUD. Methods: Twenty AUD patients (50% also cognitive impairment) underwent a single session of the RGS protocol (four cognitive training tasks, 10 minutes each). System Usability Scale (SUS) and Post-Study System Usability Questionnaire (PSSUQ) were applied to assess the RGS usability and patients' satisfaction with it. Also, the Perceived Competence Scale was administered to assess the patients' feelings of competence when using the training protocol. Comparisons of the responses to these questionnaires were performed between AUD patients with cognitive impairment and those without cognitive impairment. Results: RGS usability was very positively rated (median SUS score = 80, Interquartile Range, IQR = 68.13-86-88). No significant differences were found in the median SUS scores for any of the sociodemographic or clinical variables, excepting for gender (women median score = 85; IQR = 80-94.38 vs. men median score = 71.25; IQR = 61.25-89.25; P-value = 0.035). The quality of the information provided by the RGS training scenarios and the usability were positively rated (PSSUQ), and patients experienced high feelings of competence. Conclusions: The RGS has been found to be usable in the short term and patients with AUD stated to be satisfied with it. Future larger, randomized trials are needed to explore the effectiveness of this tool to help overcome the cognitive deficits in AUD patients. Short Summary: Although cognitive impairments are highly prevalent in alcohol use disorder (AUD), no long-term gold standard intervention has yet been identified. The Rehabilitation Gaming System (virtual reality-based cognitive training protocol) has shown short-term high usability in AUD. Its effectiveness in providing engaging, long-term cognitive rehabilitation in AUD should be further assessed.

JTD Keywords: Addiction, Brain-damage, Deficits, Impact, Neurocognitive impairment, Therapy


Watt, AC, Cejas, P, DeCristo, MJ, Metzger, O, Lam, EYN, Qiu, XT, BrinJones, H, Kesten, N, Coulson, R, Font-Tello, A, Lim, K, Vadhi, R, Daniels, VW, Montero, J, Taing, L, Meyer, CA, Gilan, O, Bell, CC, Korthauer, KD, Giambartolomei, C, Pasaniuc, B, Seo, JH, Freedman, ML, Ma, CT, Ellis, MJ, Krop, I, Winer, E, Letai, A, Brown, M, Dawson, MA, Long, HW, Zhao, JJ, Goel, S, (2021). CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity Nature Cancer 2, 34-+

Goel and colleagues show that CDK4/6 inhibition induces global chromatin changes mediated by AP-1 factors, which mediate key biological and clinical effects in breast cancer. Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that are enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several activator protein-1 transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.

JTD Keywords: Abemaciclib, Androgen receptor, Animal experiment, Animal model, Animal tissue, Apoptosis, Article, Breast cancer, C-jun, Cancer cell, Carcinoembryonic antigen related cell adhesion molecule 1, Caspase 3, Cell cycle arrest, Cells, Chromatin, Chromatin immunoprecipitation, Controlled study, Cyclin dependent kinase 4, Cyclin dependent kinase 6, Dna damage, Epidermal growth factor receptor 2, Estrogen receptor, Female, Flow cytometry, Fulvestrant, Hla drb1 antigen, Human, Human cell, Immunoblotting, Immunogenicity, Immunoprecipitation, Interferon, Luciferase assay, Mcf-7 cell line, Mda-mb-231 cell line, Microarray analysis, Morphogenesis, Mouse, Nonhuman, Palbociclib, Protein, Protein expression, Rb, Resistance, Rna polymerase ii, Rna sequence, Selective-inhibition, Senescence, Short tandem repeat, Signal transduction, Tamoxifen, Transcription elongation, Transcription factor, Transcription factor ap 1, Transcriptome, Tumor biopsy, Tumor differentiation, Tumor spheroid, Tumor xenograft, Vinculin, Whole exome sequencing


Malandrino, Andrea, Pozo, Jose Maria, Castro-Mateos, Isaac, Frangi, Alejandro F., van Rijsbergen, Marc M., Ito, Keita, Wilke, Hans-Joachim, Dao, Tien Tuan, Ho Ba Tho, Marie-Christine, Noailly, Jerome, (2015). On the relative relevance of subject-specific geometries and degeneration-specific mechanical properties for the study of cell death in human intervertebral disc models Frontiers in Bioengineering and Biotechnology 3, (Article 5), 1-15

Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration.

JTD Keywords: Intervertebral Disc Degeneration, Finite element modelling, Lumbar spine, Poroelasticity, Damage model, Subject-specific modelling, Disc cell nutrition


Fernandez, L., Marco, S., Gutierrez-Galvez, A., (2015). Robustness to sensor damage of a highly redundant gas sensor array Sensors and Actuators B: Chemical 218, 296-302

Abstract In this paper we study the role of redundant sensory information to prevent the performance degradation of a chemical sensor array for different distributions of sensor failures across sensor types. The large amount of sensing conditions with two different types of redundancy provided by our sensor array makes possible a comprehensive experimental study. Particularly, our sensor array is composed of 8 different types of commercial MOX sensors modulated in temperature with two redundancy levels: (1) 12 replicates of each sensor type for a total of 96 sensors and (2) measurements using 16 load resistors per sensors for a total of 1536 redundant measures per second. We perform two experiments to determine the performance degradation of the array with increasing number of damaged sensors in two different scenarios of sensor faults distributions across sensor types. In the first experiment, we characterize the diversity and redundancy of the array for increasing number of damaged sensors. To measure diversity and redundancy, we proposed a functional definition based on clustering of sensor features. The second experiment is devoted to determine the performance degradation of the array for the effect of faulty sensors. To this end, the system is trained to separate ethanol, acetone and butanone at different concentrations using a PCA–LDA model. Test set samples are corrupted by means of three different simulated types of faults. To evaluate the performance of the array we used the Fisher score as a measure of odour separability. Our results show that to exploit to the utmost the redundancy of the sensor array faulty sensory units have to be distributed uniformly across the different sensor types.

JTD Keywords: Gas sensor arrays, Sensor redundancy, Sensor diversity, Sensor faults aging, Sensor damage, MOX sensors, Large sensor arrays


Gumí-Audenis, B., Carlà, F., Vitorino, M. V., Panzarella, A., Porcar, L., Boilot, M., Guerber, S., Bernard, P., Rodrigues, M. S., Sanz, F., Giannotti, M. I., Costa, L., (2015). Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions Journal of Synchrotron Radiation , 22, 1364-1371

A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.

JTD Keywords: In situ atomic force microscopy, Grazing-incidence scattering and reflectivity, Radiation damage, Model lipid membranes


del Rio, Jose Antonio, Soriano, Eduardo, (2010). Regenerating cortical connections in a dish: the entorhino-hippocampal organotypic slice co-culture as tool for pharmacological screening of molecules promoting axon regeneration Nature Protocols 5, (2), 217-226

We present a method for using long-term organotypic slice co-cultures of the entorhino-hippocampal formation to analyze the axon-regenerative properties of a determined compound. The culture method is based on the membrane interphase method, which is easy to perform and is generally reproducible. The degree of axonal regeneration after treatment in lesioned cultures can be seen directly using green fluorescent protein (GFP) transgenic mice or by axon tracing and histological methods. Possible changes in cell morphology after pharmacological treatment can be determined easily by focal in vitro electroporation. The well-preserved cytoarchitectonics in the co-culture facilitate the analysis of identified cells or regenerating axons. The protocol takes up to a month.

JTD Keywords: Cajal-retzius cells, Green-fluorescent-protein, In-vitro model, Rat hippocampus, Nervous-tissue, Brain-slices, Dentate gyrus, Gene-transfer, Cultures, Damage


Correa, R., Laciar, E., Arini, P., Jané, R., (2010). Analysis of QRS loop in the Vectorcardiogram of patients with Chagas' disease Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2561-2564

In the present work, we have studied the QRS loop in the Vectorcardiogram (VCG) of 95 chronic chagasic patients classified in different groups (I, II and III) according to their degree of myocardial damage. For comparison, the VCGs of 11 healthy subjects used as control group (Group O) were also examined. The QRS loop was obtained for each patient from the XYZ orthogonal leads of their High-Resolution Electrocardiogram (HRECG) records. In order to analyze the variations of QRS loop in each detected beat, it has been proposed in this study the following vectorcardiographic parameters a) Maximum magnitude of the cardiac depolarization vector, b) Volume, c) Area of QRS loop, d) Ratio between the Area and Perimeter, e) Ratio between the major and minor axes of the QRS loop and f) QRS loop Energy. It has been found that one or more indexes exhibited statistical differences (p<0.05) between groups 0-II, O-III, I-II, I-III and II-III. We concluded that the proposed method could be use as complementary diagnosis technique to evaluate the degree of myocardial damage in chronic chagasic patients.

JTD Keywords: Practical, Experimental/ bioelectric phenomena, Diseases, Electrocardiography, Medical signal, Processing/ QRS loop, Vectorcardiogram, Cardiac depolarization vector, Myocardial damage, Chagas disease, Complementary diagnosis technique, High-resolution electrocardiogram


Lacroix, D., (2009). Biomechanical aspects of bone repair Bone repair biomaterials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK)

A fundamental aspect of the rapidly expanding medical care sector, bone repair continues to benefit from emerging technological developments. This text provides researchers and students with a comprehensive review of the materials science and engineering principles behind these developments. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used in bone repair, including both metals and biocomposites. Final chapters analyze device considerations such as implant lifetime and failure, and discuss potential applications, as well as the ethical issues that continually confront researchers and clinicians.

JTD Keywords: Bone composition and structure, Biomechanical properties of bone, Bone damage and repair