by Keyword: Cadherin

Beedle, AEM, Garcia-Manyes, S, (2022). The role of single-protein elasticity in mechanobiology Nature Reviews Materials

Mechanical force modulates the conformation and function of individual proteins, and this underpins many mechanically driven cellular processes. This Review addresses single-molecule force spectroscopy experiments conducted on proteins with a known role in mechanosensing and mechanotransduction in eukaryotic cells.; In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. However, the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are not well understood in comparison. With the advent, development and refining of single-molecule nanomechanical techniques that enable the conformational dynamics of individual proteins under the effect of a calibrated force to be probed, we have begun to acquire a comprehensive knowledge of the diverse physicochemical principles that regulate the elasticity of single proteins. Here, we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of this prolific and burgeoning field.

JTD Keywords: Cadherin adhesion, Energy landscape, Extracellular-matrix protein, Focal adhesion kinase, Mechanical stability, Molecule force spectroscopy, Muscle protein, N2b element, Stranded-dna, Structural basis

Donker L, Houtekamer R, Vliem M, Sipieter F, Canever H, Gómez-González M, Bosch-Padrós M, Pannekoek WJ, Trepat X, Borghi N, Gloerich M, (2022). A mechanical G2 checkpoint controls epithelial cell division through E-cadherin-mediated regulation of Wee1-Cdk1 Cell Reports 41, 111475

Epithelial cell divisions are coordinated with cell loss to preserve epithelial integrity. However, how epithelia adapt their rate of cell division to changes in cell number, for instance during homeostatic turnover or wounding, is not well understood. Here, we show that epithelial cells sense local cell density through mechanosensitive E-cadherin adhesions to control G2/M cell-cycle progression. As local cell density increases, tensile forces on E-cadherin adhesions are reduced, which prompts the accumulation of the G2 checkpoint kinase Wee1 and downstream inhibitory phosphorylation of Cdk1. Consequently, dense epithelia contain a pool of cells that are temporarily halted in G2 phase. These cells are readily triggered to divide following epithelial wounding due to the consequent increase in intercellular forces and resulting degradation of Wee1. Our data collectively show that epithelial cell division is controlled by a mechanical G2 checkpoint, which is regulated by cell-density-dependent intercellular forces sensed and transduced by E-cadherin adhesions.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

JTD Keywords: Adherens junction, Cell cycle, Cell division, Cp: cell biology, E-cadherin, Epithelial homeostasis, G2 checkpoint, Mechanical forces, Mechanotransduction, Mitosis, Proliferation

Zambarda C, Pérez González C, Schoenit A, Veits N, Schimmer C, Jung R, Ollech D, Christian J, Roca-Cusachs P, Trepat X, Cavalcanti-Adam EA, (2022). Epithelial cell cluster size affects force distribution in response to EGF-induced collective contractility European Journal Of Cell Biology 101, 151274

Several factors present in the extracellular environment regulate epithelial cell adhesion and dynamics. Among them, growth factors such as EGF, upon binding to their receptors at the cell surface, get internalized and directly activate the acto-myosin machinery. In this study we present the effects of EGF on the contractility of epithelial cancer cell colonies in confined geometry of different sizes. We show that the extent to which EGF triggers contractility scales with the cluster size and thus the number of cells. Moreover, the collective contractility results in a radial distribution of traction forces, which are dependent on integrin β1 peripheral adhesions and transmitted to neighboring cells through adherens junctions. Taken together, EGF-induced contractility acts on the mechanical crosstalk and linkage between the cell-cell and cell-matrix compartments, regulating collective responses.Copyright © 2022 The Authors. Published by Elsevier GmbH.. All rights reserved.

JTD Keywords: actin, activation, actomyosin, adherens junctions, adhesion, e-cadherin, egf, maturation, mechanical regulation, micropatterning, migration, traction forces, transduction, transmission, Actomyosin, Adherens junctions, Collective contractility, Egf, Epidermal-growth-factor, Micropatterning, Traction forces

Kaurin, D, Bal, PK, Arroyo, M, (2022). Peeling dynamics of fluid membranes bridged by molecular bonds: moving or breaking Journal Of The Royal Society Interface 19, 20220183

Biological adhesion is a critical mechanical function of complex organisms. At the scale of cell-cell contacts, adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. It is physically supported by transient and laterally mobile molecular bonds embedded in fluid membranes. Thus, unlike specific adhesion at solid-solid or solid-fluid interfaces, peeling at fluid-fluid interfaces can proceed by breaking bonds, by moving bonds or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling diffusion, reactions and mechanics. Mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective fracture energy. In a reaction-dominated regime, peeling proceeds by travelling fronts where marginal diffusion and unbinding control peeling speed. In a mixed reaction-diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.

JTD Keywords: Adhesive contact, Cadherins, Cell-cell adhesion, Detachment, Detailed mechanics, Diffusion, Growth, Kinetics, Peeling, Red-blood-cells, Repulsion, Separation, Vesicle adhesion

Nyga, Agata, Muñoz, Jose J., Dercksen, Suze, Fornabaio, Giulia, Uroz, Marina, Trepat, Xavier, Baum, Buzz, Matthews, Helen K., Conte, Vito, (2021). Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics Science Advances 7, eabg6467

Sehgal, Poonam, Kong, Xinyu, Wu, Jun, Sunyer, Raimon, Trepat, Xavier, Leckband, Deborah, (2018). Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions Journal of Cell Science 131, (6), jcs206656

This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes – a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper.

JTD Keywords: Cadherin, Epidermal growth factor receptor, Force transduction, Magnetic twisting cytometry, Vinculin, Integrin

Krishnan, Ramaswamy, Klumpers, Darinka D., Park, Chan Y., Rajendran, Kavitha, Trepat, Xavier, van Bezu, Jan, van Hinsbergh, Victor W. M., Carman, Christopher V., Brain, Joseph D., Fredberg, Jeffrey J., Butler, James P., van Nieuw Amerongen, Geerten P., (2011). Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces American Journal of Physiology - Cell Physiology , 300, (1), C146-C154

A hallmark of many, sometimes life-threatening, inflammatory diseases and disorders is vascular leakage. The extent and severity of vascular leakage is broadly mediated by the integrity of the endothelial cell (EC) monolayer, which is in turn governed by three major interactions: cell-cell and cell-substrate contacts, soluble mediators, and biomechanical forces. A potentially critical but essentially uninvestigated component mediating these interactions is the stiffness of the substrate to which the endothelial monolayer is adherent. Accordingly, we investigated the extent to which substrate stiffening influences endothelial monolayer disruption and the role of cell-cell and cell-substrate contacts, soluble mediators, and physical forces in that process. Traction force microscopy showed that forces between cell and cell and between cell and substrate were greater on stiffer substrates. On stiffer substrates, these forces were substantially enhanced by a hyperpermeability stimulus (thrombin, 1 U/ml), and gaps formed between cells. On softer substrates, by contrast, these forces were increased far less by thrombin, and gaps did not form between cells. This stiffness-dependent force enhancement was associated with increased Rho kinase activity, whereas inhibition of Rho kinase attenuated baseline forces and lessened thrombin-induced inter-EC gap formation. Our findings demonstrate a central role of physical forces in EC gap formation and highlight a novel physiological mechanism. Integrity of the endothelial monolayer is governed by its physical microenvironment, which in normal circumstances is compliant but during pathology becomes stiffer.

JTD Keywords: Contraction, Human umbilical vein endothelial cells, Permeability, Traction force, Cell-cell contact, Cell-substrate contact, Substrate stiffness, Rho kinase, Vascular endothelial cadherin, Thrombin