DONATE

Publications

by Keyword: Mesenchymal stem cells

Ulldemolins A, Jurado A, Herranz-Diez C, Gavara N, Otero J, Farré R, Almendros I, (2022). Lung Extracellular Matrix Hydrogels-Derived Vesicles Contribute to Epithelial Lung Repair Polymers 14, 4907

The use of physiomimetic decellularized extracellular matrix-derived hydrogels is attracting interest since they can modulate the therapeutic capacity of numerous cell types, including mesenchymal stromal cells (MSCs). Remarkably, extracellular vesicles (EVs) derived from MSCs display similar functions as their parental cells, mitigating tissue damage in lung diseases. However, recent data have shown that ECM-derived hydrogels could release other resident vesicles similar to EVs. Here, we aim to better understand the contribution of EVs and ECM-vesicles released from MSCs and/or lung-derived hydrogel (L-HG) in lung repair by using an in vitro lung injury model. L-HG derived-vesicles and MSCs EVs cultured either in L-HG or conventional plates were isolated and characterized. The therapeutic capacity of vesicles obtained from each experimental condition was tested by using an alveolar epithelial wound-healing assay. The number of ECM-vesicles released from acellular L-HG was 10-fold greater than EVs from conventional MSCs cell culture revealing that L-HG is an important source of bioactive vesicles. MSCs-derived EVs and L-HG vesicles have similar therapeutic capacity in lung repair. However, when wound closure rate was normalized by total proteins, the MSCs-derived EVs shows higher therapeutic potential to those released by L-HG. The EVs released from L-HG must be considered when HG is used as substrate for cell culture and EVs isolation.

JTD Keywords: cell, extracellular vesicles, hydrogel, lung epithelial cells, lung repair, mesenchymal stem cells, Extracellular matrix, Extracellular vesicles, Hydrogel, Lung epithelial cells, Lung repair, Mesenchymal stem cells, Respiratory-distress-syndrome


Casanellas, I, Lagunas, A, Vida, Y, Perez-Inestrosa, E, Rodriguez-Pereira, C, Magalhaes, J, Andrades, JA, Becerra, J, Samitier, J, (2022). Nanoscale ligand density modulates gap junction intercellular communication of cell condensates during chondrogenesis Nanomedicine 17, 775-791

Aim: To unveil the influence of cell-matrix adhesions in the establishment of gap junction intercellular communication (GJIC) during cell condensation in chondrogenesis. Materials & methods: Previously developed nanopatterns of the cell adhesive ligand arginine-glycine-aspartic acid were used as cell culture substrates to control cell adhesion at the nanoscale. In vitro chondrogenesis of mesenchymal stem cells was conducted on the nanopatterns. Cohesion and GJIC were evaluated in cell condensates. Results: Mechanical stability and GJIC are enhanced by a nanopattern configuration in which 90% of the surface area presents adhesion sites separated less than 70 nm, thus providing an onset for cell signaling. Conclusion: Cell-matrix adhesions regulate GJIC of mesenchymal cell condensates during in vitro chondrogenesis from a threshold configuration at the nanoscale.

JTD Keywords: Actin, Adhesion, Arginine-glycine-aspartic acid, Cell adhesion, Collagen, Condensation, Connexin-43, Dendrimer-based nanopatterning, Dynamics, Extracellular-matrix, Fibronectin, Gap junction intercellular communication, Mesenchymal stem cells, Permeability, Phenotype, Vinculin


Rubí-Sans G, Nyga A, Rebollo E, Pérez-Amodio S, Otero J, Navajas D, Mateos-Timoneda MA, Engel E, (2021). Development of Cell-Derived Matrices for Three-Dimensional in Vitro Cancer Cell Models Acs Applied Materials & Interfaces 13, 44108-44123

Most morphogenetic and pathological processes are driven by cells responding to the surrounding matrix, such as its composition, architecture, and mechanical properties. Despite increasing evidence for the role of extracellular matrix (ECM) in tissue and disease development, many in vitro substitutes still fail to effectively mimic the native microenvironment. We established a novel method to produce macroscale (>1 cm) mesenchymal cell-derived matrices (CDMs) aimed to mimic the fibrotic tumor microenvironment surrounding epithelial cancer cells. CDMs are produced by human adipose mesenchymal stem cells cultured in sacrificial 3D scaffold templates of fibronectin-coated poly-lactic acid microcarriers (MCs) in the presence of macromolecular crowders. We showed that decellularized CDMs closely mimic the fibrillar protein composition, architecture, and mechanical properties of human fibrotic ECM from cancer masses. CDMs had highly reproducible composition made of collagen types I and III and fibronectin ECM with tunable mechanical properties. Moreover, decellularized and MC-free CDMs were successfully repopulated with cancer cells throughout their 3D structure, and following chemotherapeutic treatment, cancer cells showed greater doxorubicin resistance compared to 3D culture in collagen hydrogels. Collectively, these results support the use of CDMs as a reproducible and tunable tool for developing 3D in vitro cancer models.

JTD Keywords: 3d cell-derived matrices, adipose mesenchymal stem cells, collagen matrix, colorectal adenocarcinoma, cytotoxicity assay, deposition, expansion, extracellular microenvironment, extracellular-matrix, fibronectin, growth, macromolecular crowders, microcarriers, scaffolds, tissue, 3d cell-derived matrices, Adipose mesenchymal stem cells, Cytotoxicity assay, Extracellular microenvironment, Macromolecular crowders, Mesenchymal stem-cells, Microcarriers


Rubi-Sans, G, Cano-Torres, I, Perez-Amodio, S, Blanco-Fernandez, B, Mateos-Timoneda, MA, Engel, E, (2021). Development and Angiogenic Potential of Cell-Derived Microtissues Using Microcarrier-Template Biomedicines 9,

Tissue engineering and regenerative medicine approaches use biomaterials in combination with cells to regenerate lost functions of tissues and organs to prevent organ transplantation. However, most of the current strategies fail in mimicking the tissue's extracellular matrix properties. In order to mimic native tissue conditions, we developed cell-derived matrix (CDM) microtissues (MT). Our methodology uses poly-lactic acid (PLA) and Cultispher(R) S microcarriers' (MCs') as scaffold templates, which are seeded with rat bone marrow mesenchymal stem cells (rBM-MSCs). The scaffold template allows cells to generate an extracellular matrix, which is then extracted for downstream use. The newly formed CDM provides cells with a complex physical (MT architecture) and biochemical (deposited ECM proteins) environment, also showing spontaneous angiogenic potential. Our results suggest that MTs generated from the combination of these two MCs (mixed MTs) are excellent candidates for tissue vascularization. Overall, this study provides a methodology for in-house fabrication of microtissues with angiogenic potential for downstream use in various tissue regenerative strategies.

JTD Keywords: angiogenesis, cell-derived matrix, cultispher® s, microtissue, poly-lactic acid microcarriers, Angiogenesis, Cell-derived matrix, Cultispher (r) s, Microtissue, Poly-lactic acid microcarriers, Rat bone marrow mesenchymal stem cells


Blanco-Fernandez B, Cano-Torres I, Garrido C, Rubi-Sans G, Sanchez-Cid L, Guerra-Rebollo M, Rubio N, Blanco J, Perez-Amodio S, Mateos-Timoneda MA, Engel E, (2021). Engineered microtissues for the bystander therapy against cancer Materials Science & Engineering C-Materials For Biological Applications 121,

© 2021 Elsevier B.V. Thymidine kinase expressing human adipose mesenchymal stem cells (TK-hAMSCs) in combination with ganciclovir (GCV) are an effective platform for antitumor bystander therapy in mice models. However, this strategy requires multiple TK-hAMSCs administrations and a substantial number of cells. Therefore, for clinical translation, it is necessary to find a biocompatible scaffold providing TK-hAMSCs retention in the implantation site against their rapid wash-out. We have developed a microtissue (MT) composed by TKhAMSCs and a scaffold made of polylactic acid microparticles and cell-derived extracellular matrix deposited by hAMSCs. The efficacy of these MTs as vehicles for TK-hAMSCs/GCV bystander therapy was evaluated in a rodent model of human prostate cancer. Subcutaneously implanted MTs were integrated in the surrounding tissue, allowing neovascularization and maintenance of TK-hAMSCs viability. Furthermore, MTs implanted beside tumors allowed TK-hAMSCs migration towards tumor cells and, after GCV administration, inhibited tumor growth. These results indicate that TK-hAMSCs-MTs are promising cell reservoirs for clinical use of therapeutic MSCs in bystander therapies.

JTD Keywords: adipose mesenchymal stem cells, bioluminescence, bystander therapy, cancer, Adipose mesenchymal stem cells, Bioluminescence, Bystander therapy, Cancer, Self-assembled cell-based microtissues


Khurana, K., Guillem-Marti, J., Soldera, F., Mücklich, F., Canal, C., Ginebra, M. P., (2020). Injectable calcium phosphate foams for the delivery of Pitavastatin as osteogenic and angiogenic agent Journal of Biomedical Materials Research - Part B Applied Biomaterials 108, (3), 760-770

Apatitic bone cements have been used as a clinical bone substitutes and drug delivery vehicles for therapeutic agents in orthopedic applications. This has led to their combination with different drugs with known ability to foster bone formation. Recent studies have evaluated Simvastatin for its role in enhanced bone regeneration, but its lipophilicity hampers incorporation and release to and from the bone graft. In this study, injectable calcium phosphate foams (i-CPF) based on α-tricalcium phosphate were loaded for the first time with Pitavastatin. The stability of the drug in different conditions relevant to this study, the effect of the drug on the i-CPFs properties, the release profile, and the in vitro biological performance with regard to mineralization and vascularization were investigated. Pitavastatin did not cause any changes in neither the micro nor the macro structure of the i-CPFs, which retained their biomimetic features. PITA-loaded i-CPFs showed a dose-dependent drug release, with early stage release kinetics clearly affected by the evolving microstructure due to the setting of cement. in vitro studies showed dose-dependent enhancement of mineralization and vascularization. Our findings contribute towards the design of controlled release with low drug dosing bone grafts: i-CPFs loaded with PITA as osteogenic and angiogenic agent.

JTD Keywords: Controlled drug release, Endothelial progenitor cells, Mineralization, Rat mesenchymal stem cells, Vascularization


Casanellas, Ignasi, Lagunas, Anna, Vida, Yolanda, Pérez-Inestrosa, Ezequiel, Andrades, José A., Becerra, José, Samitier, Josep, (2019). Matrix nanopatterning regulates mesenchymal differentiation through focal adhesion size and distribution according to cell fate Biomimetics Biomimetic Nanotechnology for Biomedical Applications (NanoBio&Med 2018) , MDPI (Barcelona, Spain) 4, (2), 43

Extracellular matrix remodeling plays a pivotal role during mesenchyme patterning into different lineages. Tension exerted from cell membrane receptors bound to extracellular matrix ligands is transmitted by the cytoskeleton to the cell nucleus inducing gene expression. Here, we used dendrimer-based arginine–glycine–aspartic acid (RGD) uneven nanopatterns, which allow the control of local surface adhesiveness at the nanoscale, to unveil the adhesive requirements of mesenchymal tenogenic and osteogenic commitments. Cell response was found to depend on the tension resulting from cell–substrate interactions, which affects nuclear morphology and is regulated by focal adhesion size and distribution.

JTD Keywords: Arginine–glycine–aspartic acid (RGD), Nanopattern, Mesenchymal stem cells, Tenogenesis, Osteogenesis, Cell nuclei, Focal adhesions


Sadowska, Joanna Maria, Guillem-Marti, Jordi, Espanol, Montserrat, Stähli, Christoph, Döbelin, Nicola, Ginebra, Maria-Pau, (2018). In vitro response of mesenchymal stem cells to biomimetic hydroxyapatite substrates: A new strategy to assess the effect of ion exchange Acta Biomaterialia 76, 319-332

Biomaterials can interact with cells directly, that is, by direct contact of the cells with the material surface, or indirectly, through soluble species that can be released to or uptaken from the surrounding fluids. However, it is difficult to characterise the relevance of this fluid-mediated interaction separately from the topography and composition of the substrate, because they are coupled variables. These fluid-mediated interactions are amplified in the case of highly reactive calcium phosphates (CaPs) such as biomimetic calcium deficient hydroxyapatite (CDHA), particularly in static in vitro cultures. The present work proposes a strategy to decouple the effect of ion exchange from topographical features by adjusting the volume ratio between the cell culture medium and biomaterial (VCM/VB). Increasing this ratio allowed mitigating the drastic ionic exchanges associated to the compositional changes experienced by the material exposed to the cell culture medium. This strategy was validated using rat mesenchymal stem cells (rMSCs) cultured on CDHA and beta-tricalcium phosphate (β-TCP) discs using different VCM/VB ratios. Whereas in the case of β-TCP the cell response was not affected by this ratio, a significant effect on cell adhesion and proliferation was found for the more reactive CDHA. The ionic exchange, produced by CDHA at low VCM/VB, altered cell adhesion due to the reduced number of focal adhesions, caused cell shrinkage and further rMCSs apoptosis. This was mitigated when using a high VCM/VB, which attenuated the changes of calcium and phosphate concentrations in the cell culture medium, resulting in rMSCs spreading and a viability over time. Moreover, rMSCs showed an earlier expression of osteogenic genes on CDHA compared to sintered β-TCP when extracellular calcium fluctuations were reduced. Statement of Significance: Fluid mediated interactions play a significant role in the bioactivity of calcium phosphates. Ionic exchange is amplified in the case of biomimetic hydroxyapatite, which makes the in vitro characterisation of cell-material interactions especially challenging. The present work proposes a novel and simple strategy to explore the mechanisms of interaction of biomimetic and sintered calcium phosphates with mesenchymal stem cells. The effects of topography and ion exchange are analysed separately by modifying the volume ratio between cell culture medium and biomaterial. High ionic fluctuations interfered in the maturation of focal adhesions, hampering cell adhesion and leading to increased apoptosis and reduced proliferation rate.

JTD Keywords: Calcium phosphates, Mesenchymal stem cells, Intracellular calcium, Cell adhesion


Casanellas, Ignasi, Lagunas, Anna, Tsintzou, Iro, Vida, Yolanda, Collado, Daniel, Pérez-Inestrosa, Ezequiel, Rodríguez-Pereira, Cristina, Magalhaes, Joana, Gorostiza, Pau, Andrades, José A., Becerra, José, Samitier, Josep, (2018). Dendrimer-based uneven nanopatterns to locally control surface adhesiveness: A method to direct chondrogenic differentiation Journal of Visualized Experiments Bioengineering, (131), e56347

Cellular adhesion and differentiation is conditioned by the nanoscale disposition of the extracellular matrix (ECM) components, with local concentrations having a major effect. Here we present a method to obtain large-scale uneven nanopatterns of arginine-glycine-aspartic acid (RGD)-functionalized dendrimers that permit the nanoscale control of local RGD surface density. Nanopatterns are formed by surface adsorption of dendrimers from solutions at different initial concentrations and are characterized by water contact angle (CA), X-ray photoelectron spectroscopy (XPS), and scanning probe microscopy techniques such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The local surface density of RGD is measured using AFM images by means of probability contour maps of minimum interparticle distances and then correlated with cell adhesion response and differentiation. The nanopatterning method presented here is a simple procedure that can be scaled up in a straightforward manner to large surface areas. It is thus fully compatible with cell culture protocols and can be applied to other ligands that exert concentration-dependent effects on cells.

JTD Keywords: Bioengineering, Dendrimer, Nanopattern, Arginine-Glycine-Aspartic Acid (RGD), Atomic Force Microscopy (AFM), Cell Adhesion, Mesenchymal Stem Cells (Mscs), Chondrogenesis


Bianchi, M. V., Awaja, F., Altankov, G., (2017). Dynamic adhesive environment alters the differentiation potential of young and ageing mesenchymal stem cells Materials Science and Engineering: C 78, 467-474

Engineering dynamic stem cell niche-like environment offers opportunity to obtain better control of the fate of stem cells. We identified, for the first time, that periodic changes in the adhesive environment of human adipose derived mesenchymal stem cells (ADSCs) alters dramatically their asymmetric division but not their ability for symmetric renewal. Hereby, we used smart thermo-responsive polymer (PNIPAM) to create a dynamic adhesive environment for ADSCs by applying periodic temperature cycles to perturb adsorbed adhesive proteins to substratum interaction. Cumulative population doubling time (CPDT) curves showed insignificant decline in the symmetric cell growth studied for up to 13th passages accompanied with small changes in the overall cell morphology and moderately declined fibronectin (FN) matrix deposition probably as a functional consequence of ADSCs ageing. However, a substantial alteration in the differentiation potential of ADSCs from both early and late passages (3rd and 14th, respectively) was found when the cells were switched to osteogenic differentiation conditions. This behavior was evidenced by the significantly altered alkaline phosphatase activity and Ca deposition (Alizarin red) assayed at 3, 14 and 21 day in comparison to the control samples of regular TC polystyrene processed under same temperature settings.

JTD Keywords: Cell ageing, Dynamic adhesive environment, Extracellular matrix, Mesenchymal stem cells, PNIPAM, Stem cell niche, Symmetric and asymmetric cell growth, Thermo-cycling, Thermo-responsive polymer


Gugutkov, D., Awaja, F., Belemezova, K., Keremidarska, M., Krasteva, N., Kuyrkchiev, S., GallegoFerrer, G., Seker, S., Elcin, A. E., Elcin, Y. M., Altankov, G., (2017). Osteogenic differentiation of mesenchymal stem cells using hybrid nanofibers with different configurations and dimensionality Journal of Biomedical Materials Research - Part A , 105, (7), 2065-2074

Novel hybrid, fibrinogen/polylactic acid (FBG/PLA) nanofibers with different configuration (random vs. aligned) and dimensionality (2D vs.3D environment) were used to control the overall behaviour and the osteogenic differentiation of human Adipose Derived Mesenchymal Stem Cells (ADMSCs). Aligned nanofibers in both the 2D and 3D configurations are proved to be favoured for osteo-differentiation. Morphologically we found that on randomly configured nanofibers, the cells developed a stellate-like morphology with multiple projections, however, time-lapse analysis showed significantly diminished cell movements. Conversely, an elongated cell shape with advanced cell spreading and extended actin cytoskeleton accompanied with significantly increased cell mobility were observed when cells attached on aligned nanofibers. Moreover, a clear tendency for higher alkaline phosphatase activity was also found on aligned fibres when ADMSCs were switched to osteogenic induction medium. The strongest accumulation of Alizarin red (AR) and von Kossa stain at 21 day of culture in osteogenic medium were found on 3D aligned constructs while the rest showed lower and rather undistinguishable activity. Quantitative reverse transcription-polymerase chain reaction analysis for Osteopontin (OSP) and RUNX 2 generally confirmed this trend showing favourable expression of osteogenic genes activity in 3D environment particularly in aligned configuration.

JTD Keywords: Mesenchymal stem cells, Nanofibers, Osteogenic, Fibrinogen, Cell movements


Zhao, M., Altankov, G., Grabiec, U., Bennett, M., Salmeron-Sanchez, M., Dehghani, F., Groth, T., (2016). Molecular composition of GAG-collagen I multilayers affects remodeling of terminal layers and osteogenic differentiation of adipose-derived stem cells Acta Biomaterialia 41, 86-99

The effect of molecular composition of multilayers, by pairing type I collagen (Col I) with either hyaluronic acid (HA) or chondroitin sulfate (CS) was studied regarding the osteogenic differentiation of adhering human adipose-derived stem cells (hADSCs). Polyelectrolyte multilayer (PEM) formation was based primarily on ion pairing and on additional intrinsic cross-linking through imine bond formation with Col I replacing native by oxidized HA (oHA) or CS (oCS). Significant amounts of Col I fibrils were found on both native and oxidized CS-based PEMs, resulting in higher water contact angles and surface potential under physiological condition, while much less organized Col I was detected in either HA-based multilayers, which were more hydrophilic and negatively charged. An important finding was that hADSCs remodeled Col I at the terminal layers of PEMs by mechanical reorganization and pericellular proteolytic degradation, being more pronounced on CS-based PEMs. This was in accordance with the higher quantity of Col I deposition in this system, accompanied by more cell spreading, focal adhesions (FA) formation and significant α2β1 integrin recruitment compared to HA-based PEMs. Both CS-based PEMs caused also an increased fibronectin (FN) secretion and cell growth. Furthermore, significant calcium phosphate deposition, enhanced ALP, Col I and Runx2 expression were observed in hADSCs on CS-based PEMs, particularly on oCS-containing one. Overall, multilayer composition can be used to direct cell-matrix interactions, and hence stem cell fates showing for the first time that PEMs made of biogenic polyelectrolytes undergo significant remodeling of terminal protein layers, which seems to enable cells to form a more adequate extracellular matrix-like environment. Statement of Significance: Natural polymer derived polyelectrolyte multilayers (PEMs) have been recently applied to adjust biomaterials to meet specific tissue demands. However, the effect of molecular composition of multilayers on both surface properties and cellular response, especially the fate of human adipose derived stem cells (hADSCs) upon osteogenic differentiation has not been studied extensively, yet. In addition, no studies exist that investigate a potential cell-dependent remodeling of PEMs made of extracellular matrix (ECM) components like collagens and glycosaminoglycans (GAGs). Furthermore, there is no knowledge whether the ability of cells to remodel PEM components may provide an added value regarding cell growth and differentiation. Finally, it has not been explored yet, how intrinsic cross-linking of ECM derived polyelectrolytes that improve the stability of PEMs will affect the differentiation potential of hADSCs. The current work aims to address these questions and found that the type of GAG has a strong effect on properties of multilayers and osteogenic differentiation of hADSCs. Additionally, we also show for the first time that PEMs made of biogenic polyelectrolytes undergo significant remodeling of terminal layers as completely new finding, which allows cells to form an ECM-like environment supporting differentiation upon osteogenic lineage. The finding of this work may open new avenues of application of PEM systems made by layer by layer (LbL) technique in tissue engineering and regenerative medicine.

JTD Keywords: Collagen reorganization, Glycosaminoglycans, Layer-by-layer technique, Mesenchymal stem cells, Osteogenic differentiation


Forget, J., Awaja, F., Gugutkov, D., Gustavsson, J., Gallego Ferrer, G., Coelho-Sampaio, T., Hochman-Mendez, C., Salmeron-Sánchez, M., Altankov, G., (2016). Differentiation of human mesenchymal stem cells toward quality cartilage using fibrinogen-based nanofibers Macromolecular Bioscience 16, (9), 1348-1359

Mimicking the complex intricacies of the extra cellular matrix including 3D configurations and aligned fibrous structures were traditionally perused for producing cartilage tissue from stem cells. This study shows that human adipose derived mesenchymal stem cells (hADMSCs) establishes significant chondrogenic differentiation and may generate quality cartilage when cultured on 2D and randomly oriented fibrinogen/poly-lactic acid nanofibers compared to 3D sandwich-like environments. The adhering cells show well-developed focal adhesion complexes and actin cytoskeleton arrangements confirming the proper cellular interaction with either random or aligned nanofibers. However, quantitative reverse transcription-polymerase chain reaction analysis for Collagen 2 and Collagen 10 genes expression confirms favorable chondrogenic response of hADMSCs on random nanofibers and shows substantially higher efficacy of their differentiation in 2D configuration versus 3D constructs. These findings introduce a new direction for cartilage tissue engineering through providing a simple platform for the routine generation of transplantable stem cells derived articular cartilage replacement that might improve joint function.

JTD Keywords: Cartilage, Chondrogenic response, Collagen, FBG/PLA nanofibers, Mesenchymal stem cells


Mendes, A. C., Smith, K. H., Tejeda-Montes, E., Engel, E., Reis, R. L., Azevedo, H. S., Mata, Alvaro, (2013). Co-assembled and microfabricated bioactive membranes Advanced Functional Materials 23, (4), 430-438

The fabrication of hierarchical and bioactive self-supporting membranes, which integrate physical and biomolecular elements, using a single-step process that combines molecular self-assembly with soft lithography is reported. A positively charged multidomain peptide (with or without the cell-adhesive sequence arginine-glycine-aspartic acid-serine (RGDS)) self-assembles with hyaluronic acid (HA), an anionic biopolymer. Optimization of the assembling conditions enables the realization of membranes with well-controlled and easily tunable features at multiple size scales including peptide sequence, building-block co-assembly, membrane thickness, bioactive epitope availability, and topographical pattern morphology. Membrane structure, morphology, and bioactivity are investigated according to temperature, assembly time, and variations in the experimental setup. Furthermore, to evaluate the physical and biomolecular signaling of the self-assembled microfabricated membranes, rat mesenchymal stem cells are cultured on membranes exhibiting various densities of RGDS and different topographical patterns. Cell adhesion, spreading, and morphology are significantly affected by the surface topographical patterns and the different concentrations of RGDS. The versatility of the combined bottom-up and top-down fabrication processes described may permit the development of hierarchical macrostructures with precise biomolecular and physical properties and the opportunity to fine tune them with spatiotemporal control.

JTD Keywords: Membrane scaffolds, Mesenchymal stem cells, Microfabrication, Self-assembly, Topography


Almendros, Isaac, Carreras, Alba, Montserrat, Josep M., Gozal, David, Navajas, Daniel, Farre, Ramon, (2012). Potential role of adult stem cells in obstructive sleep apnea Frontiers in Neurology 3, 1-6

Adult stem cells are undifferentiated cells that can be mobilized from the bone marrow or other organs, home into injured tissues and differentiate into different cell phenotypes to serve in a repairing capacity. Furthermore, these cells can respond to inflammation and oxidative stress by exhibiting immunomodulatory properties. The protective and reparative roles of mesenchymal stem cells (MSCs), very small embryonic-like stem cells (VSELs) and endothelial progenitor cells (EPCs) have primarily been examined and characterized in auto-immune and cardiovascular diseases. Obstructive sleep apnea (OSA) is a very prevalent disease (4-5% of adult population and 2-3% of children) characterized by an abnormal increase in upper airway collapsibility. Recurrent airway obstructions elicit arterial oxygen desaturations, increased inspiratory efforts and sleep fragmentation, which have been associated with important long-term neurocognitive, metabolic, and cardiovascular consequences. Since inflammation, oxidative stress and endothelial dysfunction are key factors in the development of the morbid consequences of OSA, bone marrow-derived stem cells could be important modulators of the morbid phenotype by affording a protective role. This mini-review is focused on the recent data available on EPCs, VSELs and MSCs in both animal models and patients with OSA.

JTD Keywords: Mesenchymal Stem Cells, Sleep Apnea, Endothelial progenitor cells, Very Small-like Embryonic Stem Cells, Adult bone-marrow derived stem cells


Navarro, M., Pu, F., Hunt, J. A., (2012). The significance of the host inflammatory response on the therapeutic efficacy of cell therapies utilising human adult stem cells Experimental Cell Research 318, (4), 361-370

Controlling the fate of implanted hMSCs is one of the major drawbacks to be overcome to realize tissue engineering strategies. In particular, the effect of the inflammatory environment on hMSCs behaviour is poorly understood. Studying and mimicking the inflammatory process in vitro is a very complex and challenging task that involves multiple variables. This research addressed the questions using in vitro co-cultures of primary derived hMSCs together with human peripheral blood mononucleated cells (PBMCs); the latter are key agents in the inflammatory process. This work explored the in vitro phenotypic changes of hMSCs in co-culture direct contact with monocytes and lymphocytes isolated from blood using both basal and osteogenic medium. Our findings indicated that hMSCs maintained their undifferentiated phenotype and pluripotency despite the contact with PBMCs. Moreover, hMSCs demonstrated increased proliferation and were able to differentiate specifically down the osteogenic lineage pathway. Providing significant crucial evidence to support the hypothesis that inflammation and host defence mechanisms could be utilised rather than avoided and combated to provide for the successful therapeutic application of stem cell therapies.

JTD Keywords: Co-culture, Inflammation, Mesenchymal stem cells, Monocytes, Osteoblasts


Carreras, A., Almendros, I., Acerbi, I., Montserrat, J. M., Navajas, D., Farre, R., (2009). Obstructive apneas induce early release of mesenchymal stem cells into circulating blood Sleep , 32, (1), 117-119

STUDY OBJECTIVES: To investigate whether noninvasive application of recurrent airway obstructions induces early release of mesenchymal stem cells into the circulating blood in a rat model of obstructive sleep apnea. DESIGN: Prospective controlled animal study. SETTING: University laboratory. PATIENTS OR PARTICIPANTS: Twenty male Sprague-Dawley rats (250-300 g). INTERVENTIONS: A specially designed nasal mask was applied to the anesthetized rats. Ten rats were subjected to a pattern of recurrent obstructive apneas (60 per hour, lasting 15 seconds each) for 5 hours. Ten anesthetized rats were used as controls. MEASUREMENTS AND RESULTS: Mesenchymal stem cells from the blood and bone marrow samples were isolated and cultured to count the total number of colony-forming unit fibroblasts (CFU-F) of adherent cells after 9 days in culture. The number of CFU-F from circulating blood was significantly (P = 0.02) higher in the rats subjected to recurrent obstructive apneas (5.00 +/- 1.16; mean +/- SEM) than in controls (1.70 +/- 0.72). No significant (P = 0.54) differences were observed in CFU-F from bone marrow. CONCLUSIONS: Application of a pattern of airway obstructions similar to those experienced by patients with sleep apnea induced an early mobilization of mesenchymal stem cells into circulating blood.

JTD Keywords: Adipocytes/cytology, Animals, Blood Cell Count, Bone Marrow Cells/ cytology, Cell Adhesion/physiology, Cell Count, Cell Differentiation/physiology, Cell Division/physiology, Disease Models, Animal, Fibroblasts/cytology, Male, Mesenchymal Stem Cells/ cytology, Osteocytes/cytology, Rats, Rats, Sprague-Dawley, Sleep Apnea, Obstructive/ blood, Stem Cells/cytology


Engel, E., Martinez, E., Mills, C. A., Funes, M., Planell, J. A., Samitier, J., (2009). Mesenchymal stem cell differentiation on microstructured poly (methyl methacrylate) substrates Annals of Anatomy-Anatomischer Anzeiger , 191, (1), 136-144

Recent studies on 2D substrates have revealed the importance of surface properties in affecting cell behaviour. In particular, surface topography appears to influence and direct cell migration. The development of new technologies of hot embossing and micro-imprinting has made it possible to study cell interactions with controlled micro features and to determine how these features can affect cell behaviour. Several studies have been carried out on the effect of microstructures on cell adhesion, cell guidance and cell proliferation. However, there is still a lack of knowledge on how these features affect mesenchymal stem cell differentiation. This study was designed to evaluate whether highly controlled microstructures on PMMA could induce rMSC differentiation into an osteogenic lineage. Structured PMMA was seeded with rMSC and cell number; cell morphology and cell differentiation were evaluated. Results confirm that microstructures not only affect cell proliferation and alignment but also have a synergistic effect with osteogenic medium on rMSC differentiation into mature osteoblasts.

JTD Keywords: Mesenchymal stem cells, Osteoblasts, Topography, Microstructures