DONATE

Publications

by Keyword: Substrate

Nauryzgaliyeva, Z, Corredera, IG, Garreta, E, Montserrat, N, (2023). Harnessing mechanobiology for kidney organoid research Frontiers In Cell And Developmental Biology 11, 1273923

Recently, organoids have emerged as revolutionizing tools with the unprecedented potential to recreate organ-specific microanatomy in vitro. Upon their derivation from human pluripotent stem cells (hPSCs), organoids reveal the blueprints of human organogenesis, further allowing the faithful recapitulation of their physiology. Nevertheless, along with the evolution of this field, advanced research exposed the organoids' shortcomings, particularly regarding poor reproducibility rates and overall immatureness. To resolve these challenges, many studies have started to underscore the relevance of mechanical cues as a relevant source to induce and externally control hPSCs differentiation. Indeed, established organoid generation protocols from hPSCs have mainly relyed on the biochemical induction of fundamental signalling pathways present during kidney formation in mammals, whereas mechanical cues have largely been unexplored. This review aims to discuss the pertinence of (bio) physical cues within hPSCs-derived organoid cultures, while deciphering their effect on morphogenesis. Moreover, we will explore state-of-the-art mechanobiology techniques as revolutionizing means for understanding the underlying role of mechanical forces in biological processes in organoid model systems.

JTD Keywords: development, hpscs, mechanobiology, nephrogenesis, Activated ion-channel, Development, Extracellular-matrix viscoelasticity, Forces, Hpscs, Ips cells, Mechanical regulation, Mechanobiology, Nephrogenesis, Nephron progenitors, Organoids, Pluripotent stem-cells, Self-renewal, Substrate mechanics, Tissue


Pereira, I, Lopez-Martinez, MJ, Samitier, J, (2023). Advances in current in vitro models on neurodegenerative diseases Frontiers In Bioengineering And Biotechnology 11, 1260397

Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.

JTD Keywords: 3d in vitro models, bioprinting, ipsc cell culture, microfluidic device, 3d in vitro models, Bioprinting, Blood-brain-barrier, Cerebral organoids, Culture model, Endothelial-cells, Expression profile, Extracellular-matrix, Ipsc cell culture, Microfluidic device, Neurodegenerative diseases, On-a-chip, Pluripotent stem-cells, Shear-stress, Substrate stiffness


Gholami, S, Rezvani, A, Vatanpour, V, Khoshravesh, SH, Llorens, J, Engel, E, Castano, O, Cortina, JL, (2023). Chlorine resistance property improvement of polyamide reverse osmosis membranes through cross-linking degree increment Science Of The Total Environment 889, 164283

Highly permeable polyamide reverse osmosis (RO) membranes are desirable for reducing the energy burden and ensuring future water resources in arid and semiarid regions. One notable drawback of thin film composite (TFC) polyamide RO/NF membranes is the polyamide's sensitivity to degradation by free chlorine, the most used biocide in water purification trains. This investigation demonstrated a significant increase in the crosslinking-degree parameter by the m-phenylenediamine (MPD) chemical structure extending in the thin film nanocomposite (TFN) membrane without adding extra MPD monomers to enhance the chlorine resistance and performance. Membrane modification was carried out according to monomer ratio changes and Nanoparticle embedding into the PA layer approaches. A new class of TFN-RO membranes incorporating novel aromatic amine functionalized (AAF)-MWCNTs embedded into the polyamide (PA) layer was introduced. A purposeful strategy was carried out to use cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) as an intermediate functional group in the AAF-MWCNTs. Thus, amidic nitrogen, connected to benzene rings and carbonyl groups, assembles a structure similar to the standard PA, consisting of MPD and trimesoyl chloride. The resulting AAF-MWCNTs were mixed in the aqueous phase during the interfacial polymerization to increase the susceptible positions to chlorine attack and improve the crosslinking degree in the PA network. The characterization and performance results of the membrane demonstrated an increase in ion selectivity and water flux, impressive stability of salt rejection after chlorine exposure, and improved antifouling performance. This purposeful modification resulted in overthrowing two tradeoffs; i) high crosslink density-water flux and ii) salt rejection-permeability. The modified membrane demonstrated ameliorative chlorine resistance relative to the pristine one, with twice the increase in crosslinking degree, more than four times the enhancement of the oxidation resistance, negligible reduction in the salt rejection (0.83 %), and only 5 L/m2.h flux loss following a rigorous static chlorine exposure of 500 ppm.h under acidic conditions. The excellent performance of new chlorine resistant TNF RO membranes fabricated via AAF-MWCNTs together with the facile membrane manufacturing process offered the possibility of postulating them in the desalination field, which could eventually help the current freshwater supply challenge.Copyright © 2023 Elsevier B.V. All rights reserved.

JTD Keywords: behavior, carbon nanotubes, desalination, interfacial polymerization, naclo resistance, nanocomposite, nanofiltration membrane, performance, polymerization, ro membranemodification, substrate, water, Antifouling, Desalination, Interfacial polymerization, Naclo resistance, Ro membrane modification, Thin-film composite


Pesce, M, Duda, GN, Forte, G, Girao, H, Raya, A, Roca-Cusachs, P, Sluijter, JPG, Tschöpe, C, Van Linthout, S, (2023). Cardiac fibroblasts and mechanosensation in heart development, health and disease Nature Reviews Cardiology 20, 309-324

The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.© 2022. Springer Nature Limited.

JTD Keywords: cardiomyocyte proliferation, cross-linking, extracellular-matrix, focal adhesions, gene-expression, mechanical regulation, myocardial-infarction, substrate stiffness affects, t-cells, Ventricular assist device


Comelles, J, Fernández-Majada, V, Acevedo, V, Rebollo-Calderon, B, Martínez, E, (2023). Soft topographical patterns trigger a stiffness-dependent cellular response to contact guidance Materials Today Bio 19, 100593

Topographical patterns are a powerful tool to study directional migration. Grooved substrates have been extensively used as in vitro models of aligned extracellular matrix fibers because they induce cell elongation, alignment, and migration through a phenomenon known as contact guidance. This process, which involves the orientation of focal adhesions, F-actin, and microtubule cytoskeleton along the direction of the grooves, has been primarily studied on hard materials of non-physiological stiffness. But how it unfolds when the stiffness of the grooves varies within the physiological range is less known. Here we show that substrate stiffness modulates the cellular response to topographical contact guidance. We find that for fibroblasts, while focal adhesions and actin respond to topography independently of the stiffness, microtubules show a stiffness-dependent response that regulates contact guidance. On the other hand, both clusters and single breast carcinoma epithelial cells display stiffness-dependent contact guidance, leading to more directional and efficient migration when increasing substrate stiffness. These results suggest that both matrix stiffening and alignment of extracellular matrix fibers cooperate during directional cell migration, and that the outcome differs between cell types depending on how they organize their cytoskeletons.© 2023 The Authors.

JTD Keywords: actin, behavior, cell migration, contact guidance, cytoskeleton, fibroblasts, focal adhesions, matrix, microtubules, stiffness, stress fibers, topography, transduction, Contact guidance, Substrate stiffness, Topography


Pereira, I, Lopez-Martinez, MJ, Villasante, A, Introna, C, Tornero, D, Canals, JM, Samitier, J, (2023). Hyaluronic acid-based bioink improves the differentiation and network formation of neural progenitor cells Frontiers In Bioengineering And Biotechnology 11, 1110547

Introduction: Three-dimensional (3D) bioprinting is a promising technique for the development of neuronal in vitro models because it controls the deposition of materials and cells. Finding a biomaterial that supports neural differentiation in vitro while ensuring compatibility with the technique of 3D bioprinting of a self-standing construct is a challenge.Methods: In this study, gelatin methacryloyl (GelMA), methacrylated alginate (AlgMA), and hyaluronic acid (HA) were examined by exploiting their biocompatibility and tunable mechanical properties to resemble the extracellular matrix (ECM) and to create a suitable material for printing neural progenitor cells (NPCs), supporting their long-term differentiation. NPCs were printed and differentiated for up to 15 days, and cell viability and neuronal differentiation markers were assessed throughout the culture.Results and Discussion: This composite biomaterial presented the desired physical properties to mimic the ECM of the brain with high water intake, low stiffness, and slow degradation while allowing the printing of defined structures. The viability rates were maintained at approximately 80% at all time points. However, the levels of beta-III tubulin marker increased over time, demonstrating the compatibility of this biomaterial with neuronal cell culture and differentiation. Furthermore, these cells showed increased maturation with corresponding functional properties, which was also demonstrated by the formation of a neuronal network that was observed by recording spontaneous activity via Ca2+ imaging.

JTD Keywords: biomaterials, bioprinting, differentiation, in vitro models, neural progenitor cells, 2d, Biomaterials, Bioprinting, C17.2, Differentiation, Extracellular-matrix, Hydrogels, In vitro models, In-vitro, Neural progenitor cells, Neuronal models, Proliferation, Scaffolds, Stem-cells, Substrate stiffness


Pallares, ME, Pi-Jauma, I, Fortunato, IC, Grazu, V, Gomez-Gonzalez, M, Roca-Cusachs, P, de la Fuente, JM, Alert, R, Sunyer, R, Casademunt, J, Trepat, X, (2023). Stiffness-dependent active wetting enables optimal collective cell durotaxis Nature Physics 19, 279-289

The directed migration of cellular clusters enables morphogenesis, wound healing and collective cancer invasion. Gradients of substrate stiffness direct the migration of cellular clusters in a process called collective durotaxis, but the underlying mechanisms remain unclear. Here we unveil a connection between collective durotaxis and the wetting properties of cellular clusters. We show that clusters of cancer cells dewet soft substrates and wet stiff ones. At intermediate stiffness-at the crossover from low to high wettability-clusters on uniform-stiffness substrates become maximally motile, and clusters on stiffness gradients exhibit optimal durotaxis. Durotactic velocity increases with cluster size, stiffness gradient and actomyosin activity. We demonstrate this behaviour on substrates coated with the cell-cell adhesion protein E-cadherin and then establish its generality on substrates coated with extracellular matrix. We develop an active wetting model that explains collective durotaxis in terms of a balance between in-plane active traction and tissue contractility and out-of-plane surface tension. Finally, we show that the distribution of cluster displacements has a heavy tail, with infrequent but large cellular hops that contribute to durotactic migration. Our study demonstrates a physical mechanism of collective durotaxis, through both cell-cell and cell-substrate adhesion ligands, based on the wetting properties of active droplets.

JTD Keywords: Adhesion, Dynamics, E-cadherin, Gradient, Migration, Model, Motility, Movements, Rigidity, Substrate stiffness


Mesquida-Veny, F, Martínez-Torres, S, Del Río, JA, Hervera, A, (2022). Genetic control of neuronal activity enhances axonal growth only on permissive substrates Molecular Medicine 28, 97

Abstract Background Neural tissue has limited regenerative ability. To cope with that, in recent years a diverse set of novel tools has been used to tailor neurostimulation therapies and promote functional regeneration after axonal injuries. Method In this report, we explore cell-specific methods to modulate neuronal activity, including opto- and chemogenetics to assess the effect of specific neuronal stimulation in the promotion of axonal regeneration after injury. Results Opto- and chemogenetic stimulations of neuronal activity elicited increased in vitro neurite outgrowth in both sensory and cortical neurons, as well as in vivo regeneration in the sciatic nerve, but not after spinal cord injury. Mechanistically, inhibitory substrates such as chondroitin sulfate proteoglycans block the activity induced increase in axonal growth. Conclusions We found that genetic modulations of neuronal activity on both dorsal root ganglia and corticospinal motor neurons increase their axonal growth capacity but only on permissive environments.

JTD Keywords: activation, chemogenetics, electrical-stimulation, expression, functional recovery, increases, injury, motor cortex, neuronal activity, optogenetics, permissive substrate, promotes recovery, regeneration, Optogenetics, Regeneration, Spinal-cord


Casanellas, I, Jiang, HK, David, CM, Vida, Y, Pérez-Inestrosa, E, Samitier, J, Lagunas, A, (2022). Substrate adhesion determines migration during mesenchymal cell condensation in chondrogenesis Journal Of Cell Science 135, 260241

Mesenchymal condensation is a prevalent morphogenetic transition that is essential in chondrogenesis. However, the current understanding of condensation mechanisms is limited. In vivo, progenitor cells directionally migrate from the surrounding loose mesenchyme towards regions of increasing matrix adherence (the condensation centers), which is accompanied by the upregulation of fibronectin. Here, we focused on the mechanisms of cell migration during mesenchymal cell condensation and the effects of matrix adherence. Dendrimer-based nanopatterns of the cell-adhesive peptide arginine-glycine-aspartic acid (RGD), which is present in fibronectin, were used to regulate substrate adhesion. We recorded collective and single-cell migration of mesenchymal stem cells, under chondrogenic induction, using live-cell imaging. Our results show that the cell migration mode of single cells depends on substrate adhesiveness, and that cell directionality controls cell condensation and the fusion of condensates. Inhibition experiments revealed that cell-cell interactions mediated by N-cadherin (also known as CDH2) are also pivotal for directional migration of cell condensates by maintaining cell-cell cohesion, thus suggesting a fine interplay between cell-matrix and cell-cell adhesions. Our results shed light on the role of cell interactions with a fibronectin-depositing matrix during chondrogenesis in vitro, with possible applications in regenerative medicine. This article has an associated First Person interview with the first author of the paper.© 2022. Published by The Company of Biologists Ltd.

JTD Keywords: alpha-v-beta-3, arginine-glycine-aspartic acid, chondrogenesis, dynamics, expression, fibronectin, gastrulation, involvement, mechanisms, mesenchymal condensation, model, nanopatterned substrates, rgd, Arginine-glycine-aspartic acid, Cell migration, Chondrogenesis, Mesenchymal condensation, N-cadherin, Nanopatterned substrates, Rgd


Marti, D, Martin-Martinez, E, Torras, J, Betran, O, Turon, P, Aleman, C, (2022). In silico study of substrate chemistry effect on the tethering of engineered antibodies for SARS-CoV-2 detection: Amorphous silica vs gold Colloids And Surfaces B-Biointerfaces 213, 112400

The influence of the properties of different solid substrates on the tethering of two antibodies, IgG1-CR3022 and IgG1-S309, which were specifically engineered for the detection of SARS-CoV-2, has been examined at the molecular level using conventional and accelerated Molecular Dynamics (cMD and aMD, respectively). Two surfaces with very different properties and widely used in immunosensors for diagnosis, amorphous silica and the most stable facet of the face-centered cubic gold structure, have been considered. The effects of such surfaces on the structure and orientation of the immobilized antibodies have been determined by quantifying the tilt and hinge angles that describe the orientation and shape of the antibody, respectively, and the dihedrals that measure the relative position of the antibody arms with respect to the surface. Results show that the interactions with amorphous silica, which are mainly electrostatic due to the charged nature of the surface, help to preserve the orientation and structure of the antibodies, especially of the IgG1-CR3022, indicating that the primary sequence of those antibodies also plays some role. Instead, short-range van der Waals interactions with the inert gold surface cause a higher degree tilting and fraying of the antibodies with respect to amorphous silica. The interactions between the antibodies and the surface also affect the correlation among the different angles and dihedrals, which increases with their strength. Overall, results explain why amorphous silica substrates are frequently used to immobilize antibodies in immunosensors. © 2022 The Authors

JTD Keywords: amorphous silica, antibody immobilization, enzyme, gol d, gold, immobilization, immunosensor, molecu l a r dynamics, molecular dynamics, protein adsorption, sars-cov-2 immunosensor, simulations, spike protein, surface interactions, target, vaccine, Amorphous silica, Antibodies, Antibody engineering, Antibody immobilization, Antibody structure, Article, Chemical detection, Computer model, Controlled study, Dihedral angle, Gold, In-silico, Molecular dynamics, Molecular levels, Molecular-dynamics, Nonhuman, Property, Sars, Sars-cov-2 immunosensor, Severe acute respiratory syndrome coronavirus 2, Silica, Silico studies, Silicon dioxide, Solid substrates, Structure analysis, Substrate chemistry, Substrates, Van der waals forces, Virus detection


Lopez-Muñoz, GA, Fernández-Costa, JM, Ortega, MA, Balaguer-Trias, J, Martin-Lasierra, E, Ramón-Azcón, J, (2021). Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles Nanophotonics 10, 4477-4488

Abstract The development of nanostructured plasmonic biosensors has been widely widespread in the last years, motivated by the potential benefits they can offer in integration, miniaturization, multiplexing opportunities, and enhanced performance label-free biodetection in a wide field of applications. Between them, engineering tissues represent a novel, challenging, and prolific application field for nanostructured plasmonic biosensors considering the previously described benefits and the low levels of secreted biomarkers (?pM–nM) to detect. Here, we present an integrated plasmonic nanocrystals-based biosensor using high throughput nanostructured polycarbonate substrates. Metallic film thickness and incident angle of light for reflectance measurements were optimized to enhance the detection of antibody–antigen biorecognition events using numerical simulations. We achieved an enhancement in biodetection up to 3× as the incident angle of light decreases, which can be related to shorter evanescent decay lengths. We achieved a high reproducibility between channels with a coefficient of variation below 2% in bulk refractive index measurements, demonstrating a high potential for multiplexed sensing. Finally, biosensing potential was demonstrated by the direct and label-free detection of interleukin-6 biomarker in undiluted cell culture media supernatants from bioengineered 3D skeletal muscle tissues stimulated with different concentrations of endotoxins achieving a limit of detection (LOD) of ? 0.03 ng/mL (1.4 pM).

JTD Keywords: assay, crystals, drug, label-free biosensing, molecules, plasmonic nanostructures, sensors, skeletal muscle, tissue engineering, Biodetection, Biomarkers, Biosensors, Cell culture, Cells, Chemical detection, Histology, Interleukin-6, Interleukin6 (il6), Label free, Label-free biosensing, Muscle, Nano-structured, Nanocrystals, Plasmonic nanocrystals, Plasmonic nanostructures, Plasmonics, Polycarbonate substrates, Polycarbonates, Refractive index, Sensitivity, Skeletal muscle, Tissue engineering, Tissues engineerings


Song, S, Mason, AF, Post, RAJ, De Corato, M, Mestre, R, Yewdall, NA, Cao, S, van der Hofstad, RW, Sanchez, S, Abdelmohsen, LKEA, van Hest, JCM, (2021). Engineering transient dynamics of artificial cells by stochastic distribution of enzymes Nature Communications 12, 6897

Here the authors develop a coacervate micromotor that can display autonomous motion as a result of stochastic distribution of propelling units. This stochastic-induced mobility is validated and explained through experiments and theory. Random fluctuations are inherent to all complex molecular systems. Although nature has evolved mechanisms to control stochastic events to achieve the desired biological output, reproducing this in synthetic systems represents a significant challenge. Here we present an artificial platform that enables us to exploit stochasticity to direct motile behavior. We found that enzymes, when confined to the fluidic polymer membrane of a core-shell coacervate, were distributed stochastically in time and space. This resulted in a transient, asymmetric configuration of propulsive units, which imparted motility to such coacervates in presence of substrate. This mechanism was confirmed by stochastic modelling and simulations in silico. Furthermore, we showed that a deeper understanding of the mechanism of stochasticity could be utilized to modulate the motion output. Conceptually, this work represents a leap in design philosophy in the construction of synthetic systems with life-like behaviors.

JTD Keywords: Cell, Cell component, Enzyme, Enzyme activity, Membrane, Philosophy, Polymer, Stochasticity, Substrate


Nyga, A, Munoz, JJ, Dercksen, S, Fornabaio, G, Uroz, M, Trepat, X, Baum, B, Matthews, HK, Conte, V, (2021). Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics Science Advances 7, eabg6467

Andreu, I, Falcones, B, Hurst, S, Chahare, N, Quiroga, X, Le Roux, AL, Kechagia, Z, Beedle, AEM, Elosegui-Artola, A, Trepat, X, Farre, R, Betz, T, Almendros, I, Roca-Cusachs, P, (2021). The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening Nature Communications 12, 4229

Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved. Cells sense mechanical forces from their environment, but the precise mechanical variable sensed by cells is unclear. Here, the authors show that cells can sense the rate of force application, known as the loading rate, with effects on YAP nuclear localization and cytoskeletal stiffness remodelling.

JTD Keywords: Actin cytoskeleton, Actin filament, Actin-filament, Adhesion, Animal, Animals, Atomic force microscopy, Breathing, Cell, Cell adhesion, Cell culture, Cell nucleus, Cells, cultured, Cytoplasm, Extracellular-matrix, Fibroblast, Fibroblasts, Fibronectin, Frequency, Gene knockdown, Gene knockdown techniques, Genetics, Germfree animal, Integrin, Intracellular signaling peptides and proteins, Knockout mouse, Lung, Male, Mechanotransduction, Mechanotransduction, cellular, Metabolism, Mice, Mice, knockout, Microscopy, atomic force, Mouse, Optical tweezers, Paxillin, Physiology, Primary cell culture, Pxn protein, mouse, Rat, Rats, Rats, sprague-dawley, Respiration, Signal peptide, Softening, Specific pathogen-free organisms, Sprague dawley rat, Stress, Substrate, Substrate rigidity, Talin, Talin protein, mouse, Tln2 protein, mouse, Traction, Transmission, Ultrastructure, Yap1 protein, rat


Landa-Castro, Midori, Sebastián, Paula, Giannotti, Marina I., Serrà, Albert, Gómez, Elvira, (2020). Electrodeposition of nanostructured cobalt films from a deep eutectic solvent: Influence of the substrate and deposition potential range Electrochimica Acta 359, 136928

The purpose of this systematic study was to investigate the effects of specific substrates and potential conditions applied while tailoring the morphology and chemical composition of nanostructured Co films. In particular, Co electrodeposition in sustainable choline chloride-urea deep eutectic solvent was assessed, using glassy carbon and two metals widely employed in electrocatalysis and biocompatible purposes, Pt and Au, as substrates for modification with Co. Various in situ electrochemical techniques were combined with a broad range of ex-situ characterization and chemical-composition techniques for a detailed analysis of the prepared Co films. Among the results, nanostructured Co films with high extended active surface areas and variable composition of oxo and hydroxyl species could be tuned by simply modulating the applied potential limits, and without using additives or surfactant agents. The study highlights the effectiveness of using deep eutectic solvent as suitable electrolyte for surface modification by controlled deposition of nanostructured Co films with further application in electrocatalysis.

JTD Keywords: Cobalt electrodeposition, Deep eutectic solvent, First growth stages, Substrate influence


Altay, Gizem, Tosi, Sébastien, García-Díaz, María, Martínez, Elena, (2020). Imaging the cell morphological response to 3D topography and curvature in engineered intestinal tissues Frontiers in Bioengineering and Biotechnology 8, 294

While conventional cell culture methodologies have relied on flat, two-dimensional cell monolayers, three-dimensional engineered tissues are becoming increasingly popular. Often, engineered tissues can mimic the complex architecture of native tissues, leading to advancements in reproducing physiological functional properties. In particular, engineered intestinal tissues often use hydrogels to mimic villi structures. These finger-like protrusions of a few hundred microns in height have a well-defined topography and curvature. Here, we examined the cell morphological response to these villus-like microstructures at single-cell resolution using a novel embedding method that allows for the histological processing of these delicate hydrogel structures. We demonstrated that by using photopolymerisable poly(ethylene) glycol as an embedding medium, the villus-like microstructures were successfully preserved after sectioning with vibratome or cryotome. Moreover, high-resolution imaging of these sections revealed that cell morphology, nuclei orientation, and the expression of epithelial polarization markers were spatially encoded along the vertical axis of the villus-like microstructures and that this cell morphological response was dramatically affected by the substrate curvature. These findings, which are in good agreement with the data reported for in vivo experiments on the native tissue, are likely to be the origin of more physiologically relevant barrier properties of engineered intestinal tissues when compared with standard monolayer cultures. By showcasing this example, we anticipate that the novel histological embedding procedure will have a positive impact on the study of epithelial cell behavior on three-dimensional substrates in both physiological and pathological situations.

JTD Keywords: Hydrogel scaffold, Confocal microscopy, Substrate curvature, Cell morphology, Cell orientation, Histological section, Small intestine, Villus


Ladoux, B., Mège, R. M., Trepat, X., (2016). Front-rear polarization by mechanical cues: From single cells to tissues Trends in Cell Biology 26, (6), 420-433

Directed cell migration is a complex process that involves front-rear polarization, characterized by cell adhesion and cytoskeleton-based protrusion, retraction, and contraction of either a single cell or a cell collective. Single cell polarization depends on a variety of mechanochemical signals including external adhesive cues, substrate stiffness, and confinement. In cell ensembles, coordinated polarization of migrating tissues results not only from the application of traction forces on the extracellular matrix but also from the transmission of mechanical stress through intercellular junctions. We focus here on the impact of mechanical cues on the establishment and maintenance of front-rear polarization from single cell to collective cell behaviors through local or large-scale mechanisms.

JTD Keywords: Cell forces, Cell polarity, Collective cell migration, Mechanobiology, Micropatterning, Substrate stiffness


Won, J. E., Mateos-Timoneda, M. A., Castaño, O., Planell, J. A., Seo, S. J., Lee, E. J., Han, C. M., Kim, H. W., (2015). Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering Biotechnology Letters , 37, (4), 935-342

Bioactive nanocomposite scaffolds with cell-adhesive surface have excellent bone regeneration capacities. Fibronectin (FN)-immobilized nanobioactive glass (nBG)/polycaprolactone (PCL) (FN-nBG/PCL) scaffolds with an open pore architecture were generated by a robotic-dispensing technique. The surface immobilization level of FN was significantly higher on the nBG/PCL scaffolds than on the PCL scaffolds, mainly due to the incorporated nBG that provided hydrophilic chemical-linking sites. FN-nBG/PCL scaffolds significantly improved cell responses, including initial anchorage and subsequent cell proliferation. Although further in-depth studies on cell differentiation and the in vivo animal responses are required, bioactive nanocomposite scaffolds with cell-favoring surface are considered to provide promising three-dimensional substrate for bone regeneration.

JTD Keywords: Bone scaffolds, Cell response, Fibronectin, Nanobioactive glass, Nanocomposites, Polycaprolactone, Bone, Cell proliferation, Cells, Cytology, Glass, Nanocomposites, Polycaprolactone, Robotics, Bone scaffolds, Bone tissue engineering, Cell response, Fibronectin, Fibronectin immobilizations, Nano bioactive glass, Nanocomposite scaffolds, Three-dimensional substrates, Scaffolds (biology)


Gomila, G., Gramse, G., Fumagalli, L., (2014). Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films Nanotechnology 25, (25), 255702 (11)

A numerical analysis of the polarization force between a sharp conducting probe and a dielectric film of finite lateral dimensions on a metallic substrate is presented with the double objective of (i) determining the conditions under which the film can be approximated by a laterally infinite film and (ii) proposing an analytical model valid in this limit. We show that, for a given dielectric film, the critical diameter above which the film can be modeled as laterally infinite depends not only on the probe geometry, as expected, but mainly on the film thickness. In particular, for films with intermediate to large thicknesses (>100 nm), the critical diameter is nearly independent from the probe geometry and essentially depends on the film thickness and dielectric constant following a relatively simple phenomenological expression. For films that can be considered as laterally infinite, we propose a generalized analytical model valid in the thin-ultrathin limit (<20-50 nm) that reproduces the numerical calculations and the experimental data. Present results provide a general framework under which accurate quantification of electrostatic force microscopy measurements on dielectric films on metallic substrates can be achieved.

JTD Keywords: Dielectric constant, Dielectric films, Electrostatic force microscopy, Quantification, Analytical models, Electric force microscopy, Electrostatic force, Film thickness, Permittivity, Probes, Substrates, Ultrathin films, Accurate quantifications, Electrostatic force microscopy, Finite size effect, Lateral dimension, Metallic substrate, Numerical calculation, Polarization forces, Quantification, Dielectric films


Vedula, Sri Ram Krishna, Ravasio, Andrea, Anon, Ester, Chen, Tianchi, Peyret, G., Ashraf, Mohammed, Ladoux, Benoit, (2014). Microfabricated environments to study collective cell behaviors Methods in Cell Biology (ed. Piel, M., Théry, M.), Academic Press 120, 235-252

Abstract Coordinated cell movements in epithelial layers are essential for proper tissue morphogenesis and homeostasis. Microfabrication techniques have proven to be very useful for studies of collective cell migration in vitro. In this chapter, we briefly review the use of microfabricated substrates in providing new insights into collective cell behaviors. We first describe the development of micropatterned substrates to study the influence of geometrical constraints on cell migration and coordinated movements. Then, we present an alternative method based on microfabricated pillar substrates to create well-defined gaps within cell sheets and study gap closure. We also provide a discussion that presents possible pitfalls and sheds light onto the important parameters that allow the study of long-term cell culture on substrates of well-defined geometries.

JTD Keywords: Microfabricated substrates, Microcontact printing, Collective cell behavior, Geometrical constraints, Epithelial gap closure


Dols-Perez, A., Sisquella, X., Fumagalli, L., Gomila, G., (2013). Optical visualization of ultrathin mica flakes on semitransparent gold substrates Nanoscale Research Letters 8, (1), 1-5

We show that optical visualization of ultrathin mica flakes on metallic substrates is viable using semitransparent gold as substrates. This enables to easily localize mica flakes and rapidly estimate their thickness directly on gold substrates by conventional optical reflection microscopy. We experimentally demonstrate it by comparing optical images with atomic force microscopy images of mica flakes on semitransparent gold. Present results open the possibility for simple and rapid characterization of thin mica flakes as well as other thin sheets directly on metallic substrates.

JTD Keywords: Atomic force, Conductive AFM, Gold substrates, Metallic substrate, Optical image, Optical reflection, Optical visualization, Ultrathin layers, Atomic force microscopy, Geometrical optics, Gold, Mica, Optical microscopy, Substrates


Valle-Delgado, J. J., Liepina, I., Lapidus, D., Sabaté, R., Ventura, S., Samitier, J., Fernàndez-Busquets, X., (2012). Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy Soft Matter 8, (4), 1234-1242

The self-assembly of peptides and proteins into amyloid fibrils of nanometric thickness and up to several micrometres in length, a phenomenon widely observed in biological systems, has recently aroused a growing interest in nanotechnology and nanomedicine. Here we have applied atomic force microscopy and single molecule force spectroscopy to study the amyloidogenesis of a peptide derived from human amylin and of its reverse sequence. The spontaneous formation of protofibrils and their orientation along well-defined directions on graphite and DMSO-coated graphite substrates make the studied peptides interesting candidates for nanotechnological applications. The measured binding forces between peptides correlate with the number of hydrogen bonds between individual peptides inside the fibril structure according to molecular dynamics simulations.

JTD Keywords: Amyloid fibril, Amyloidogenesis, Binding forces, Fibril structure, Graphite substrate, Molecular dynamics simulations, Nanometrics, Protofibrils, Single molecule force spectroscopy, Spontaneous formation, Atomic force microscopy, Atomic spectroscopy, Graphite, Hydrogen bonds, Medical nanotechnology, Molecular dynamics, Molecular physics, Self assembly, Thickness measurement, Peptides


Azevedo, S., Diéguez, L., Carvalho, P., Carneiro, J. O., Teixeira, V., Martínez, Elena, Samitier, J., (2012). Deposition of ITO thin films onto PMMA substrates for waveguide based biosensing devices Journal of Nano Research , 17, 75-83

Biosensors' research filed has clearly been changing towards the production of multifunctional and innovative design concepts to address the needs related with sensitivity and selectivity of the devices. More recently, waveguide biosensors, that do not require any label procedure to detect biomolecules adsorbed on its surface, have been pointed out as one of the most promising technologies for the production of biosensing devices with enhanced performance. Moreover the combination of optical and electrochemical measurements through the integration of transparent and conducting oxides in the multilayer structures can greatly enhance the biosensors' sensitivity. Furthermore, the integration of polymeric substrates may bring powerful advantages in comparison with silicon based ones. The biosensors will have a lower production costs being possible to disposable them after use ("one use sensor chip"). This research work represents a preliminary study about the influence of substrate temperature on the overall properties of ITO thin films deposited by DC magnetron sputtering onto 0,5 mm thick PMMA sheets.

JTD Keywords: ITO thin films, PMMA sheets, Waveguide biosensing devices, Biosensing devices, Conducting oxides, Dc magnetron sputtering, Electrochemical measurements, Enhanced performance, Innovative design, ITO thin films, Multilayer structures, Overall properties, PMMA sheets, Polymeric substrate, Production cost, Sensor chips, Silicon-based, Substrate temperature, Biosensors, Deposition, Design, Film preparation, Optical multilayers, Thin films, Vapor deposition, Waveguides, Substrates


Caballero-Briones, F., Palacios-Padrós, A., Sanz, Fausto, (2011). CuInSe2 films prepared by three step pulsed electrodeposition. Deposition mechanisms, optical and photoelectrochemical studies Electrochimica Acta 56, (26), 9556-9567

p-Type semiconducting copper indium diselenide thin films have been prepared onto In2O3:Sn substrates by a recently developed pulse electrodeposition method that consists in repeated cycles of three potential application steps. The Cu–In–Se electrochemical system and the related single component electrolytes were studied by cyclic voltammetry to identify the electrode processes and study the deposition processes. In situ atomic force microscopy measurements during the first 100 deposition cycles denote a continuous nucleation and growth mechanism. Particles removed by film sonication from some of the films were characterized by transmission electron microscopy and determined to consist in nanoscopic and crystalline CuInSe2. The remaining film is still crystalline CuInSe2, as assessed by X-ray diffraction. The chemical characterization by combined X-ray photoelectron spectroscopy, X-ray fluorescence and inductively coupled plasma optical emission spectroscopy, showed that films were Cu-poor and Se-poor. Raman characterization of the as-grown films showed that film composition varies with film thickness; thinner films are Se-rich, while thicker ones have an increased Cu–Se content. Different optical absorption bands were identified by the analysis of the UV–NIR transmittance spectra that were related with the presence of CuInSe2, ordered vacancy compounds, Se, Cu2−xSe and In2Se3. The photoelectrochemical activity confirmed the p-type character and showed a better response for the films prepared with the pulse method.

JTD Keywords: CuInSe2, Solar cells, Electrodeposition, Optical properties, As-deposited films, ITO substrate


Krishnan, Ramaswamy, Klumpers, Darinka D., Park, Chan Y., Rajendran, Kavitha, Trepat, Xavier, van Bezu, Jan, van Hinsbergh, Victor W. M., Carman, Christopher V., Brain, Joseph D., Fredberg, Jeffrey J., Butler, James P., van Nieuw Amerongen, Geerten P., (2011). Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces American Journal of Physiology - Cell Physiology , 300, (1), C146-C154

A hallmark of many, sometimes life-threatening, inflammatory diseases and disorders is vascular leakage. The extent and severity of vascular leakage is broadly mediated by the integrity of the endothelial cell (EC) monolayer, which is in turn governed by three major interactions: cell-cell and cell-substrate contacts, soluble mediators, and biomechanical forces. A potentially critical but essentially uninvestigated component mediating these interactions is the stiffness of the substrate to which the endothelial monolayer is adherent. Accordingly, we investigated the extent to which substrate stiffening influences endothelial monolayer disruption and the role of cell-cell and cell-substrate contacts, soluble mediators, and physical forces in that process. Traction force microscopy showed that forces between cell and cell and between cell and substrate were greater on stiffer substrates. On stiffer substrates, these forces were substantially enhanced by a hyperpermeability stimulus (thrombin, 1 U/ml), and gaps formed between cells. On softer substrates, by contrast, these forces were increased far less by thrombin, and gaps did not form between cells. This stiffness-dependent force enhancement was associated with increased Rho kinase activity, whereas inhibition of Rho kinase attenuated baseline forces and lessened thrombin-induced inter-EC gap formation. Our findings demonstrate a central role of physical forces in EC gap formation and highlight a novel physiological mechanism. Integrity of the endothelial monolayer is governed by its physical microenvironment, which in normal circumstances is compliant but during pathology becomes stiffer.

JTD Keywords: Contraction, Human umbilical vein endothelial cells, Permeability, Traction force, Cell-cell contact, Cell-substrate contact, Substrate stiffness, Rho kinase, Vascular endothelial cadherin, Thrombin


Rodriguez-Segui, Santiago A., Pons Ximenez, Jose Ignacio, Sevilla, Lidia, Ruiz, Ana, Colpo, Pascal, Rossi, Francois, Martinez, Elena, Samitier, Josep, (2011). Quantification of protein immobilization on substrates for cellular microarray applications Journal of Biomedical Materials Research - Part A , 98A, (2), 245-256

Cellular microarray developments and its applications are the next step after DNA and protein microarrays. The choice of the surface chemistry of the substrates used for the implementation of this technique, that must favor proper protein immobilization while avoiding cell adhesion on the nonspotted areas, presents a complex challenge. This is a key issue since usually the best nonfouling surfaces are also the ones that retain immobilized the smallest amounts of printed protein. To quantitatively assess the amount of protein immobilization, in this study several combinations of fluorescently labeled fibronectin (Fn*) and streptavidin (SA*) were microspotted, with and without glycerol addition in the printing buffer, on several substrates suitable for cellular microarrays. The substrates assayed included chemically activated surfaces as well as Poly ethylene oxide (PEO) films that are nonfouling in solution but accept adhesion of proteins in dry conditions. The results showed that the spotted Fn* was retained by all the surfaces, although the PEO surface did show smaller amounts of immobilization. The SA*, on the other hand, was only retained by the chemically activated surfaces. The inclusion of glycerol in the printing buffer significantly reduced the immobilization of both proteins. The results presented in this article provide quantitative evidence of the convenience of using a chemically activated surface to immobilize proteins relevant for cellular microarray applications, particularly when ECM proteins are cospotted with smaller factors which are more difficult to be retained by the surfaces.

JTD Keywords: Protein immobilization, Quantification, Microarray, Substrate, Surface chemistry