by Keyword: fibroblasts
Rubi-Sans, Gerard, Nyga, Agata, Mateos-Timoneda, Miguel A, Engel, Elisabeth, (2025). Substrate stiffness-dependent activation of Hippo pathway in cancer associated fibroblasts Biomaterials Advances 166, 214061
The tumor microenvironment (TME) comprises a heterogenous cell population within a complex threedimensional (3D) extracellular matrix (ECM). Stromal cells within this TME are altered by signaling cues from cancer cells to support uncontrolled tumor growth and invasion events. Moreover, the ECM also plays a fundamental role in tumor development through pathological remodeling, stiffening and interaction with TME cells. In healthy tissues, Hippo signaling pathway actively contributes to tissue growth, cell proliferation and apoptosis. However, in cancer, the Hippo signaling pathway is highly dysregulated, leading to nuclear translocation of the YAP/TAZ complex, which directly contributes to uncontrolled cell proliferation and tissue growth, and ECM remodeling and stiffening processes. Here, we compare the effect of increasing cell culture substrate stiffness, derived from tumor progression, upon the dysregulation of the Hippo signaling pathway in colorectal cancer-associated fibroblasts (CAFs) and normal colorectal fibroblasts (NFs). We correlate the dysregulation of Hippo pathway with the magnitude of the traction forces exerted by healthy and malignant stromal cells. We found that ECM stiffening is crucial in Hippo pathway dysregulation in CAFs, but not in normal fibroblasts.
JTD Keywords: Cancer-associated fibroblasts, Hippo pathway, Organ size control, Tissu, Tumor microenvironment, Yap-ta, Yap/taz
Niro, Francesco, Fernandes, Soraia, Cassani, Marco, Apostolico, Monica, de la Cruz, Jorge, Pereira-Sousa, Daniel, Pagliari, Stefania, Vinarsky, Vladimir, Zdrahal, Zbynek, Potesil, David, Pustka, Vaclav, Pompilio, Giulio, Sommariva, Elena, Rovina, Davide, Maione, Angela Serena, Bersanini, Luca, Becker, Malin, Rasponi, Marco, Forte, Giancarlo, (2024). Fibrotic extracellular matrix impacts cardiomyocyte phenotype and function in an iPSC-derived isogenic model of cardiac fibrosis Translational Research 273, 58-77
Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. Here, we devised a single-step decellularization protocol to obtain and thoroughly characterize the biochemical and micro-mechanical properties of the ECM secreted by activated cFbs differentiated from human induced pluripotent stem cells (iPSCs). We activated iPSC-derived cFbs to the myofibroblast phenotype by tuning basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-beta 1) signalling and confirmed that activated cells acquired key features of myofibroblast phenotype, like SMAD2/3 nuclear shuttling, the formation of aligned alpha-smooth muscle actin (alpha- SMA)-rich stress fibres and increased focal adhesions (FAs) assembly. Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.
JTD Keywords: Adhesio, Cardiac fibrosis modelling, Decellularized extracellular matrix, Differentiation, Expression, Fibroblast activation, Fibronectin, Heart, Induced pluripotent stem cells, Ipsc-derived-cardiac fibroblasts, Ipsc-derived-cardiomyocyte, Myocardial-infarction, Neonatal cardiomyocytes, Smooth muscle actin, Substrate stiffness
Barbazan, J, Pérez-González, C, Gómez-González, M, Dedenon, M, Richon, S, Latorre, E, Serra, M, Mariani, P, Descroix, S, Sens, P, Trepat, X, Vignjevic, DM, (2023). Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction Nature Communications 14, 6966
During tumor progression, cancer-associated fibroblasts (CAFs) accumulate in tumors and produce an excessive extracellular matrix (ECM), forming a capsule that enwraps cancer cells. This capsule acts as a barrier that restricts tumor growth leading to the buildup of intratumoral pressure. Combining genetic and physical manipulations in vivo with microfabrication and force measurements in vitro, we found that the CAFs capsule is not a passive barrier but instead actively compresses cancer cells using actomyosin contractility. Abrogation of CAFs contractility in vivo leads to the dissipation of compressive forces and impairment of capsule formation. By mapping CAF force patterns in 3D, we show that compression is a CAF-intrinsic property independent of cancer cell growth. Supracellular coordination of CAFs is achieved through fibronectin cables that serve as scaffolds allowing force transmission. Cancer cells mechanosense CAF compression, resulting in an altered localization of the transcriptional regulator YAP and a decrease in proliferation. Our study unveils that the contractile capsule actively compresses cancer cells, modulates their mechanical signaling, and reorganizes tumor morphology.© 2023. The Author(s).
JTD Keywords: force, migration, yap, Cancer-associated fibroblasts, Cell line, tumor, Fibroblasts, Mechanotransduction, cellular, Neoplasms, Tumor, Tumor microenvironment
Torras, N, Zabalo, J, Abril, E, Carré, A, García-Díaz, M, Martínez, E, (2023). A bioprinted 3D gut model with crypt-villus structures to mimic the intestinal epithelial-stromal microenvironment Biomaterials Advances 153, 213534
The intestine is a complex tissue with a characteristic three-dimensional (3D) crypt-villus architecture, which plays a key role in the intestinal function. This function is also regulated by the intestinal stroma that actively supports the intestinal epithelium, maintaining the homeostasis of the tissue. Efforts to account for the 3D complex structure of the intestinal tissue have been focused mainly in mimicking the epithelial barrier, while solutions to include the stromal compartment are scarce and unpractical to be used in routine experiments. Here we demonstrate that by employing an optimized bioink formulation and the suitable printing parameters it is possible to produce fibroblast-laden crypt-villus structures by means of digital light projection stereolithography (DLP-SLA). This process provides excellent cell viability, accurate spatial resolution, and high printing throughput, resulting in a robust biofabrication approach that yields functional gut mucosa tissues compatible with conventional testing techniques.Copyright © 2023 Elsevier B.V. All rights reserved.
JTD Keywords: 3d microstructure, barrier, cells, epithelial-stromal interactions, gelma-pegda soft hydrogels, growth, hydrogel, intestinal mucosa model, methacrylamide, microfabrication, proliferation, scaffold, stereolithography, 3d bioprinting, 3d microstructure, Epithelial-stromal interactions, Fibroblasts, Gelma-pegda soft hydrogels, Intestinal mucosa model
Malandain, N, Sanz-Fraile, H, Farre, R, Otero, J, Roig, A, Laromaine, A, (2023). Cell-Laden 3D Hydrogels of Type I Collagen Incorporating Bacterial Nanocellulose Fibers Acs Applied Bio Materials 6, 3638-3647
There is a growing interest in developing natural hydrogel-based scaffolds to culture cells in a three-dimensional (3D) millieu that better mimics the in vivo cells' microenvironment. A promising approach is to use hydrogels from animal tissues, such as decellularized extracellular matrices; however, they usually exhibit suboptimal mechanical properties compared to native tissue and their composition with hundreds of different protein complicates to elucidate which stimulus triggers cell's responses. As simpler scaffolds, type I collagen hydrogels are used to study cell behavior in mechanobiology even though they are also softer than native tissues. In this work, type I collagen is mixed with bacterial nanocellulose fibers (BCf) to develop reinforced scaffolds with mechanical properties suitable for 3D cell culture. BCf were produced from blended pellicles biosynthesized from Komagataeibacter xylinus. Then, BCf were mixed with concentrated collagen from rat-tail tendons to form composite hydrogels. Confocal laser scanning microscopy and scanning electron microscopy images confirmed the homogeneous macro- and microdistribution of both natural polymers. Porosity analysis confirmed that BCf do not disrupt the scaffold structure. Tensile strength and rheology measurements demonstrated the reinforcement action of BCf (43% increased stiffness) compared to the collagen hydrogel while maintaining the same viscoelastic response. Additionally, this reinforcement of collagen hydrogels with BCf offers the possibility to mix cells before gelation and then proceed to the culture of the 3D cell scaffolds. We obtained scaffolds with human bone marrow-derived mesenchymal stromal cells or human fibroblasts within the composite hydrogels, allowing a homogeneous 3D viable culture for at least 7 days. A smaller surface shrinkage in the reinforced hydrogels compared to type I collagen hydrogels confirmed the strengthening of the composite hydrogels. These collagen hydrogels reinforced with BCf might emerge as a promising platform for 3D in vitro organ modeling, tissue-engineering applications, and suitable to conduct fundamental mechanobiology studies.
JTD Keywords: 3d cell culture, bacterial cellulose, collagen, composite hydrogels, 3d cell culture, Bacterial cellulose, Cellulose/collagen composite, Collagen, Composite hydrogels, Contraction, Cross-linking, Cytocompatibility, Fibroblasts, Matrix, Mechanical-properties, Reinforcement, Stiffness, Tissue engineering
Heras-Parets, A, Ginebra, MP, Manero, JM, Guillem-Marti, J, (2023). Guiding Fibroblast Activation Using an RGD‐Mutated Heparin Binding II Fragment of Fibronectin for Gingival Titanium Integration Advanced Healthcare Materials 12, e2203307
The formation of a biological seal around the neck of titanium (Ti) implants is critical for ensuring integration at the gingival site and for preventing bacterial colonization that may lead to periimplantitis. This process is guided by activated fibroblasts, named myofibroblasts, which secrete extracellular matrix (ECM) proteins and ECM-degrading enzymes resolving the wound. However, in some cases, Ti is not able to attract and activate fibroblasts to a sufficient extent, which may compromise the success of the implant. Fibronectin (FN) is an ECM component found in wounds that is able to guide soft tissue healing through the adhesion of cells and attraction of growth factors (GFs). However, clinical use of FN functionalized Ti implants is problematic because FN is difficult to obtain, and is sensitive to degradation. Herein, functionalizing Ti with a modified recombinant heparin binding II (HBII) domain of FN, mutated to include an Arg-Gly-Asp (RGD) sequence for promoting both fibroblast adhesion and GF attraction, is aimed at. The HBII-RGD domain is able to stimulate fibroblast adhesion, spreading, proliferation, migration, and activation to a greater extent than the native HBII, reaching values closer to those of full-length FN suggesting that it might induce the formation of a biological sealing.© 2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
JTD Keywords: alpha-4-beta-1, beta, cell-binding, collagen, extracellular-matrix, fibroblast activation, fibronectin, growth factors, integrins, metalloproteinases, myofibroblasts, proliferation, soft-tissue integration, titanium, Biological-activities, Fibroblast activation, Titanium
González-Callejo, P, Gener, P, Díaz-Riascos, Z, Conti, S, Cámara-Sánchez, P, Riera, R, Mancilla, S, García-Gabilondo, M, Peg, V, Arango, D, Rosell, A, Labernadie, A, Trepat, X, Albertazzi, L, Schwartz, S Jr, Seras-Franzoso, J, Abasolo, I, (2023). Extracellular vesicles secreted by triple-negative breast cancer stem cells trigger premetastatic niche remodeling and metastatic growth in the lungs International Journal Of Cancer 152, 2153-2165
Tumor secreted extracellular vesicles (EVs) are potent intercellular signaling platforms. They are responsible for the accommodation of the premetastatic niche (PMN) to support cancer cell engraftment and metastatic growth. However, complex cancer cell composition within the tumor increases also the heterogeneity among cancer secreted EVs subsets, a functional diversity that has been poorly explored. This phenomenon is particularly relevant in highly plastic and heterogenous triple-negative breast cancer (TNBC), in which a significant representation of malignant cancer stem cells (CSCs) is displayed. Herein, we selectively isolated and characterized EVs from CSC or differentiated cancer cells (DCC; EVsCSC and EVsDCC , respectively) from the MDA-MB-231 TNBC cell line. Our results showed that EVsCSC and EVsDCC contain distinct bioactive cargos and therefore elicit a differential effect on stromal cells in the TME. Specifically, EVsDCC activated secretory cancer associated fibroblasts (CAFs), triggering IL-6/IL-8 signaling and sustaining CSC phenotype maintenance. Complementarily, EVsCSC promoted the activation of α-SMA+ myofibroblastic CAFs subpopulations and increased the endothelial remodeling, enhancing the invasive potential of TNBC cells in vitro and in vivo. In addition, solely the EVsCSC mediated signaling prompted the transformation of healthy lungs into receptive niches able to support metastatic growth of breast cancer cells.© 2023 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
JTD Keywords: chemoresistance, dormancy, drives, extracellular vesicles, invasion, plasticity, premetastatic niche, triple-negative breast cancer, tumor microenvironment, Cancer cell plasticity, Cell line, tumor, Extracellular vesicles, Fibroblasts, Humans, Lung, Neoplastic stem cells, Premetastatic niche, Triple negative breast neoplasms, Triple-negative breast cancer, Tumor microenvironment
Comelles, J, Fernández-Majada, V, Acevedo, V, Rebollo-Calderon, B, Martínez, E, (2023). Soft topographical patterns trigger a stiffness-dependent cellular response to contact guidance Materials Today Bio 19, 100593
Topographical patterns are a powerful tool to study directional migration. Grooved substrates have been extensively used as in vitro models of aligned extracellular matrix fibers because they induce cell elongation, alignment, and migration through a phenomenon known as contact guidance. This process, which involves the orientation of focal adhesions, F-actin, and microtubule cytoskeleton along the direction of the grooves, has been primarily studied on hard materials of non-physiological stiffness. But how it unfolds when the stiffness of the grooves varies within the physiological range is less known. Here we show that substrate stiffness modulates the cellular response to topographical contact guidance. We find that for fibroblasts, while focal adhesions and actin respond to topography independently of the stiffness, microtubules show a stiffness-dependent response that regulates contact guidance. On the other hand, both clusters and single breast carcinoma epithelial cells display stiffness-dependent contact guidance, leading to more directional and efficient migration when increasing substrate stiffness. These results suggest that both matrix stiffening and alignment of extracellular matrix fibers cooperate during directional cell migration, and that the outcome differs between cell types depending on how they organize their cytoskeletons.© 2023 The Authors.
JTD Keywords: actin, behavior, cell migration, contact guidance, cytoskeleton, fibroblasts, focal adhesions, matrix, microtubules, stiffness, stress fibers, topography, transduction, Contact guidance, Substrate stiffness, Topography
Lolo, FN, Pavón, DM, Grande, A, Artola, AE, Segatori, VI, Sánchez, S, Trepat, X, Roca-Cusachs, P, del Pozo, MA, (2022). Caveolae couple mechanical stress to integrin recycling and activation Elife 11, e82348
Cells are subjected to multiple mechanical inputs throughout their lives. Their ability to detect these environmental cues is called mechanosensing, a process in which integrins play an important role. During cellular mechanosensing, plasma membrane (PM) tension is adjusted to mechanical stress through the buffering action of caveolae; however, little is known about the role of caveolae in early integrin mechanosensing regulation. Here, we show that Cav1KO fibroblasts increase adhesion to FN-coated beads when pulled with magnetic tweezers, as compared to wild type fibroblasts. This phenotype is Rho-independent and mainly derived from increased active b1-integrin content on the surface of Cav1KO fibroblasts. FRAP analysis and endocytosis/recycling assays revealed that active b1-integrin is mostly endocytosed through the CLIC/GEEC pathway and is more rapidly recycled to the PM in Cav1KO fibroblasts, in a Rab4 and PM tension-dependent manner. Moreover, the threshold for PM tension-driven b1-integrin activation is lower in Cav1KO MEFs than in wild type MEFs, through a mechanism dependent on talin activity. Our findings suggest that caveolae couple mechanical stress to integrin cycling and activation, thereby regulating the early steps of the cellular mechanosensing response.© 2022, Lolo et al.
JTD Keywords: adhesion, alpha-v-beta-3, cell, integrin activation, internalization, kinase, mechanosensing, mediated endocytosis, mouse, stiffness, talin, trafficking, Animals, Caveolae, Cell adhesion, Cell biology, Fibroblasts, Integrin activation, Integrin beta1, Integrin recycling, Integrins, Mechanosensing, Membrane tension, Mice, Mouse, Stress, mechanical
Almici, Enrico, Chiappini, Vanessa, Lopez-Marquez, Aristides, Badosa, Carmen, Blazquez, Blanca, Caballero, David, Montero, Joan, Natera-de Benito, Daniel, Nascimento, Andres, Roldan, Monica, Lagunas, Anna, Jimenez-Mallebrera, Cecilia, Samitier, Josep, (2022). Personalized in vitro Extracellular Matrix Models of Collagen VI-Related Muscular Dystrophies Frontiers In Bioengineering And Biotechnology 10, 851825
Collagen VI-related dystrophies (COL6-RDs) are a group of rare congenital neuromuscular dystrophies that represent a continuum of overlapping clinical phenotypes that go from the milder Bethlem myopathy (BM) to the severe Ullrich congenital muscular dystrophy, for which there is no effective treatment. Mutations in one of the three Collagen VI genes alter the incorporation of this protein into the extracellular matrix (ECM), affecting the assembly and the structural integrity of the whole fibrillar network. Clinical hallmarks of COL6-RDs are secondary to the ECM disruption and include muscle weakness, proximal joint contractures, and distal hyperlaxity. Although some traits have been identified in patients’ ECMs, a correlation between the ECM features and the clinical phenotype has not been established, mainly due to the lack of predictive and reliable models of the pathology. Herein, we engineered a new personalized pre-clinical model of COL6-RDs using cell-derived matrices (CDMs) technology to better recapitulate the complexity of the native scenario. We found that CDMs from COL6-RD patients presented alterations in ECM structure and composition, showing a significantly decreased Collagen VI secretion, especially in the more severe phenotypes, and a decrease in Fibrillin-1 inclusion. Next, we examined the Collagen VI-mediated deposition of Fibronectin in the ECM, finding a higher alignment, length, width, and straightness than in patients with COL6-RDs. Overall, these results indicate that CDMs models are promising tools to explore the alterations that arise in the composition and fibrillar architecture due to mutations in Collagen VI genes, especially in early stages of matrix organization. Ultimately, CDMs derived from COL6-RD patients may become relevant pre-clinical models, which may help identifying novel biomarkers to be employed in the clinics and to investigate novel therapeutic targets and treatments. Copyright © 2022 Almici, Chiappini, López-Márquez, Badosa, Blázquez, Caballero, Montero, Natera-de Benito, Nascimento, Roldán, Lagunas, Jiménez-Mallebrera and Samitier.
JTD Keywords: alpha-3 chain, binding, collagen vi related muscular dystrophy, decellularisation, decellularized matrices, deficiency, expression, extracellular matrix, fibroblasts, fibronectin, in vitro model, patient-derived ecms, skeletal-muscle, ullrich, Cell-derived matrices, Collagen, Collagen vi related muscular dystrophy, Decellularisation, Decellularization, Extracellular matrices, Extracellular matrix, Genes, In vitro model, In-vitro, In-vitro models, Matrix, Matrix model, Muscular dystrophy, Pathology, Patient-derived ecm, Patient-derived ecms, Pre-clinical
Macedo, MH, Barros, AS, Martinez, E, Barrias, CC, Sarmento, B, (2022). All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes Journal Of Controlled Release 341, 414-430
Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.
JTD Keywords: 3d intestinal model, drug absorption, drug development, endothelium, hydrogel, 3d intestinal model, 3d modeling, 3d models, 3d-modeling, Alkaline-phosphatase, Animal experiments, Biopharmaceutics classification, Caco-2 cells, Cell culture, Collagen, Collagen gel, Drug absorption, Drug development, Endothelium, Fibroblasts, Glycoproteins, Hydrogel, In-vitro, Matrix metalloproteinases, Membrane-permeability, Paracellular transport, Permeability, Single-pass vs., Speed up
Alcaraz, J, Ikemori, R, Llorente, A, Díaz-Valdivia, N, Reguart, N, Vizoso, M, (2021). Epigenetic reprogramming of tumor-associated fibroblasts in lung cancer: Therapeutic opportunities Cancers 13, 3782
Lung cancer is the leading cause of cancer-related death worldwide. The desmoplastic stroma of lung cancer and other solid tumors is rich in tumor-associated fibroblasts (TAFs) exhibiting an activated/myofibroblast-like phenotype. There is growing awareness that TAFs support key steps of tumor progression and are epigenetically reprogrammed compared to healthy fibroblasts. Although the mechanisms underlying such epigenetic reprogramming are incompletely understood, there is increasing evidence that they involve interactions with either cancer cells, pro-fibrotic cytokines such as TGF-β, the stiffening of the surrounding extracellular matrix, smoking cigarette particles and other environmental cues. These aberrant interactions elicit a global DNA hypomethylation and a selective transcriptional repression through hypermethylation of the TGF-β transcription factor SMAD3 in lung TAFs. Likewise, similar DNA methylation changes have been reported in TAFs from other cancer types, as well as histone core modifications and altered microRNA expression. In this review we summarize the evidence of the epigenetic reprogramming of TAFs, how this reprogramming contributes to the acquisition and maintenance of a tumor-promoting phenotype, and how it provides novel venues for therapeutic intervention, with a special focus on lung TAFs.
JTD Keywords: cancer-associated fibroblasts, desmoplasia, dna methylation, epigenetics, expression, genomic dna, lung cancer, mechanical memory, myofibroblast differentiation, pulmonary fibroblasts, smoking, stromal fibroblasts, tgf-?, tgf-beta, tgf-β, transforming growth-factor-beta-1, tumor stroma, Cancer-associated fibroblasts, Carcinoma-associated fibroblasts, Desmoplasia, Epigenetics, Lung cancer, Smoking, Tgf-β, Tumor stroma
Andreu, I, Falcones, B, Hurst, S, Chahare, N, Quiroga, X, Le Roux, AL, Kechagia, Z, Beedle, AEM, Elosegui-Artola, A, Trepat, X, Farre, R, Betz, T, Almendros, I, Roca-Cusachs, P, (2021). The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening Nature Communications 12, 4229
Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved. Cells sense mechanical forces from their environment, but the precise mechanical variable sensed by cells is unclear. Here, the authors show that cells can sense the rate of force application, known as the loading rate, with effects on YAP nuclear localization and cytoskeletal stiffness remodelling.
JTD Keywords: Actin cytoskeleton, Actin filament, Actin-filament, Adhesion, Animal, Animals, Atomic force microscopy, Breathing, Cell, Cell adhesion, Cell culture, Cell nucleus, Cells, cultured, Cytoplasm, Extracellular-matrix, Fibroblast, Fibroblasts, Fibronectin, Frequency, Gene knockdown, Gene knockdown techniques, Genetics, Germfree animal, Integrin, Intracellular signaling peptides and proteins, Knockout mouse, Lung, Male, Mechanotransduction, Mechanotransduction, cellular, Metabolism, Mice, Mice, knockout, Microscopy, atomic force, Mouse, Optical tweezers, Paxillin, Physiology, Primary cell culture, Pxn protein, mouse, Rat, Rats, Rats, sprague-dawley, Respiration, Signal peptide, Softening, Specific pathogen-free organisms, Sprague dawley rat, Stress, Substrate, Substrate rigidity, Talin, Talin protein, mouse, Tln2 protein, mouse, Traction, Transmission, Ultrastructure, Yap1 protein, rat
Lopez-Canosa, Adrian, Perez-Amodio, Soledad, Yanac-Huertas, Eduardo, Ordono, Jesus, Rodriguez-Trujillo, Romen, Samitier, Josep, Castano, Oscar, Engel, Elisabeth, (2021). A microphysiological system combining electrospun fibers and electrical stimulation for the maturation of highly anisotropic cardiac tissue Biofabrication 13, 35047
The creation of cardiac tissue models for preclinical testing is still a non-solved problem in drug discovery, due to the limitations related to thein vitroreplication of cardiac tissue complexity. Among these limitations, the difficulty of mimicking the functional properties of the myocardium due to the immaturity of the used cells hampers the obtention of reliable results that could be translated into human patients.In vivomodels are the current gold standard to test new treatments, although it is widely acknowledged that the used animals are unable to fully recapitulate human physiology, which often leads to failures during clinical trials. In the present work, we present a microfluidic platform that aims to provide a range of signaling cues to immature cardiac cells to drive them towards an adult phenotype. The device combines topographical electrospun nanofibers with electrical stimulation in a microfabricated system. We validated our platform using a co-culture of neonatal mouse cardiomyocytes and cardiac fibroblasts, showing that it allows us to control the degree of anisotropy of the cardiac tissue inside the microdevice in a cost-effective way. Moreover, a 3D computational model of the electrical field was created and validated to demonstrate that our platform is able to closely match the distribution obtained with the gold standard (planar electrode technology) using inexpensive rod-shaped biocompatible stainless-steel electrodes. The functionality of the electrical stimulation was shown to induce a higher expression of the tight junction protein Cx-43, as well as the upregulation of several key genes involved in conductive and structural cardiac properties. These results validate our platform as a powerful tool for the tissue engineering community due to its low cost, high imaging compatibility, versatility, and high-throughput configuration capabilities.
JTD Keywords: bioreactor, cardiac tissue engineering, cardiomyocytes, electrospinning, fabrication, fibroblasts, heart-on-a-chip, heart-tissue, in vitro models, myocardium, orientation, platform, scaffolds, Cardiac tissue engineering, Electrospinning, Field stimulation, Heart-on-a-chip, In vitro models, Microphysiological system
Gabasa, M, Radisky, ES, Ikemori, R, Bertolini, G, Arshakyan, M, Hockla, A, Duch, P, Rondinone, O, Llorente, A, Maqueda, M, Davalos, A, Gavilán, E, Perera, A, Ramírez, J, Gascón, P, Reguart, N, Roz, L, Radisky, DC, Alcaraz, J, (2021). MMP1 drives tumor progression in large cell carcinoma of the lung through fibroblast senescence Cancer Letters 507, 1-12
© 2021 Large cell carcinoma (LCC) is a rare and aggressive lung cancer subtype with poor prognosis and no targeted therapies. Tumor-associated fibroblasts (TAFs) derived from LCC tumors exhibit premature senescence, and coculture of pulmonary fibroblasts with LCC cell lines selectively induces fibroblast senescence, which in turn drives LCC cell growth and invasion. Here we identify MMP1 as overexpressed specifically in LCC cell lines, and we show that expression of MMP1 by LCC cells is necessary for induction of fibroblast senescence and consequent tumor promotion in both cell culture and mouse models. We also show that MMP1, in combination with TGF-β1, is sufficient to induce fibroblast senescence and consequent LCC promotion. Furthermore, we implicate PAR-1 and oxidative stress in MMP1/TGF-β1-induced TAF senescence. Our results establish an entirely new role for MMP1 in cancer, and support a novel therapeutic strategy in LCC based on targeting senescent TAFs.
JTD Keywords: cancer-associated fibroblasts, lung cancer, mmp1, senescence, tgf-?, tgf-beta, tgf-β, Cancer-associated fibroblasts, Lung cancer, Mmp1, Senescence, Tgf-β
Conti, S, Kato, T, Park, D, Sahai, E, Trepat, X, Labernadie, A, (2021). CAFs and cancer cells co-migration in 3D spheroid invasion assay Crispr Knock-Ins In Organoids To Track Tumor Cell Subpopulations 2179, 243-256
© 2020, Springer Science+Business Media, LLC, part of Springer Nature. In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell–cell interactions and cell–matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.
JTD Keywords: 3d spheroid invasion, cancer associated fibroblasts, collective migration, dissemination, epithelial cancer cells, leader/follower cells, 3d spheroid invasion, Cancer associated fibroblasts, Cancer-associated fibroblasts, Cell culture techniques, Cell line, tumor, Cell movement, Cell tracking, Collective invasion, Collective migration, Epithelial cancer cells, Extracellular matrix, Humans, Imaging, three-dimensional, Leader/follower cells, Microscopy, fluorescence, Spheroids, cellular, Tumor cells, cultured
Gabasa, M., Arshakyan, M., Llorente, A., Chuliá-Peris, L., Pavelescu, I., Xaubet, A., Pereda, J., Alcaraz, J., (2020). Interleukin-1β modulation of the mechanobiology of primary human pulmonary fibroblasts: Potential implications in lung repair International Journal of Molecular Sciences 21, (22), 8417
Pro-inflammatory cytokines like interleukin-1β (IL-1β) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1β on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1β and used Atomic Force Microscopy to unveil that IL-1β significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1β stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1β may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1β-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1β provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.
JTD Keywords: Cell mechanics, Collagen, IL-1β, MMPs, Pulmonary fibroblasts, Repair
Conti, S., Kato, T., Park, D., Sahai, E., Trepat, X., Labernadie, A., (2020). CAFs and cancer cells co-migration in 3D spheroid invasion assay Methods in Molecular Biology (ed. Campbell, K., Thevenea, E.), Humana Press (New York, USA) 2179, 243-256
In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell–cell interactions and cell–matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.
JTD Keywords: 3D spheroid invasion, Cancer associated fibroblasts, Collective migration, Epithelial cancer cells, Leader/follower cells
Caddeo, C., Manca, M. L., Matos, M., Gutierrez, G., Díez-Sales, O., Peris, J. E., Usach, I., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2017). Functional response of novel bioprotective poloxamer-structured vesicles on inflamed skin Nanomedicine: Nanotechnology, Biology, and Medicine 13, (3), 1127-1136
Resveratrol and gallic acid, a lipophilic and a hydrophilic phenol, were co-loaded in innovative, biocompatible nanovesicles conceived for ensuring the protection of the skin from oxidative- and inflammatory-related affections. The basic vesicles, liposomes and glycerosomes, were produced by a simple, one-step method involving the dispersion of phospholipid and phenols in water or water/glycerol blend, respectively. Liposomes and glycerosomes were modified by the addition of poloxamer, a stabilizer and viscosity enhancer, thus obtaining viscous or semisolid dispersions of structured vesicles. The vesicles were spherical, unilamellar and small in size (~70 nm in diameter). The superior ability of the poloxamer-structured vesicles to promote the accumulation of both phenols in the skin was demonstrated, as well as their low toxicity and great ability to protect fibroblasts from chemically-induced oxidative damage. The in vivo administration of the vesicular phenols on TPA (phorbol ester)-exposed skin led to a significant reduction of oedema and leukocyte infiltration.
JTD Keywords: Fibroblasts, Mice, Phenol, Phospholipid vesicle, Poloxamer, Skin inflammation
Vitonyte, J., Manca, M. L., Caddeo, C., Valenti, D., Peris, J. E., Usach, I., Nacher, A., Matos, M., Gutiérrez, G., Orrù, G., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2017). Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries European Journal of Pharmaceutics and Biopharmaceutics 114, 278-287
Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70 nm in diameter, while PEVs were larger (∼170 nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections.
JTD Keywords: Fibroblasts, Keratinocytes, Phenol, Phospholipid vesicle, Skin pathogens
Trepat, X., Wasserman, M. R., Angelini, T. E., Millet, E., Weitz, D. A., Butler, J. P., Fredberg, J. J., (2009). Physical forces during collective cell migration Nature Physics 5, (6), 426-430
Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions(1-3), and to drive these motions cells exert traction forces on their surroundings(4). Current understanding emphasizes that these traction forces arise mainly in 'leader cells' at the front edge of the advancing cell sheet(5-9). Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails(10-12). Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.
JTD Keywords: Focal adhesions, Granular matter, Bead packs, Morphogenesis, Sheets, Actin, Fluctuations, Fibroblasts, Microscopy, Diversity
Carreras, A., Almendros, I., Acerbi, I., Montserrat, J. M., Navajas, D., Farre, R., (2009). Obstructive apneas induce early release of mesenchymal stem cells into circulating blood Sleep , 32, (1), 117-119
STUDY OBJECTIVES: To investigate whether noninvasive application of recurrent airway obstructions induces early release of mesenchymal stem cells into the circulating blood in a rat model of obstructive sleep apnea. DESIGN: Prospective controlled animal study. SETTING: University laboratory. PATIENTS OR PARTICIPANTS: Twenty male Sprague-Dawley rats (250-300 g). INTERVENTIONS: A specially designed nasal mask was applied to the anesthetized rats. Ten rats were subjected to a pattern of recurrent obstructive apneas (60 per hour, lasting 15 seconds each) for 5 hours. Ten anesthetized rats were used as controls. MEASUREMENTS AND RESULTS: Mesenchymal stem cells from the blood and bone marrow samples were isolated and cultured to count the total number of colony-forming unit fibroblasts (CFU-F) of adherent cells after 9 days in culture. The number of CFU-F from circulating blood was significantly (P = 0.02) higher in the rats subjected to recurrent obstructive apneas (5.00 +/- 1.16; mean +/- SEM) than in controls (1.70 +/- 0.72). No significant (P = 0.54) differences were observed in CFU-F from bone marrow. CONCLUSIONS: Application of a pattern of airway obstructions similar to those experienced by patients with sleep apnea induced an early mobilization of mesenchymal stem cells into circulating blood.
JTD Keywords: Adipocytes/cytology, Animals, Blood Cell Count, Bone Marrow Cells/ cytology, Cell Adhesion/physiology, Cell Count, Cell Differentiation/physiology, Cell Division/physiology, Disease Models, Animal, Fibroblasts/cytology, Male, Mesenchymal Stem Cells/ cytology, Osteocytes/cytology, Rats, Rats, Sprague-Dawley, Sleep Apnea, Obstructive/ blood, Stem Cells/cytology
Maneva-Radicheva, L., Ebert, U., Dimoudis, N., Altankov, G., (2008). Fibroblast remodeling of adsorbed collagen type IV is altered in contact with cancer cells Histology and Histopathology , 23, (7), 833-842
A series of co-culture experiments between fibroblasts and H-460 human lung carcinoma cells were performed to learn more about the fate of adsorbed type IV collagen (Coll IV). Fibroblasts were able to spatially rearrange Coll IV in a specific linear pattern, similar but not identical to the fibronectin (FN) fibrils. Coll IV partly co-aligns with fibroblast actin cytoskeleton and transiently co-localize with FN, as well as with beta 1 and a 2 integrin clusters, suggesting a cell-dependent process. We further found that this Coll IV reorganization is suppressed in contact with H460 cells. Zymography revealed strongly elevated MMP-2 activity in supernatants of co-cultures, but no activity when fibroblasts or cancer cells were cultured alone. Thus, we provide evidence that reorganization of substrate associated Coll IV is a useful morphological approach for in vitro studies on matrix remodeling activity during tumorigenesis.
JTD Keywords: Adsorbed collagen IV reorganization, Fibroblasts and cancer cells co-culture, MMP-2