DONATE

Biosensors based on olfactory receptors to decipher the human sense of smell

A study led by the Institute for Bioengineering of Catalonia (IBEC) and the CIBER’s Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) describes a method that mimics the physiological response to smell.  The system makes it possible to discriminate between odours with very similar characteristics based on the binding interaction with the receptor, which causes a change in the capacitive response of the receptor. The application of this methodology opens the door to the development of highly selective olfactory biosensors.

Innovative 3D printed scaffolds offer new hope for bone healing

Critical bone defects resulting from trauma, tumor resection, or congenital conditions present significant challenges in medical treatment due to high rates of graft failure caused by inadequate blood supply. To address this issue, researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed scaffolds made from polylactic acid and calcium phosphate. These innovative scaffolds promote blood vessel formation, ensuring better healing and regeneration of bone tissue.

Viscosity of materials key to cell differentiation

An IBEC-led study has revealed how mesenchymal stem cells respond to the viscosity of their environment, a key aspect in their differentiation process. The research, published in Nature Communications, provides new insights that could revolutionise the design of biomaterials for regenerative medicine applications.

Histones against bacterial infections

Research led by IBEC has analysed the antimicrobial activity of human histones against various bacteria, both in solution and in biofilm. The results are very promising and open the door to finding new, more effective treatments, particularly against Pseudomonas aeruginosa infections. This bacterium is mainly responsible for the development of chronic wounds and lung failure in patients with cystic fibrosis and other respiratory diseases.

Atomic sensors unveil hidden dynamics of molecular polarization

Researchers from IBEC and ICFO demonstrate the ability of atomic sensors to non-destructively monitor, measure and optimize nuclear spin hyperpolarization of some clinically relevant molecules in real-time. These features, reported in PNAS, could enhance and reduce costs of quality controls used in clinical magnetic resonance imaging.

Scientists create leader cells with light

A study led by the Institute for Bioengineering of Catalonia (IBEC) has studied the migratory movement of groups of cells using light control. The results show that there is no leader cell that directs the collective movement, as previously thought, but that all cells participate in the process. These findings are relevant to the design of treatments to stop tumour invasion or accelerate wound healing, physiological processes closely linked to cell migration.

Light-activated drugs against neuropathic pain

A team of researchers led by the Institute for Bioengineering of Catalonia (IBEC) has developed light-activated derivatives of the anti-epileptic drug carbamazepine to treat neuropathic pain. These compounds, which show analgesic effects when activated by light, can inhibit nerve signals locally and on demand. Photopharmacological treatments offer precise action at the site of application, thus reducing systemic side effects.

IBEC researchers develop new technology for assisted reproduction that will reduce time to pregnancy   

A new technique developed at the Institute for Bioengineering for Catalonia (IBEC) makes it possible to classify the quality of embryos faster and twice as accurately as expert embryologists. The technology, called “METAPHOR”, uses imaging and artificial intelligence to analyse the metabolism of embryos and oocytes. METAPHOR promises to drastically reduce the time and treatment cycles needed to achieve pregnancy through in vitro fertilisation, minimising the emotional and financial burden on patients.