by Keyword: resonance
Witzdam, L, Vosberg, B, Grosse-Berkenbusch, K, Stoppelkamp, S, Wendel, HP, Rodriguez-Emmenegger, C, (2024). Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting Macromolecular Bioscience 24, e2300321
Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.
JTD Keywords: adsorption, binding, c1-esterase-inhibitor, coatings, contact activation, factor-xii, fxii activation, hemocompatibility, hemocompatible surface modification, heparin, polymer brushes, system, thrombosis, Adsorption, Anticoagulation, Antifouling agent, Article, Beta-fxiia, Biocompatibility, Blood, Blood clotting, Blood clotting factor 12, Blood clotting factor 12a, Blood clotting factor 12a inhibitor, Blood coagulation, C1-esterase-inhibitor, Cell activation, Chemical activation, Coagulation, Coating (procedure), Complement component c1s inhibitor, Complement system, Controlled study, Dendrimers, Enzyme immobilization, Enzymes, Erythrocyte, Esters, Factor xii, Factor xii activation, Factor xiia, Fibrin deposition, Functional polymers, Fxii activation, Haemocompatibility, Hemocompatibility, Hemocompatible surface modification, Hemostasis, Heparin, Human, Hydrogel, Medical devices, Metabolism, Plasma kallikrein, Plasma protein, Plastic coatings, Platelet count, Polymer, Polymer brushes, Polymerization, Polymers, Property, Root cause, Surface plasmon resonance, Surface property, Surface reactions, Surface-modification, Thrombocyte adhesion, Β-fxiia
Eills, James, Picazo-Frutos, Roman, Bondar, Oksana, Cavallari, Eleonora, Carrera, Carla, Barker, Sylwia J, Utz, Marcel, Herrero-Gomez, Alba, Marco-Rius, Irene, Tayler, Michael C D, Aime, Silvio, Reineri, Francesca, Budker, Dmitry, Blanchard, John W, (2023). Enzymatic Reactions Observed with Zero- and Low-Field Nuclear Magnetic Resonance Analytical Chemistry 95, 17997-18005
We demonstrate that enzyme-catalyzed reactions can be observed in zero- and low-field NMR experiments by combining recent advances in parahydrogen-based hyperpolarization methods with state-of-the-art magnetometry. Specifically, we investigated two model biological processes: the conversion of fumarate into malate, which is used in vivo as a marker of cell necrosis, and the conversion of pyruvate into lactate, which is the most widely studied metabolic process in hyperpolarization-enhanced imaging. In addition to this, we constructed a microfluidic zero-field NMR setup to perform experiments on microliter-scale samples of [1-C-13]-fumarate in a lab-on-a-chip device. Zero- to ultralow-field (ZULF) NMR has two key advantages over high-field NMR: the signals can pass through conductive materials (e.g., metals), and line broadening from sample heterogeneity is negligible. To date, the use of ZULF NMR for process monitoring has been limited to studying hydrogenation reactions. In this work, we demonstrate this emerging analytical technique for more general reaction monitoring and compare zero- vs low-field detection.
JTD Keywords: Fumarates, Hydrogenation, Magnetic resonance imaging, Magnetic resonance spectroscopy, Nmr j-spectroscopy, Pyruvic acid
Sauer, F, Grosser, S, Shahryari, M, Hayn, A, Guo, J, Braun, J, Briest, S, Wolf, B, Aktas, B, Horn, LC, Sack, I, Käs, JA, (2023). Changes in Tissue Fluidity Predict Tumor Aggressiveness In Vivo Advanced Science 10, e2303523
Cancer progression is caused by genetic changes and associated with various alterations in cell properties, which also affect a tumor's mechanical state. While an increased stiffness has been well known for long for solid tumors, it has limited prognostic power. It is hypothesized that cancer progression is accompanied by tissue fluidization, where portions of the tissue can change position across different length scales. Supported by tabletop magnetic resonance elastography (MRE) on stroma mimicking collagen gels and microscopic analysis of live cells inside patient derived tumor explants, an overview is provided of how cancer associated mechanisms, including cellular unjamming, proliferation, microenvironment composition, and remodeling can alter a tissue's fluidity and stiffness. In vivo, state-of-the-art multifrequency MRE can distinguish tumors from their surrounding host tissue by their rheological fingerprints. Most importantly, a meta-analysis on the currently available clinical studies is conducted and universal trends are identified. The results and conclusions are condensed into a gedankenexperiment about how a tumor can grow and eventually metastasize into its environment from a physics perspective to deduce corresponding mechanical properties. Based on stiffness, fluidity, spatial heterogeneity, and texture of the tumor front a roadmap for a prognosis of a tumor's aggressiveness and metastatic potential is presented.© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
JTD Keywords: brain, cancer, cells, collective migration, elastic energy, elastography, in vivo magnetic resonance elastography, invasion, medical imaging, solid stress, tissue fluidity, tumor mechanics, viscoelastic properties, Cancer, Collagen, Extracellular-matrix, Humans, In vivo magnetic resonance elastography, Medical imaging, Neoplasms, Prognosis, Tissue fluidity, Tumor mechanics, Tumor microenvironment
Madrid-Gambin, F, Oller, S, Marco, S, Pozo, OJ, Andres-Lacueva, C, Llorach, R, (2023). Quantitative plasma profiling by 1H NMR-based metabolomics: impact of sample treatment Frontiers In Molecular Biosciences 10, 1125582
Introduction: There is evidence that sample treatment of blood-based biosamples may affect integral signals in nuclear magnetic resonance-based metabolomics. The presence of macromolecules in plasma/serum samples makes investigating low-molecular-weight metabolites challenging. It is particularly relevant in the targeted approach, in which absolute concentrations of selected metabolites are often quantified based on the area of integral signals. Since there are a few treatments of plasma/serum samples for quantitative analysis without a universally accepted method, this topic remains of interest for future research. Methods: In this work, targeted metabolomic profiling of 43 metabolites was performed on pooled plasma to compare four methodologies consisting of Carr-Purcell-Meiboom-Gill (CPMG) editing, ultrafiltration, protein precipitation with methanol, and glycerophospholipid solid-phase extraction (g-SPE) for phospholipid removal; prior to NMR metabolomics analysis. The effect of the sample treatments on the metabolite concentrations was evaluated using a permutation test of multiclass and pairwise Fisher scores. Results: Results showed that methanol precipitation and ultrafiltration had a higher number of metabolites with coefficient of variation (CV) values above 20%. G-SPE and CPMG editing demonstrated better precision for most of the metabolites analyzed. However, differential quantification performance between procedures were metabolite-dependent. For example, pairwise comparisons showed that methanol precipitation and CPMG editing were suitable for quantifying citrate, while g-SPE showed better results for 2-hydroxybutyrate and tryptophan. Discussion: There are alterations in the absolute concentration of various metabolites that are dependent on the procedure. Considering these alterations is essential before proceeding with the quantification of treatment-sensitive metabolites in biological samples for improving biomarker discovery and biological interpretations. The study demonstrated that g-SPE and CPMG editing are effective methods for removing proteins and phospholipids from plasma samples for quantitative NMR analysis of metabolites. However, careful consideration should be given to the specific metabolites of interest and their susceptibility to the sample treatment procedures. These findings contribute to the development of optimized sample preparation protocols for metabolomics studies using NMR spectroscopy.Copyright © 2023 Madrid-Gambin, Oller, Marco, Pozo, Andres-Lacueva and Llorach.
JTD Keywords: binding, h-1-nmr spectroscopy, human serum, lactate, metabolites, nuclear magnetic resonance, plasma, protein, quantification, quantitative analysis, sample treatment, Metabolomics, Nuclear magnetic resonance, Nuclear-magnetic-resonance, Plasma, Quantification, Quantitative analysis, Sample treatment
Oerther, C, Marco-Rius, I, (2023). Chapter 14: Fast Multi-dimensional NMR for In Vivo Spectroscopy New Developments In Nmr 27, 415-440
JTD Keywords: Acquisition, C-13, Detecting tumor response, Exchang, Excitation pulses, Magnetic-resonance-spectroscopy, Metabolism, Mri, Resolution, Strategies
Eills, J, Budker, D, Cavagnero, S, Chekmenev, EY, Elliott, SJ, Jannin, S, Lesage, A, Matysik, J, Meersmann, T, Prisner, T, Reimer, JA, Yang, HM, Koptyug, IV, (2023). Spin Hyperpolarization in Modern Magnetic Resonance Chemical Reviews 123, 1417-1551
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
JTD Keywords: electron-paramagnetic-resonance, high-resolution nmr, hydrogen-induced polarization, level anti-crossings, long-lived states, parahydrogen-induced polarization, photosynthetic reaction-center, reversible exchange catalysis, solid-state nmr, Dynamic-nuclear-polarization
Kostas Mouloudakis, Sven Bodenstedt, Marc Azagra, Morgan W. Mitchell, Irene Marco-Rius, and Michael C. D. Tayler, (2023). Real-Time Polarimetry of Hyperpolarized 13C Nuclear Spins Using an Atomic Magnetometer Journal Of Physical Chemistry Letters 14, 1192-1197
We introduce a method for nondestructive quantification of nuclear spin polarization, of relevance to hyperpolarized spin tracers widely used in magnetic resonance from spectroscopy to in vivo imaging. In a bias field of around 30 nT we use a high-sensitivity miniaturized 87Rb-vapor magnetometer to measure the field generated by the sample, as it is driven by a windowed dynamical decoupling pulse sequence that both maximizes the nuclear spin lifetime and modulates the polarization for easy detection. We demonstrate the procedure applied to a 0.08 M hyperpolarized [1-13C]-pyruvate solution produced by dissolution dynamic nuclear polarization, measuring polarization repeatedly during natural decay at Earth's field. Application to real-time and continuous quality monitoring of hyperpolarized substances is discussed.
JTD Keywords: performance, polarization, Atomic magnetometers, Bias field, High sensitivity, Hyperpolarized, In-vivo imaging, Magnetic resonance, Magnetic-resonance, Magnetic-resonance,polarizatio, Magnetic-resonance,polarization,performanc, Magnetometers, Non destructive, Nuclear spins, Nuclear-spin polarization, Performance, Polarization, Rb vapors, Real- time, Spin dynamics, Spin polarization
Martens, KJA, Gobes, M, Archontakis, E, Brillas, RR, Zijlstra, N, Albertazzi, L, Hohlbein, J, (2022). Enabling Spectrally Resolved Single-Molecule Localization Microscopy at High Emitter Densities Nano Letters 22, 8618-8625
Single-molecule localization microscopy (SMLM) is a powerful super-resolution technique for elucidating structure and dynamics in the life- and material sciences. Simultaneously acquiring spectral information (spectrally resolved SMLM, sSMLM) has been hampered by several challenges: an increased complexity of the optical detection pathway, lower accessible emitter densities, and compromised spatio-spectral resolution. Here we present a single-component, low-cost implementation of sSMLM that addresses these challenges. Using a low-dispersion transmission grating positioned close to the image plane, the +1stdiffraction order is minimally elongated and is analyzed using existing single-molecule localization algorithms. The distance between the 0th and 1st order provides accurate information on the spectral properties of individual emitters. This method enables a 5-fold higher emitter density while discriminating between fluorophores whose peak emissions are less than 15 nm apart. Our approach can find widespread use in single-molecule applications that rely on distinguishing spectrally different fluorophores under low photon conditions.
JTD Keywords: cells, multicolor imaging, nanoscopy, particle tracking, point accumulation for imaging in nanoscale topography (paint), precision, single-molecule fo?rster resonance energy transfer (smfret), stochastic optical reconstruction microscopy (storm), Diffraction-limit, Multicolor imaging, Point accumulation for imaging in nanoscale topography (paint), Single-molecule förster resonance energy transfer (smfret), Single-molecule spectroscopy, Stochastic optical reconstruction microscopy (storm)
Lopez-Muñoz, GA, Mughal, S, Ramón-Azcón, J, (2022). Sensors and Biosensors in Organs-on-a-Chip Platforms Advances In Experimental Medicine And Biology 1379, 55-80
Biosensors represent a powerful analytical tool for analyzing biomolecular interactions with the potential to achieve real-time quantitative analysis with high accuracy using low sample volumes, minimum sample pretreatment with high potential for the development of in situ and highly integrated monitoring platforms. Considering these advantages, their use in cell-culture systems has increased over the last few years. Between the different technologies for cell culture, organs-on-a-chip (OOCs) represent a novel technology that tries to mimic an organ's functionality by combining tissue engineering/organoid with microfluidics. Although there are still challenges to achieving OOC models with high organ mimicking relevance, these devices can offer effective models for drug treatment development by identifying drug targets, screening toxicity, and determining the potential effects of drugs in living beings. Consequently, in the future, we might replace animal studies by offering more ethical test models. Considering the relevance that different physiological and biochemical parameters have in the correct functionality of cells, sensing and biosensing platforms can offer an effective way for the real-time monitoring of physiological parameters and, in our opinion, more relevant, the secretion of biomarkers such as cytokines, growth factors, and others related with the influence of drugs or other types of stimulus in cell metabolism. Keeping this concept in mind, in this chapter, we focus on describing the potential use of sensors and biosensors in OOC devices to achieve fully integrated platforms that monitor physiological parameters and cell metabolism.© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.
JTD Keywords: alignment, biosensors, cell, crystal microbalance biosensor, electrochemical biosensors, future, graphene oxide, label-free detection, organ-on-a-chip, oxygen, pre-clinical platforms, real-time analysis, screening, Biosensors, Organ-on-a-chip, Pre-clinical platforms, Screening, Sensors, Surface-plasmon resonance
Lanzalaco, S, Gil, P, Mingot, J, Agueda, A, Alemán, C, Armelin, E, (2022). Dual-Responsive Polypropylene Meshes Actuating as Thermal and SERS Sensors Acs Biomaterials Science & Engineering 8, 3329-3340
Polypropylene (PP) surgical meshes, with different knitted architectures, were chemically functionalized with gold nanoparticles (AuNPs) and 4-mercaptothiazole (4-MB) to transform their fibers into a surface enhanced Raman scattering (SERS) detectable plastic material. The application of a thin layer of poly[N-isopropylacrylamide-co-N,N'-methylene bis(acrylamide)] (PNIPAAm-co-MBA) graft copolymer, covalently polymerized to the mesh-gold substrate, caused the conversion of the inert plastic into a thermoresponsive material, resulting in the first PP implantable mesh with both SERS and temperature stimulus responses. AuNPs were homogeneously distributed over the PP yarns, offering a clear SERS recognition together with higher PNIPAAm lower critical solution temperature (LCST ∼ 37 °C) than without the metallic particles (LCST ∼ 32 °C). An infrared thermographic camera was used to observe the polymer-hydrogel folding-unfolding process and to identify the new value of the LCST, connected with the heat generation by plasmonic-resonance gold NPs. The development of SERS PP prosthesis will be relevant for the bioimaging and biomarker detection of the implant by using the plasmonic effect and Raman vibrational spectroscopy for minimally invasive interventions (such as laparoscopy), to prevent patient inflammatory processes. Furthermore, Raman sources have been proved to not damage the cells, like happens with near-infrared irradiation, representing another advantage of moving to SERS approaches. The findings reported here offer unprecedented application possibilities in the biomedical field by extrapolating the material functionalization to other nonabsorbable polymer made devices (e.g., surgical sutures, grapes, wound dressings, among others).
JTD Keywords: gold nanoparticles, poly(n-isopropylacrylamide), polymers, polypropylene, raman-spectroscopy, reduction, resonance, sers spectroscopy, size, surface functionalization, Gold nanoparticles, Polypropylene, Surface functionalization
Cascione, M, Rizzello, L, Manno, D, Serra, A, De Matteis, V, (2022). Green Silver Nanoparticles Promote Inflammation Shutdown in Human Leukemic Monocytes Materials (Basel) 15, 775
The use of silver nanoparticles (Ag NPs) in the biomedical field deserves a mindful analysis of the possible inflammatory response which could limit their use in the clinic. Despite the anti-cancer properties of Ag NPs having been widely demonstrated, there are still few studies concerning their involvement in the activation of specific inflammatory pathways. The inflammatory outcome depends on the synthetic route used in the NPs production, in which toxic reagents are employed. In this work, we compared two types of Ag NPs, obtained by two different chemical routes: conventional synthesis using sodium citrate and a green protocol based on leaf extracts as a source of reduction and capping agents. A careful physicochemical characterization was carried out showing spherical and stable Ag NPs with an average size between 20 nm and 35 nm for conventional and green Ag NPs respectively. Then, we evaluated their ability to induce the activation of inflammation in Human Leukemic Monocytes (THP-1) differentiated into M0 macrophages using 1 µM and 2 µM NPs concentrations (corresponded to 0.1 µg/mL and 0.2 µg/mL respectively) and two-time points (24 h and 48 h). Our results showed a clear difference in Nuclear Factor ?B (NF-?b) activation, Interleukins 6–8 (IL-6, IL-8) secretion, Tumor Necrosis Factor-? (TNF-?) and Cyclooxygenase-2 (COX-2) expression exerted by the two kinds of Ag NPs. Green Ag NPs were definitely tolerated by macrophages compared to conventional Ag NPs which induced the activation of all the factors mentioned above. Subsequently, the exposure of breast cancer cell line (MCF-7) to the green Ag NPs showed that they exhibited antitumor activity like the conventional ones, but surprisingly, using the MCF-10A line (not tumoral breast cells) the green Ag NPs did not cause a significant decrease in cell viability. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
JTD Keywords: activation, biosynthesis, gold nanoparticles, green route, inflammation response, mechanism, metal, nanotechnology, physico-chemical properties, raman-spectroscopy, resonance, silver nanoparticles, surface, Biomedical fields, Cell culture, Cell death, Chemical activation, Chemical routes, Conventional synthesis, Diseases, Green route, Inflammation response, Inflammatory response, Macrophages, Metal nanoparticles, Nf-kappa-b, Pathology, Physico-chemical properties, Physicochemical property, Property, Silver nanoparticles, Sodium compounds, Synthetic routes, Toxic reagents
dos Santos, FP, Verschure, PFMJ, (2022). Excitatory-Inhibitory Homeostasis and Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex Frontiers In Systems Neuroscience 15, 806544
Maintaining a balance between excitatory and inhibitory activity is an essential feature of neural networks of the neocortex. In the face of perturbations in the levels of excitation to cortical neurons, synapses adjust to maintain excitatory-inhibitory (EI) balance. In this review, we summarize research on this EI homeostasis in the neocortex, using stroke as our case study, and in particular the loss of excitation to distant cortical regions after focal lesions. Widespread changes following a localized lesion, a phenomenon known as diaschisis, are not only related to excitability, but also observed with respect to functional connectivity. Here, we highlight the main findings regarding the evolution of excitability and functional cortical networks during the process of post-stroke recovery, and how both are related to functional recovery. We show that cortical reorganization at a global scale can be explained from the perspective of EI homeostasis. Indeed, recovery of functional networks is paralleled by increases in excitability across the cortex. These adaptive changes likely result from plasticity mechanisms such as synaptic scaling and are linked to EI homeostasis, providing a possible target for future therapeutic strategies in the process of rehabilitation. In addition, we address the difficulty of simultaneously studying these multiscale processes by presenting recent advances in large-scale modeling of the human cortex in the contexts of stroke and EI homeostasis, suggesting computational modeling as a powerful tool to tie the meso- and macro-scale processes of recovery in stroke patients. Copyright © 2022 Páscoa dos Santos and Verschure.
JTD Keywords: balanced excitation, canonical microcircuit, cerebral-cortex, cortical excitability, cortical reorganization, diaschisis, excitability, excitatory-inhibitory balance, functional networks, homeostatic plasticity, ischemic-stroke, neuronal avalanches, photothrombotic lesions, state functional connectivity, whole-brain models, Algorithm, Biological marker, Brain, Brain cell, Brain cortex, Brain function, Brain radiography, Cerebrovascular accident, Cortical reorganization, Diaschisis, Down regulation, Excitability, Excitatory-inhibitory balance, Fluorine magnetic resonance imaging, Functional networks, Homeostasis, Homeostatic plasticity, Human, Motor dysfunction, Neuromodulation, Plasticity, Pyramidal nerve cell, Review, Simulation, Stroke, Stroke patient, Theta-burst stimulation, Visual cortex
RIZZELO, L, DE MATTEIS, V, (2022). Identification of SARS-CoV-2 by Gold Nanoparticles Biocell 46, 2369-2380
The SARS-CoV-2 outbreaks highlighted the need for effective, reliable, fast, easy-to-do and cheap diagnostics procedures. We pragmatically experienced that an early positive-case detection, inevitably coupled with a mass vaccination campaign, is a milestone to control the COVID-19 pandemic. Gold nanoparticles (AuNPs) can indeed play a crucial role in this context, as their physicochemical, optics and electronics properties are being extensively used in photothermal therapy (PTT), radiation therapy (RT), drug delivery and diagnostic. AuNPs can be synthesized by several approaches to obtain different sizes and shapes that can be easily functionalized with many kinds of molecules such as antibodies, proteins, probes, and lipids. In addition, AuNPs showed high biocompatibility making them useful tool in medicine field. We thus reviewed here the most relevant evidence on AuNPs as effective way to detect the presence of SARS-CoV-2 antigens. We trust future diagnostic efforts must take this 'old-fashioned' nanotechnology tool into consideration for the development and commercialization of reliable and feasible detection kits.
JTD Keywords: Aggregation, Antibodies, Assay, Covid-19, Diagnosis, Enhanced raman-scattering, Gold nanoparticles, Immunoassay, Pandemic disease, Physicochemical properties, Rapid detection, Sars-cov-2, Sensors, Surface-plasmon resonance, Therapy
Boschker, HTS, Cook, PLM, Polerecky, L, Eachambadi, RT, Lozano, H, Hidalgo-Martinez, S, Khalenkow, D, Spampinato, V, Claes, N, Kundu, P, Wang, D, Bals, S, Sand, KK, Cavezza, F, Hauffman, T, Bjerg, JT, Skirtach, AG, Kochan, K, McKee, M, Wood, B, Bedolla, D, Gianoncelli, A, Geerlings, NMJ, Van Gerven, N, Remaut, H, Geelhoed, JS, Millan-Solsona, R, Fumagalli, L, Nielsen, LP, Franquet, A, Manca, JV, Gomila, G, Meysman, FJR, (2021). Efficient long-range conduction in cable bacteria through nickel protein wires Nature Communications 12, 3996
Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures. Filamentous cable bacteria conduct electrical currents over centimeter distances through fibers embedded in their cell envelope. Here, Boschker et al. show that the fibers consist of a conductive core containing nickel proteins that is surrounded by an insulating protein shell.
JTD Keywords: Bacteria (microorganisms), Bacterial protein, Bacterial proteins, Bacterium, Chemistry, Deltaproteobacteria, Electric conductivity, Electricity, Electron, Electron transport, Metabolism, Microscopy, Nanowires, Nickel, Physiology, Protein, Resonance raman, Spectroscopy, Transport electrons
Parra-Monreal, V, Ortega-Machuca, MA, Ramin-Azcin, J, Svendsen, W, Romano-Rodriguez, A, Moreno-Sereno, M, (2021). Detection of cytokines in skeletal muscle tissue using optical SPR sensing platform Proceedings Of The 2021 13th Spanish Conference On Electron Devices, Cde 2021 , 102-105
In this work we have explored the use of a Surface Plasmon resonance (SPR) phenomenon for the detection of interleukin-6 (IL-6), a pro-inflammatory cytokine. It plays an important role in the muscle tissues, having direct relation with muscle contraction and, thus, it is considered a biomarker for some types of muscular dystrophies. Here we show that SPR can be used as a real-time monitoring of the shift of the reflectance dip of a gold diffraction grating in front to the antibody adhesion to gold.
JTD Keywords: antibodies, gratings, interleukin-6 (il-6), proteins, Antibodies, Gratings, Interleukin-6 (il-6), Proteins, Surface plasmon resonance
Ortega, MA, Rodríguez-Comas, J, Velasco-Mallorquí, F, Balaguer-Trias, J, Parra, V, Ramón-Azcón, J, Yavas, O, Quidant, R, Novials, A, Servitja, JM, (2021). In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip Biosensors 11, 138
Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.
JTD Keywords: biosensor, cytoarchitecture, dna hybridization, gelatin, in situ insulin monitoring, langerhans, lspr sensors, microfluidic device, organ-on-a-chip, parallel, platform, scaffold, Animals, Biosensing techniques, Diabetes mellitus, type 2, Drug discovery, Drug evaluation, preclinical, Human pancreatic-islets, Humans, In situ insulin monitoring, Insulin secretion, Insulins, Lab-on-a-chip devices, Lspr sensors, Oligonucleotide array sequence analysis, Organ-on-a-chip, Surface plasmon resonance
Faron, A., Pieper, C. C., Schmeel, F. C., Sprinkart, A. M., Kuetting, D. L. R., Fimmers, R., Trebicka, J., Schild, H. H., Meyer, C., Thomas, D., Luetkens, J. A., (2019). Fat-free muscle area measured by magnetic resonance imaging predicts overall survival of patients undergoing radioembolization of colorectal cancer liver metastases European Radiology 29, (9), 4709-4717
Objectives: To investigate the clinical potential of fat-free muscle area (FFMA) to predict outcome in patients with liver-predominant metastatic colorectal cancer (mCRC) undergoing radioembolization (RE) with 90Yttrium microspheres.
Methods: Patients with mCRC who underwent RE in our center were included in this retrospective study. All patients received liver magnetic resonance imaging including standard T2-weighted images. The total erector spinae muscle area and the intramuscular adipose tissue area were measured at the level of the origin of the superior mesenteric artery and subtracted to calculate FFMA. Cutoff values for definition of low FFMA were 3644 mm2 in men and 2825 mm2 in women. The main outcome was overall survival (OS). For survival analysis, the Kaplan-Meier method and Cox regressions comparing various clinic-oncological parameters which potentially may affect OS were performed.
Results: Seventy-seven patients (28 female, mean age 60 ± 11 years) were analyzed. Mean time between MRI and the following RE was 17 ± 31 days. Median OS after RE was 178 days. Patients with low FFMA had significantly shortened OS compared to patients with high FFMA (median OS: 128 vs. 273 days, p = 0.017). On multivariate Cox regression analysis, OS was best predicted by FFMA (hazard ratio (HR) 2.652; p < 0.001). Baseline bilirubin (HR 1.875; p = 0.030), pattern of tumor manifestation (HR 1.679; p = 0.001), and model of endstage liver disease (MELD) score (HR 1.164; p < 0.001) were also significantly associated with OS.
Conclusions: FFMA was associated with OS in patients receiving RE for treatment of mCRC and might be a new prognostic biomarker for survival prognosis.
JTD Keywords: Brachytherapy, Colorectal cancer, Magnetic resonance imaging, Sarcopenia
Seo, K. D., Kwak, B. K., Sánchez, S., Kim, D. S., (2015). Microfluidic-assisted fabrication of flexible and location traceable organo-motor IEEE Transactions on Nanobioscience , 14, (3), 298-304
In this paper, we fabricate a flexible and location traceable micromotor, called organo-motor, assisted by microfluidic devices and with high throughput. The organo-motors are composed of organic hydrogel material, poly (ethylene glycol) diacrylate (PEGDA), which can provide the flexibility of their structure. For spatial and temporal traceability of the organo-motors under magnetic resonance imaging (MRI), superparamagnetic iron oxide nanoparticles (SPION; Fe
JTD Keywords: Flexible, Hydrogel, Magnetic resonance imaging, Microfluidics, Micromotor, Microparticle, Organo-motor, Poly (ethylene glycol) diacrylate, Self-propulsion, Superparamagnetic iron oxide nanoparticles
Mir, Mònica , Tahirbegi, Islam Bogachan , Valle-Delgado, Juan José , Fernàndez-Busquets, X., Samitier, Josep , (2012). In vitro study of magnetite-amyloid β complex formation Nanomedicine: Nanotechnology, Biology, and Medicine 8, (6), 974-980
Biogenic magnetite (Fe3O4) has been identified in human brain tissue. However, abnormal concentration of magnetite nanoparticles in the brain has been observed in different neurodegenerative pathologies. In the case of Alzheimer's disease (AD), these magnetic nanoparticles have been identified attached to the characteristic brain plaques, which are mainly formed by fibrils of amyloid β peptide (Aβ). However, few clues about the formation of the magnetite-Aβ complex have been reported. We have investigated the interaction between these important players in the AD with superconducting quantum interference, scanning electron microscope, surface plasmon resonance, and magnetic force microscopy. The results support the notion that the magnetite-Aβ complex is created before the synthesis of the magnetic nanoparticles, bringing a highly stable interaction of this couple.
JTD Keywords: Alzheimer's disease, Biogenic magnetite, Amyloid β peptide (Aβ), Superconducting quantum interference, Scanning electron microscope, Surface plasmon resonance, Magnetic force microscopy
Tort, N., Salvador, J. P., Avino, A., Eritja, R., Comelles, J., Martinez, E., Samitier, J., Marco, M. P., (2012). Synthesis of steroid-oligonucleotide conjugates for a DNA site-encoded SPR immunosensor Bioconjugate Chemistry , 23, (11), 2183-2191
The excellent self-assembling properties of DNA and the excellent specificity of the antibodies to detect analytes of small molecular weight under competitive conditions have been combined in this study. Three oligonucleotide sequences (N(1)up, N(2)up, and N(3)up) have been covalently attached to three steroidal haptens (8, hG, and 13) of three anabolic-androgenic steroids (AAS), stanozolol (ST), tetrahydrogestrinone (THG), and boldenone (B), respectively. The synthesis of steroid oligonucleotide conjugates has been performed by the reaction of oligonucleotides carrying amino groups with carboxyl acid derivatives of steroidal haptens. Due to the chemical nature of the steroid derivatives, two methods for coupling the haptens and the ssDNA have been studied: a solid-phase coupling strategy and a solution-phase coupling strategy. Specific antibodies against ST, THG, and B have been used in this study to asses the possibility of using the self-assembling properties of the DNA to prepare biofunctional SPR gold chips based on the immobilization of haptens, by hybridization with the complementary oligonucleotide strands possessing SH groups previously immobilized. The capture of the steroid oligonucleotide conjugates and subsequent binding of the specific antibodies can be monitored on the sensogram due to variations produced on the refractive index on top of the gold chip. The resulting steroid oligonucleotide conjugates retain the hybridization and specific binding properties of oligonucleotides and haptens as demonstrated by thermal denaturation experiments and surface plasmon resonance (SPR).
JTD Keywords: Directed protein immobilization, Plasmon resonance biosensor, Self-assembled monolayers, Label-free, Serum samples, Assay, Immunoassays, Antibodies, Progress, Binding