DONATE

Preventing the tissue’s response to stiffness may be key to slowing the progression of breast tumors

A study led by the Institute of Bioengineering of Catalonia demonstrates that laminin, a protein present in breast tissues, prevents the effects of stiffening, protecting cells against tumor growth. While the mechanism has been demonstrated in vitro, persuasive indications suggest its potential applicability in vivo, as observed in patient samples.

Mechanosensing: harnessing nuclear mechanics to understand health and disease

A study led by IBEC researchers, and published in Nature Cell Biology, shows that applying mechanical force to the cell nucleus affects the transport of proteins across the nuclear membrane. In doing so, this controls cellular processes and could play a key role in various diseases, such as cancer. This entails a novel approach to understanding aspects of cancer invasion and metastasis, opening the door to potential new techniques for diagnosis and therapy.

Researchers discover how cellular membranes change curvature depending on BAR proteins

A team of researchers at IBEC and UPC, led by Pere Roca-Cusachs and Marino Arroyo, study how BAR proteins, a family of molecules that bind curved cellular membranes, reshape these membranes. Scientists report in the journal Nature Communications, through both experiments and modelling, the dynamics of these membrane reshaping processes that occur both in normal cells or disease scenarios.