DONATE

Publications

by Keyword: Immobilization

Fontana-Escartin, A, Lanzalaco, S, Bertran, O, Aleman, C, (2022). Electrochemical multi-sensors obtained by applying an electric discharge treatment to 3D-printed poly(lactic acid) Applied Surface Science 597, 153623

Electrochemical sensors for real-time detection of several bioanalytes have been prepared by additive manufacturing, shaping non-conductive poly(lactic acid) (PLA) filaments, and applying a physical treatment to create excited species. The latter process, which consists of the application of power discharge of 100 W during 2 min in a chamber at a low pressure of O-2, converts electrochemically inert PLA into an electrochemically responsive material. The electric discharge caused the oxidation of the PLA surface as evidenced by the increment in the quantity of oxygenated species detected by FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). Indeed, changes in the surface chemical composition became more pronounced with increasing O-2 pressure. After demonstrating the performance of the chemically modified material as individual dopamine and glucose sensors, multiplexed detection has been achieved by measuring simultaneously the two voltammetric signals. This has been performed by collecting the signals in two different regions, a naked chemically modified PLA for dopamine detection and a chemically modified PLA region functionalized with Glucose Oxidase. These outcomes led to define a new paradigm for manufacturing electrodes for electrochemical sensors based on 3D printing without using conducting materials at any stage of the process.

JTD Keywords: Additive manu f a c turing, Carbon, Conductivity, Degradation, Dopamine, Dopamine detection, Glucose detection, Glucose sensors, Immobilization, Multiplexed detect i o n, Oxidase, Plasma treatment


Quandt, Jonas, GaraySarmiento, Manuela, Witzdam, Lena, Englert, Jenny, Rutsch, Yannik, Stöcker, Cornelia, Obstals, Fabian, Grottke, Oliver, RodriguezEmmenegger, Cesar, (2022). Interactive Hemocompatible Nanocoating to Prevent SurfaceInduced Coagulation in Medical Devices Advanced Materials Interfaces 9, 2201055

Martí D, Martín-Martínez E, Torras J, Betran O, Turon P, Alemán C, (2022). In silico study of substrate chemistry effect on the tethering of engineered antibodies for SARS-CoV-2 detection: Amorphous silica vs gold Colloids And Surfaces B-Biointerfaces 213, 112400

The influence of the properties of different solid substrates on the tethering of two antibodies, IgG1-CR3022 and IgG1-S309, which were specifically engineered for the detection of SARS-CoV-2, has been examined at the molecular level using conventional and accelerated Molecular Dynamics (cMD and aMD, respectively). Two surfaces with very different properties and widely used in immunosensors for diagnosis, amorphous silica and the most stable facet of the face-centered cubic gold structure, have been considered. The effects of such surfaces on the structure and orientation of the immobilized antibodies have been determined by quantifying the tilt and hinge angles that describe the orientation and shape of the antibody, respectively, and the dihedrals that measure the relative position of the antibody arms with respect to the surface. Results show that the interactions with amorphous silica, which are mainly electrostatic due to the charged nature of the surface, help to preserve the orientation and structure of the antibodies, especially of the IgG1-CR3022, indicating that the primary sequence of those antibodies also plays some role. Instead, short-range van der Waals interactions with the inert gold surface cause a higher degree tilting and fraying of the antibodies with respect to amorphous silica. The interactions between the antibodies and the surface also affect the correlation among the different angles and dihedrals, which increases with their strength. Overall, results explain why amorphous silica substrates are frequently used to immobilize antibodies in immunosensors. © 2022 The Authors

JTD Keywords: amorphous silica, enzyme, gol d, immobilization, immunosensor, molecu l a r dynamics, protein adsorption, sars-cov-2 immunosensor, simulations, spike protein, surface interactions, target, vaccine, Amorphous silica, Antibodies, Antibody engineering, Antibody immobilization, Antibody structure, Article, Chemical detection, Computer model, Controlled study, Dihedral angle, Gold, In-silico, Molecular dynamics, Molecular levels, Molecular-dynamics, Nonhuman, Property, Sars, Sars-cov-2 immunosensor, Severe acute respiratory syndrome coronavirus 2, Silica, Silico studies, Silicon dioxide, Solid substrates, Structure analysis, Substrate chemistry, Substrates, Van der waals forces, Virus detection


Valles, Morgane, Pujals, Sílvia, Albertazzi, Lorenzo, Sánchez, Samuel, (2022). Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors Acs Nano 16, 5615-5626

Hidouri S, Errachid AH, Baussels J, Korpan YI, Ruiz-Sanchez O, Baccar ZM, (2021). Potentiometric sensing of histamine using immobilized enzymes on layered double hydroxides Journal Of Food Science And Technology-Mysore 58, 2936-2942

Diamine oxydase and peroxidase have been co-immobilized onto layered double hydroxide (LDH) thin films for the development of real-time histamine biosensors. The chosen LDH materials are Mg2AlCO3, Mg4FeCl and Ca2AlCl. Prepared bi-enzymatic hybrid nanomaterials are capable of detecting histamine through the electrochemical oxidation of H(2)O(2)and are used as the sensitive membrane for potentiometric microelectrode. Histamine biosensors developed in this work have fast response of less than 20 s, are sensitive and selective, with a large dynamic range of 10(-8)-10(-3) M and a limit of detection of less than 10(-8) M. The detection limit of the developed bi-enzymatic biosensors is relatively higher than those corresponding with gas and liquid chromatography, which are still considered as the reference methods. Finally, the reproducibility, the specificity and the storage stability of the biosensors were studied.

JTD Keywords: Biogenic-amines, Biosensor, Diamine oxidase, Film, Fish, Histamine, Hybrid nanomaterial, Immobilization, Layer double hydroxide, Potentiometric biosensor, Specificity


Apriceno A, Silvestro I, Girelli A, Francolini I, Pietrelli L, Piozzi A, (2021). Preparation and characterization of chitosan-coated manganese-ferrite nanoparticles conjugated with laccase for environmental bioremediation Polymers 13, 1453

Bioremediation with immobilized enzymes has several advantages, such as the enhancement of selectivity, activity, and stability of biocatalysts, as well as enzyme reusability. Laccase has proven to be a good candidate for the removal of a wide range of contaminants. In this study, naked or modified MnFe O magnetic nanoparticles (MNPs) were used as supports for the immobilization of laccase from Trametes versicolor. To increase enzyme loading and stability, MNPs were coated with chitosan both after the MNP synthesis (MNPs-CS) and during their formation (MNPs-CS ). SEM analysis showed different sizes for the two coated systems, 20 nm and 10 nm for MNPs-CS and MNPs-CS , respectively. After covalent immobilization of laccase by glutaraldehyde, the MNPs-CS -lac and MNPs-CS-lac systems showed a good resistance to temperature denaturation and storage stability. The most promising system for use in repeated batches was MNPs-CS -lac, which degraded about 80% of diclofenac compared to 70% of the free enzyme. The obtained results demonstrated that the MnFe O -CS system could be an excellent candidate for the removal of contaminants. 2 4 in situ in situ in situ in situ 2 4 in situ

JTD Keywords: bioremediation, chitosan, diclofenac, diclofenac removal, immobilized enzyme, laccase, magnetic nanoparticles, phase, removal, supports, Bioremediation, Chitosan, Diclofenac removal, Enzyme immobilization, Immobilized enzyme, Laccase, Magnetic nanoparticles


Marti, D, Martin-Martinez, E, Torras, J, Bertran, O, Turon, P, Aleman, C, (2021). In silico antibody engineering for SARS-CoV-2 detection Computational And Structural Biotechnology Journal 19, 5525-5534

Engineered immunoglobulin-G molecules (IgGs) are of wide interest for the development of detection elements in protein-based biosensors with clinical applications. The strategy usually employed for the de novo design of such engineered IgGs consists on merging fragments of the three-dimensional structure of a native IgG, which is immobilized on the biosensor surface, and of an antibody with an exquisite target specificity and affinity. In this work conventional and accelerated classical molecular dynamics (cMD and aMD, respectively) simulations have been used to propose two IgG-like antibodies for COVID-19 detection. More specifically, the crystal structure of the IgG1 B12 antibody, which inactivates the human immunodeficiency virus-1, has been merged with the structure of the antibody CR3022 Fab tightly bounded to SARS-CoV-2 receptor-binding domain (RBD) and the structure of the 5309 antibody Fab fragment complexed with SARS-CoV-2 RBD. The two constructed antibodies, named IgG1-CR3022 and IgG1-S309, respectively, have been immobilized on a stable gold surface through a linker. Analyses of the influence of both the merging strategy and the substrate on the stability of the two constructs indicate that the IgG1-S309 antibody better preserves the neutralizing structure than the IgG1-CR3022 one. Overall, results indicate that the IgG1-S309 is appropriated for the generation of antibody based sensors for COVID-19 diagnosis. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

JTD Keywords: cr3022, igg1, molecular engineering, s309, Antibodies, Antibody engineering, Biosensors, Chemical detection, Clinical application, Cov, Cr3022, Crystal structure, Design, Diseases, Gold nanoparticles, Igg1, Igg1 antibody, Immobilization, Immunoglobulin g, Immunosensor, In-silico, Merging, Molecular dynamics, Molecular engineering, Orientation, Protein-based biosensors, Receptor-binding domains, S309, Sars, Sensor, Spike protein, Target, Vaccine, Viruses


Van Der Hofstadt, M., Hüttener, M., Juárez, A., Gomila, G., (2015). Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope Ultramicroscopy , 154, 29-36

Abstract With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates.

JTD Keywords: Atomic Force Microscope (AFM), Living cell imaging, Bacteria division, Gelatine immobilization, Dynamic jumping mode


Won, J. E., Mateos-Timoneda, M. A., Castaño, O., Planell, J. A., Seo, S. J., Lee, E. J., Han, C. M., Kim, H. W., (2015). Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering Biotechnology Letters , 37, (4), 935-342

Bioactive nanocomposite scaffolds with cell-adhesive surface have excellent bone regeneration capacities. Fibronectin (FN)-immobilized nanobioactive glass (nBG)/polycaprolactone (PCL) (FN-nBG/PCL) scaffolds with an open pore architecture were generated by a robotic-dispensing technique. The surface immobilization level of FN was significantly higher on the nBG/PCL scaffolds than on the PCL scaffolds, mainly due to the incorporated nBG that provided hydrophilic chemical-linking sites. FN-nBG/PCL scaffolds significantly improved cell responses, including initial anchorage and subsequent cell proliferation. Although further in-depth studies on cell differentiation and the in vivo animal responses are required, bioactive nanocomposite scaffolds with cell-favoring surface are considered to provide promising three-dimensional substrate for bone regeneration.

JTD Keywords: Bone scaffolds, Cell response, Fibronectin, Nanobioactive glass, Nanocomposites, Polycaprolactone, Bone, Cell proliferation, Cells, Cytology, Glass, Nanocomposites, Polycaprolactone, Robotics, Bone scaffolds, Bone tissue engineering, Cell response, Fibronectin, Fibronectin immobilizations, Nano bioactive glass, Nanocomposite scaffolds, Three-dimensional substrates, Scaffolds (biology)


Penon, O., Novo, S., Duran, S., Ibanez, E., Nogues, C., Samitier, J., Duch, M., Plaza, J. A., Perez-Garcia, L., (2012). Efficient biofunctionalization of polysilicon barcodes for adhesion to the zona pellucida of mouse embryos Bioconjugate Chemistry , 23, (12), 2392-2402

Cell tracking is an emergent area in nano-biotechnology, promising the study of individual cells or the identification of populations of cultured cells. In our approach, microtools designed for extracellular tagging are prepared, because using biofunctionalized polysilicon barcodes to tag cell membranes externally avoids the inconveniences of cell internalization. The crucial covalent biofunctionalization process determining the ultimate functionality was studied in order to find the optimum conditions to link a biomolecule to a polysilicon barcode surface using a self-assembled monolayer (SAM) as the connector. Specifically, a lectin (wheat germ agglutinin, WGA) was used because of its capacity to recognize some specific carbohydrates present on the surface of most mammalian cells. Self-assembled monolayers were prepared on polysilicon surfaces including aldehyde groups as terminal functions to study the suitability of their covalent chemical bonding to WGA. Some parameters, such as the polysilicon surface roughness or the concentration of WGA, proved to be crucial for successful biofunctionalization and bioactivity. The SAMs were characterized by contact angle measurements, time-of-flight secondary ion mass spectrometry (TOF-SIMS), laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS), and atomic force microscopy (AFM). The biofunctionalization step was also characterized by fluorescence microscopy and, in the case of barcodes, by adhesion experiments to the zona pellucida of mouse embryos. These experiments showed high barcode retention rates after 96 h of culture as well as high embryo viability to the blastocyst stage, indicating the robustness of the biofunctionalization and, therefore, the potential of these new microtools to be used for cell tagging.

JTD Keywords: Self-assembled monolayers, Wheat-germ-agglutinin, Protein immobilization strategies, Mass-spectrometry, Cell-surface, Petide, Binding, Identifications, Nanoparticles, Recognition


Tort, N., Salvador, J. P., Avino, A., Eritja, R., Comelles, J., Martinez, E., Samitier, J., Marco, M. P., (2012). Synthesis of steroid-oligonucleotide conjugates for a DNA site-encoded SPR immunosensor Bioconjugate Chemistry , 23, (11), 2183-2191

The excellent self-assembling properties of DNA and the excellent specificity of the antibodies to detect analytes of small molecular weight under competitive conditions have been combined in this study. Three oligonucleotide sequences (N(1)up, N(2)up, and N(3)up) have been covalently attached to three steroidal haptens (8, hG, and 13) of three anabolic-androgenic steroids (AAS), stanozolol (ST), tetrahydrogestrinone (THG), and boldenone (B), respectively. The synthesis of steroid oligonucleotide conjugates has been performed by the reaction of oligonucleotides carrying amino groups with carboxyl acid derivatives of steroidal haptens. Due to the chemical nature of the steroid derivatives, two methods for coupling the haptens and the ssDNA have been studied: a solid-phase coupling strategy and a solution-phase coupling strategy. Specific antibodies against ST, THG, and B have been used in this study to asses the possibility of using the self-assembling properties of the DNA to prepare biofunctional SPR gold chips based on the immobilization of haptens, by hybridization with the complementary oligonucleotide strands possessing SH groups previously immobilized. The capture of the steroid oligonucleotide conjugates and subsequent binding of the specific antibodies can be monitored on the sensogram due to variations produced on the refractive index on top of the gold chip. The resulting steroid oligonucleotide conjugates retain the hybridization and specific binding properties of oligonucleotides and haptens as demonstrated by thermal denaturation experiments and surface plasmon resonance (SPR).

JTD Keywords: Directed protein immobilization, Plasmon resonance biosensor, Self-assembled monolayers, Label-free, Serum samples, Assay, Immunoassays, Antibodies, Progress, Binding


Rodriguez-Segui, Santiago A., Pons Ximenez, Jose Ignacio, Sevilla, Lidia, Ruiz, Ana, Colpo, Pascal, Rossi, Francois, Martinez, Elena, Samitier, Josep, (2011). Quantification of protein immobilization on substrates for cellular microarray applications Journal of Biomedical Materials Research - Part A , 98A, (2), 245-256

Cellular microarray developments and its applications are the next step after DNA and protein microarrays. The choice of the surface chemistry of the substrates used for the implementation of this technique, that must favor proper protein immobilization while avoiding cell adhesion on the nonspotted areas, presents a complex challenge. This is a key issue since usually the best nonfouling surfaces are also the ones that retain immobilized the smallest amounts of printed protein. To quantitatively assess the amount of protein immobilization, in this study several combinations of fluorescently labeled fibronectin (Fn*) and streptavidin (SA*) were microspotted, with and without glycerol addition in the printing buffer, on several substrates suitable for cellular microarrays. The substrates assayed included chemically activated surfaces as well as Poly ethylene oxide (PEO) films that are nonfouling in solution but accept adhesion of proteins in dry conditions. The results showed that the spotted Fn* was retained by all the surfaces, although the PEO surface did show smaller amounts of immobilization. The SA*, on the other hand, was only retained by the chemically activated surfaces. The inclusion of glycerol in the printing buffer significantly reduced the immobilization of both proteins. The results presented in this article provide quantitative evidence of the convenience of using a chemically activated surface to immobilize proteins relevant for cellular microarray applications, particularly when ECM proteins are cospotted with smaller factors which are more difficult to be retained by the surfaces.

JTD Keywords: Protein immobilization, Quantification, Microarray, Substrate, Surface chemistry


Lagunas, A., Comelles, J., Martinez, E., Samitier, J., (2010). Universal chemical gradient platforms using poly(methyl methacrylate) based on the biotin streptavidin interaction for biological applications Langmuir 26, (17), 14154-14161

This article describes a simple method for the construction of a universal surface chemical gradient platform based on the biotin streptavidin model. In this approach, surface chemical gradients were prepared in poly(methyl methacrylate) (PM MA), a biocompatible polymer, by a controlled hydrolysis procedure. The physicochemical properties of the resulting modified surfaces were extensively characterized. Chemical analysis carried out via time-of-flight secondary ion mass spectrometry (ToRSIMS) and X-ray photoelectron spectroscopy (XPS) showed the formation of a smooth, highly controllable carboxylic acid gradient of increasing concentration along the sample surface. Atomic force microscopy (AFM) and contact angle (CA) results indicate that, in contrast with most of the chemical gradient methods published in the literature, the chemical modification of the polymer surface barely affects its physical properties. The introduction of carboxylic acid functionality along the surface was then used for biomolecule anchoring. For this purpose, the surface was activated and derivatized first with biotin and finally with streptavidin (SA V) in a directed orientation fashion. The SAV gradient was qualitatively assessed by fluorescence microscopy analysis and quantified by surface plasmon resonance (SPR) in order to establish a quantitative relationship between SAV surface densities and the surface location. The usefulness of the fabrication method described for biological applications was tested by immobilizing biotinylated bradykinin onto the SAV gradient. This proof-of-concept application shows the effectiveness of the concentration range of the gradient because the effects of bradykinin on cell morphology were observed to increase gradually with increasing drug concentrations. The intrinsic characteristics of the fabricated gradient platform (absence of physicochemical modifications other than those due to the biomolecules included) allow us to attribute cell behavior unequivocally to the biomolecule surface density changes.

JTD Keywords: Wettability gradient, Polyethylene surface, Combinatorial, Immobilization, Biomaterials, Fabrication, Deposition, Bradykinin, Monolayers, Discharge


Tort, N., Salvador, J. P., Eritja, R., Poch, M., Martinez, E., Samitier, J., Marco, M. P., (2009). Fluorescence site-encoded DNA addressable hapten microarray for anabolic androgenic steroids Trac-Trends in Analytical Chemistry , 28, (6), 718-728

We report a new strategy for immunochemical screening of small organic molecules based on the use of a hapten microarray. Using DNA-directed immobilization strategies, we have been able to convert a DNA chip into a hapten microarray by taking advantage of all the benefits of the structural and electrostatic homogeneous properties of DNA. The hapten microarray uses hapten-oligonucleotide probes instead of proteins, avoiding the limitations of preparing stochiometrically-defined protein-oligonucleotide bioconjugates. As proof of concept, we show here the development of a microarray for analysis of anabolic androgenic steroids. The microchip is able to detect several illegal substances with sufficient detectability to be used as a screening method, according to the regulations of the World Anti-Doping Agency for sport and the European Commision for food safety. The results that we show corroborate the universal possibilities of the DNA chip, and, in this case, they open the way to develop hapten microarrays for the immunochemical analysis of small organic molecules.

JTD Keywords: Anti-doping, DNA chip, DNA-directed immobilization (DDI), Fluorescence, Food safety, Hapten microarray, Immunochemical screening, Proof of concept, Small organic molecule, Steroid


Baccar, Z. M., Hidouri, S., El Bari, N., Jaffrezic-Renault, N., Errachid, A., Zine, N., (2009). Stable immobilization of anti-beta casein antibody onto layered double hydroxides materials for biosensor applications Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 647-655

This review presents the development of new kind of antibody/LDH (layered double hydroxides) hybrid nanomaterials for beta casein detection. The preparation method of the LDH is described. It is based on the co-precipitation of metallic salts in constant pH and temperature. The chosen LDH are hydrotalcites (Mg2AICO3, Mg3AICO3), Zaccagnaite: Zn2AICO3 and hydrocalumite: Ca 2AICI. Finally, the antibody is immobilized into the LDH materials using Layer-by-Layer method by autoassembly. In this work, we studied the surface properties of the prepared hybrid biomembranes using X-ray diffraction, Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allow describing the antibody immobilization and its interactions with LDH. The antibody was adsorbed and its morphology was conserved in its new environment after more than 15 days continuously in PBS solution, promising a constant biosensor performance.

JTD Keywords: Anti β-casein antibody, Antibody immobilization, Ldh hybrid biomaterials, Urea biosensors


Errachid, A., Mills, C. A., Pla, M., Lopez, M. J., Villanueva, G., Bausells, J., Crespo, E., Teixidor, F., Samitier, J., (2008). Focused ion beam production of nanoelectrode arrays Materials Science & Engineering C 5th Maghreb/Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors (MADICA 2006) (ed. -----), Elsevier Science (Mahdia, Tunisia) 28, (5-6), 777-780

We present a method for the production of nanoelectrodes using focussed ion beam techniques (FIB). The electrodes utilise nanometric holes milled in a silicon nitride based pasivation layer, followed by wet etching of a silicon oxide based pasivation layer, to expose an underlying gold electrode. After functionalisation using a surface assembled monolayer and an electrochemically grown polypyrrole, these gold nanoelectrodes have been tested, via cyclic voltammetry, in the detection of [Fe(CN)(6)](4-/3-) ions. The nanoelectrodes will be used to investigate the electrical properties of nanometric biological specimen.

JTD Keywords: Neutral carrier, Solid contact, Microelectrodes, Immobilization