DONATE

Publications

by Keyword: Fibroblast

Duch, P, Diaz-Valdivia, N, Ikemori, R, Gabasa, M, Radisky, ES, Arshakyan, M, Gea-Sorli, S, Mateu-Bosch, A, Bragado, P, Carrasco, JL, Mori, H, Ramirez, J, Teixido, C, Reguart, N, Fillat, C, Radisky, DC, Alcaraz, J, (2022). Aberrant TIMP-1 overexpression in tumor-associated fibroblasts drives tumor progression through CD63 in lung adenocarcinoma Matrix Biology 111, 207-225

Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an important regulator of extracellular matrix turnover that has been traditionally regarded as a potential tumor suppressor owing to its inhibitory effects of matrix metal-loproteinases. Intriguingly, this interpretation has been challenged by the consistent observation that increased expression of TIMP-1 is associated with poor prognosis in virtually all cancer types including lung cancer, supporting a tumor-promoting function. However, how TIMP-1 is dysregulated within the tumor micro-environment and how it drives tumor progression in lung cancer is poorly understood. We analyzed the expression of TIMP-1 and its cell surface receptor CD63 in two major lung cancer subtypes: lung adenocarci-noma (ADC) and squamous cell carcinoma (SCC), and defined the tumor-promoting effects of their interac-tion. We found that TIMP-1 is aberrantly overexpressed in tumor-associated fibroblasts (TAFs) in ADC compared to SCC. Mechanistically, TIMP-1 overexpression was mediated by the selective hyperactivity of the pro-fibrotic TGF-61/SMAD3 pathway in ADC-TAFs. Likewise, CD63 was upregulated in ADC compared to SCC cells. Genetic analyses revealed that TIMP-1 secreted by TGF-61-activated ADC-TAFs is both nec-essary and sufficient to enhance growth and invasion of ADC cancer cells in culture, and that tumor cell expression of CD63 was required for these effects. Consistently, in vivo analyses revealed that ADC cells co-injected with fibroblasts with reduced SMAD3 or TIMP-1 expression into immunocompromised mice attenu-ated tumor aggressiveness compared to tumors bearing parental fibroblasts. We also found that high TIMP1 and CD63 mRNA levels combined define a stronger prognostic biomarker than TIMP1 alone. Our results identify an excessive stromal TIMP-1 within the tumor microenvironment selectively in lung ADC, and implicate it in a novel tumor-promoting TAF-carcinoma crosstalk, thereby pointing to TIMP-1/CD63 interaction as a novel therapeutic target in lung cancer. (c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

JTD Keywords: Angiogenesis, Cancer cells, Cancer-associated fibroblast, Cd63, Expression, Fibrosis, Hepatocellular-carcinoma, Metalloproteinases, Nintedanib, Prognostic-significance, Protein, Smad3, Squamous-cell carcinoma, Tgf-? 1, Tgf-β1, Timp-1, Tissue inhibitor, Tumor microenvironment


De Luca, Maria, Lucchesi, Daniela, Tuberoso, Carlo Ignazio Giovanni, Fernàndez-Busquets, Xavier, Vassallo, Antonio, Martelli, Giuseppe, Fadda, Anna Maria, Pucci, Laura, Caddeo, Carla, (2022). Liposomal Formulations to Improve Antioxidant Power of Myrtle Berry Extract for Potential Skin Application Pharmaceutics 14, 910

Many substances in plant extracts are known for their biological activities. These substances act in different ways, exerting overall protective effects against many diseases, especially skin disorders. However, plant extracts’ health benefits are often limited by low bioavailability. To overcome these limitations, drug delivery systems can be employed. In this study, we evaluated the antioxidant power of an ethanolic extract from Myrtus communis L. (myrtle) berries through colorimetric tests (DPPH and FRAP). The antioxidant activity was also verified by using fibroblast cell culture through cellular Reactive Oxygen Species (ROS) levels measurements. Moreover, the myrtle extract was formulated in phospholipid vesicles to improve its bioavailability and applicability. Myrtle liposomes were characterized by size, surface charge, storage stability, and entrapment efficiency; visualized by using cryo-TEM images; and assayed for cytocompatibility and anti-ROS activity. Our results suggest that myrtle liposomes were cytocompatible and improved the extract’s antioxidant power in fibroblasts, suggesting a potential skin application for these formulations and confirming that nanotechnologies could be a valid tool to enhance plant extracts’ potentialities.

JTD Keywords: antioxidant, bioactive compounds, capacity, essential oils, fibroblast, liposomes, skin, Communis l., Myrtle extract


Almici E, Chiappini V, López-Márquez A, Badosa C, Blázquez B, Caballero D, Montero J, Natera-de Benito D, Nascimento A, Roldán M, Lagunas A, Jiménez-Mallebrera C, Samitier J, (2022). Personalized in vitro Extracellular Matrix Models of Collagen VI-Related Muscular Dystrophies Frontiers In Bioengineering And Biotechnology 10, 851825

Collagen VI-related dystrophies (COL6-RDs) are a group of rare congenital neuromuscular dystrophies that represent a continuum of overlapping clinical phenotypes that go from the milder Bethlem myopathy (BM) to the severe Ullrich congenital muscular dystrophy, for which there is no effective treatment. Mutations in one of the three Collagen VI genes alter the incorporation of this protein into the extracellular matrix (ECM), affecting the assembly and the structural integrity of the whole fibrillar network. Clinical hallmarks of COL6-RDs are secondary to the ECM disruption and include muscle weakness, proximal joint contractures, and distal hyperlaxity. Although some traits have been identified in patients’ ECMs, a correlation between the ECM features and the clinical phenotype has not been established, mainly due to the lack of predictive and reliable models of the pathology. Herein, we engineered a new personalized pre-clinical model of COL6-RDs using cell-derived matrices (CDMs) technology to better recapitulate the complexity of the native scenario. We found that CDMs from COL6-RD patients presented alterations in ECM structure and composition, showing a significantly decreased Collagen VI secretion, especially in the more severe phenotypes, and a decrease in Fibrillin-1 inclusion. Next, we examined the Collagen VI-mediated deposition of Fibronectin in the ECM, finding a higher alignment, length, width, and straightness than in patients with COL6-RDs. Overall, these results indicate that CDMs models are promising tools to explore the alterations that arise in the composition and fibrillar architecture due to mutations in Collagen VI genes, especially in early stages of matrix organization. Ultimately, CDMs derived from COL6-RD patients may become relevant pre-clinical models, which may help identifying novel biomarkers to be employed in the clinics and to investigate novel therapeutic targets and treatments. Copyright © 2022 Almici, Chiappini, López-Márquez, Badosa, Blázquez, Caballero, Montero, Natera-de Benito, Nascimento, Roldán, Lagunas, Jiménez-Mallebrera and Samitier.

JTD Keywords: alpha-3 chain, binding, collagen vi related muscular dystrophy, decellularisation, decellularized matrices, deficiency, expression, fibroblasts, fibronectin, in vitro model, patient-derived ecms, skeletal-muscle, ullrich, Cell-derived matrices, Collagen, Collagen vi related muscular dystrophy, Decellularisation, Decellularization, Extracellular matrices, Extracellular matrix, Genes, In vitro model, In-vitro, In-vitro models, Matrix, Matrix model, Muscular dystrophy, Pathology, Patient-derived ecm, Patient-derived ecms, Pre-clinical


Bonilla-Pons SÀ, Nakagawa S, Bahima EG, Fernández-Blanco Á, Pesaresi M, D'Antin JC, Sebastian-Perez R, Greco D, Domínguez-Sala E, Gómez-Riera R, Compte RIB, Dierssen M, Montserrat Pulido, N, Cosma MP, (2022). Müller glia fused with adult stem cells undergo neural differentiation in human retinal models Ebiomedicine 77, 103914

Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons.We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation.We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids.We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies.This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).Published by Elsevier B.V.

JTD Keywords: cell fusion, expression, fusion, ganglion-cells, in-vitro, mouse, müller glia, neural differentiation, organoids, regeneration, retina regeneration, stem cells, stromal cells, transplantation, 4',6 diamidino 2 phenylindole, 5' nucleotidase, Agarose, Alcohol, Arpe-19 cell line, Article, Beta catenin, Beta tubulin, Bone-marrow-cells, Bromophenol blue, Buffer, Calcium cell level, Calcium phosphate, Calretinin, Canonical wnt signaling, Cd34 antigen, Cell culture, Cell fusion, Cell viability, Coculture, Complementary dna, Confocal microscopy, Cornea transplantation, Cryopreservation, Cryoprotection, Crystal structure, Current clamp technique, Dimethyl sulfoxide, Dodecyl sulfate sodium, Edetic acid, Electrophysiology, Endoglin, Fetal bovine serum, Fibroblast growth factor 2, Flow cytometry, Fluorescence activated cell sorting, Fluorescence intensity, Glyceraldehyde 3 phosphate dehydrogenase, Glycerol, Glycine, Hoe 33342, Immunofluorescence, Immunohistochemistry, Incubation time, Interleukin 1beta, Lentivirus vector, Matrigel, Mercaptoethanol, Microinjection, Mueller cell, Müller glia, N methyl dextro aspartic acid, Nerve cell differentiation, Neural differentiation, Nitrogen, Nonhuman, Organoids, Paraffin, Paraffin embedding, Paraformaldehyde, Patch clamp technique, Penicillin derivative, Phenolsulfonphthalein, Phenotype, Phosphate buffered saline, Phosphoprotein phosphatase inhibitor, Polyacrylamide gel electrophoresis, Potassium chloride, Povidone iodine, Promoter region, Proteinase inhibitor, Real time polymerase chain reaction, Receptor type tyrosine protein phosphatase c, Restriction endonuclease, Retina, Retina dystrophy, Retina regeneration, Retinol, Rhodopsin, Rna extraction, Stem cell, Stem cells, Subcutaneous fat, Tunel assay, Visual impairment, Western blotting


Macedo, MH, Barros, AS, Martinez, E, Barrias, CC, Sarmento, B, (2022). All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes Journal Of Controlled Release 341, 414-430

Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.

JTD Keywords: 3d intestinal model, drug absorption, drug development, endothelium, hydrogel, 3d intestinal model, 3d modeling, 3d models, 3d-modeling, Alkaline-phosphatase, Animal experiments, Biopharmaceutics classification, Caco-2 cells, Cell culture, Collagen, Collagen gel, Drug absorption, Drug development, Endothelium, Fibroblasts, Glycoproteins, Hydrogel, In-vitro, Matrix metalloproteinases, Membrane-permeability, Paracellular transport, Permeability, Single-pass vs., Speed up


Alcaraz J, Ikemori R, Llorente A, Díaz-valdivia N, Reguart N, Vizoso M, (2021). Epigenetic reprogramming of tumor-associated fibroblasts in lung cancer: Therapeutic opportunities Cancers 13, 3782

Lung cancer is the leading cause of cancer-related death worldwide. The desmoplastic stroma of lung cancer and other solid tumors is rich in tumor-associated fibroblasts (TAFs) exhibiting an activated/myofibroblast-like phenotype. There is growing awareness that TAFs support key steps of tumor progression and are epigenetically reprogrammed compared to healthy fibroblasts. Although the mechanisms underlying such epigenetic reprogramming are incompletely understood, there is increasing evidence that they involve interactions with either cancer cells, pro-fibrotic cytokines such as TGF-β, the stiffening of the surrounding extracellular matrix, smoking cigarette particles and other environmental cues. These aberrant interactions elicit a global DNA hypomethylation and a selective transcriptional repression through hypermethylation of the TGF-β transcription factor SMAD3 in lung TAFs. Likewise, similar DNA methylation changes have been reported in TAFs from other cancer types, as well as histone core modifications and altered microRNA expression. In this review we summarize the evidence of the epigenetic reprogramming of TAFs, how this reprogramming contributes to the acquisition and maintenance of a tumor-promoting phenotype, and how it provides novel venues for therapeutic intervention, with a special focus on lung TAFs.

JTD Keywords: cancer-associated fibroblasts, desmoplasia, dna methylation, epigenetics, expression, genomic dna, lung cancer, mechanical memory, myofibroblast differentiation, pulmonary fibroblasts, smoking, stromal fibroblasts, tgf-?, tgf-beta, transforming growth-factor-beta-1, tumor stroma, Cancer-associated fibroblasts, Carcinoma-associated fibroblasts, Desmoplasia, Epigenetics, Lung cancer, Smoking, Tgf-β, Tumor stroma


Andreu, I, Falcones, B, Hurst, S, Chahare, N, Quiroga, X, Le Roux, AL, Kechagia, Z, Beedle, AEM, Elosegui-Artola, A, Trepat, X, Farre, R, Betz, T, Almendros, I, Roca-Cusachs, P, (2021). The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening Nature Communications 12, 4229

Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved. Cells sense mechanical forces from their environment, but the precise mechanical variable sensed by cells is unclear. Here, the authors show that cells can sense the rate of force application, known as the loading rate, with effects on YAP nuclear localization and cytoskeletal stiffness remodelling.

JTD Keywords: Actin cytoskeleton, Actin filament, Actin-filament, Adhesion, Animal, Animals, Atomic force microscopy, Breathing, Cell, Cell adhesion, Cell culture, Cell nucleus, Cells, cultured, Cytoplasm, Extracellular-matrix, Fibroblast, Fibroblasts, Fibronectin, Frequency, Gene knockdown, Gene knockdown techniques, Genetics, Germfree animal, Integrin, Intracellular signaling peptides and proteins, Knockout mouse, Lung, Male, Mechanotransduction, Mechanotransduction, cellular, Metabolism, Mice, Mice, knockout, Microscopy, atomic force, Mouse, Optical tweezers, Paxillin, Physiology, Primary cell culture, Pxn protein, mouse, Rat, Rats, Rats, sprague-dawley, Respiration, Signal peptide, Softening, Specific pathogen-free organisms, Sprague dawley rat, Stress, Substrate, Substrate rigidity, Talin, Talin protein, mouse, Tln2 protein, mouse, Traction, Transmission, Ultrastructure, Yap1 protein, rat


López-Canosa A, Perez-Amodio S, Yanac-Huertas E, Ordoño J, Rodriguez-Trujillo R, Samitier J, Castaño O, Engel E, (2021). A microphysiological system combining electrospun fibers and electrical stimulation for the maturation of highly anisotropic cardiac tissue Biofabrication 13, 35047

The creation of cardiac tissue models for preclinical testing is still a non-solved problem in drug discovery, due to the limitations related to thein vitroreplication of cardiac tissue complexity. Among these limitations, the difficulty of mimicking the functional properties of the myocardium due to the immaturity of the used cells hampers the obtention of reliable results that could be translated into human patients.In vivomodels are the current gold standard to test new treatments, although it is widely acknowledged that the used animals are unable to fully recapitulate human physiology, which often leads to failures during clinical trials. In the present work, we present a microfluidic platform that aims to provide a range of signaling cues to immature cardiac cells to drive them towards an adult phenotype. The device combines topographical electrospun nanofibers with electrical stimulation in a microfabricated system. We validated our platform using a co-culture of neonatal mouse cardiomyocytes and cardiac fibroblasts, showing that it allows us to control the degree of anisotropy of the cardiac tissue inside the microdevice in a cost-effective way. Moreover, a 3D computational model of the electrical field was created and validated to demonstrate that our platform is able to closely match the distribution obtained with the gold standard (planar electrode technology) using inexpensive rod-shaped biocompatible stainless-steel electrodes. The functionality of the electrical stimulation was shown to induce a higher expression of the tight junction protein Cx-43, as well as the upregulation of several key genes involved in conductive and structural cardiac properties. These results validate our platform as a powerful tool for the tissue engineering community due to its low cost, high imaging compatibility, versatility, and high-throughput configuration capabilities.

JTD Keywords: bioreactor, cardiac tissue engineering, cardiomyocytes, electrospinning, fabrication, fibroblasts, heart-on-a-chip, heart-tissue, in vitro models, myocardium, orientation, platform, scaffolds, Cardiac tissue engineering, Electrospinning, Field stimulation, Heart-on-a-chip, In vitro models, Microphysiological system


Gabasa M, Radisky ES, Ikemori R, Bertolini G, Arshakyan M, Hockla A, Duch P, Rondinone O, Llorente A, Maqueda M, Davalos A, Gavilán E, Perera A, Ramírez J, Gascón P, Reguart N, Roz L, Radisky DC, Alcaraz J, (2021). MMP1 drives tumor progression in large cell carcinoma of the lung through fibroblast senescence Cancer Letters 507, 1-12

© 2021 Large cell carcinoma (LCC) is a rare and aggressive lung cancer subtype with poor prognosis and no targeted therapies. Tumor-associated fibroblasts (TAFs) derived from LCC tumors exhibit premature senescence, and coculture of pulmonary fibroblasts with LCC cell lines selectively induces fibroblast senescence, which in turn drives LCC cell growth and invasion. Here we identify MMP1 as overexpressed specifically in LCC cell lines, and we show that expression of MMP1 by LCC cells is necessary for induction of fibroblast senescence and consequent tumor promotion in both cell culture and mouse models. We also show that MMP1, in combination with TGF-β1, is sufficient to induce fibroblast senescence and consequent LCC promotion. Furthermore, we implicate PAR-1 and oxidative stress in MMP1/TGF-β1-induced TAF senescence. Our results establish an entirely new role for MMP1 in cancer, and support a novel therapeutic strategy in LCC based on targeting senescent TAFs.

JTD Keywords: cancer-associated fibroblasts, lung cancer, mmp1, senescence, tgf-?, tgf-beta, Cancer-associated fibroblasts, Lung cancer, Mmp1, Senescence, Tgf-β


Conti S, Kato T, Park D, Sahai E, Trepat X, Labernadie A, (2021). CAFs and cancer cells co-migration in 3D spheroid invasion assay Methods In Molecular Biology 2179, 243-256

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell–cell interactions and cell–matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.

JTD Keywords: 3d spheroid invasion, cancer associated fibroblasts, collective migration, dissemination, epithelial cancer cells, leader/follower cells, 3d spheroid invasion, Cancer associated fibroblasts, Collective invasion, Collective migration, Epithelial cancer cells, Leader/follower cells


Gabasa, M., Arshakyan, M., Llorente, A., Chuliá-Peris, L., Pavelescu, I., Xaubet, A., Pereda, J., Alcaraz, J., (2020). Interleukin-1β modulation of the mechanobiology of primary human pulmonary fibroblasts: Potential implications in lung repair International Journal of Molecular Sciences 21, (22), 8417

Pro-inflammatory cytokines like interleukin-1β (IL-1β) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1β on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1β and used Atomic Force Microscopy to unveil that IL-1β significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1β stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1β may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1β-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1β provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.

JTD Keywords: Cell mechanics, Collagen, IL-1β, MMPs, Pulmonary fibroblasts, Repair


Conti, S., Kato, T., Park, D., Sahai, E., Trepat, X., Labernadie, A., (2020). CAFs and cancer cells co-migration in 3D spheroid invasion assay Methods in Molecular Biology (ed. Campbell, K., Thevenea, E.), Humana Press (New York, USA) 2179, 243-256

In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell–cell interactions and cell–matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.

JTD Keywords: 3D spheroid invasion, Cancer associated fibroblasts, Collective migration, Epithelial cancer cells, Leader/follower cells


Alcaraz, J., Carrasco, J. L., Millares, L., Luis, I. C., Fernández-Porras, F. J., Martínez-Romero, A., Diaz-Valdivia, N., De Cos, J. S., Rami-Porta, R., Seijo, L., Ramírez, J., Pajares, M. J., Reguart, N., Barreiro, E., Monsó, E., (2019). Stromal markers of activated tumor associated fibroblasts predict poor survival and are associated with necrosis in non-small cell lung cancer Lung Cancer 135, 151-160

Objectives: Tumor associated fibroblasts (TAFs) are essential contributors of the progression of non-small cell lung cancer (NSCLC). Most lung TAFs exhibit an activated phenotype characterized by the expression of α-SMA and fibrillar collagens. However, the prognostic value of these activation markers in NSCLC remains unclear. Material and Methods: We conducted a quantitative image analysis of α-SMA immunostaining and picrosirius red staining of fibrillar collagens imaged by bright-field and polarized microscopy, respectively, using tissue microarrays with samples from 220 surgical patients, which elicited a percentage of positive staining area for each marker and patient. Results: Kaplan-Meier curves showed that all TAF activation markers were significantly associated with poor survival, and their prognostic value was independent of TNM staging as revealed by multivariate analysis, which elicited an adjusted increased risk of death after 3 years of 129% and 94% for fibrillar collagens imaged with bright-field (p = 0.004) and polarized light (p = 0.003), respectively, and of 89% for α-SMA (p = 0.009). We also found a significant association between all TAF activation markers and tumor necrosis, which is often indicative of hypoxia, supporting a pathologic link between tumor desmoplasia and necrosis/hypoxia. Conclusions: Our findings identify patients with large histologic coverage of fibrillar collagens and α-SMA + TAFs to be at higher risk of recurrence and death, supporting that they could be considered for adjuvant therapy.

JTD Keywords: Cancer associated fibroblast, Collagen, Lung cancer, Necrosis, Survival, α-SMA


Caddeo, C., Manca, M. L., Matos, M., Gutierrez, G., Díez-Sales, O., Peris, J. E., Usach, I., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2017). Functional response of novel bioprotective poloxamer-structured vesicles on inflamed skin Nanomedicine: Nanotechnology, Biology, and Medicine 13, (3), 1127-1136

Resveratrol and gallic acid, a lipophilic and a hydrophilic phenol, were co-loaded in innovative, biocompatible nanovesicles conceived for ensuring the protection of the skin from oxidative- and inflammatory-related affections. The basic vesicles, liposomes and glycerosomes, were produced by a simple, one-step method involving the dispersion of phospholipid and phenols in water or water/glycerol blend, respectively. Liposomes and glycerosomes were modified by the addition of poloxamer, a stabilizer and viscosity enhancer, thus obtaining viscous or semisolid dispersions of structured vesicles. The vesicles were spherical, unilamellar and small in size (~70 nm in diameter). The superior ability of the poloxamer-structured vesicles to promote the accumulation of both phenols in the skin was demonstrated, as well as their low toxicity and great ability to protect fibroblasts from chemically-induced oxidative damage. The in vivo administration of the vesicular phenols on TPA (phorbol ester)-exposed skin led to a significant reduction of oedema and leukocyte infiltration.

JTD Keywords: Fibroblasts, Mice, Phenol, Phospholipid vesicle, Poloxamer, Skin inflammation


Vitonyte, J., Manca, M. L., Caddeo, C., Valenti, D., Peris, J. E., Usach, I., Nacher, A., Matos, M., Gutiérrez, G., Orrù, G., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2017). Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries European Journal of Pharmaceutics and Biopharmaceutics 114, 278-287

Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70 nm in diameter, while PEVs were larger (∼170 nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections.

JTD Keywords: Fibroblasts, Keratinocytes, Phenol, Phospholipid vesicle, Skin pathogens


Caddeo, C., Nacher, A., Vassallo, A., Armentano, M. F., Pons, R., Fernàndez-Busquets, X., Carbone, C., Valenti, D., Fadda, A. M., Manconi, M., (2016). Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer International Journal of Pharmaceutics 513, (1-2), 153-163

The present investigation reports the development of liposomes for the co-delivery of naturally occurring polyphenols, namely quercetin and resveratrol. Small, spherical, uni/bilamellar vesicles were produced, as demonstrated by light scattering, cryo-TEM, SAXS. The incorporation of quercetin and resveratrol in liposomes did not affect their intrinsic antioxidant activity, as DPPH radical was almost completely inhibited. The cellular uptake of the polyphenols was higher when they were formulated in liposomes, and especially when co-loaded rather than as single agents, which resulted in a superior ability to scavenge ROS in fibroblasts. The in vivo efficacy of the polyphenols in liposomes was assessed in a mouse model of skin lesion. The topical administration of liposomes led to a remarkable amelioration of the tissue damage, with a significant reduction of oedema and leukocyte infiltration. Therefore, the proposed approach based on polyphenol vesicular formulation may be of value in the treatment of inflammation/oxidative stress associated with pre-cancerous/cancerous skin lesions.

JTD Keywords: Antioxidant, Fibroblast, Liposome, Quercetin, Resveratrol, Skin lesion


Gugutkov, D., Altankov, G., Hernandez, J. C. R., Pradas, M. M., Sanchez, M. S., (2010). Fibronectin activity on substrates with controlled -OH density Journal of Biomedical Materials Research - Part A , 92A, (1), 322-331

Adhesion of human fibroblast to a family of fibronectin (FN) coated model substrates consisting of copolymers of ethyl acrylate and hydroxyl ethylacrylate in different ratios to obtain a controlled surface density of -OH groups was investigated. Cell adhesion and spreading surprisingly decreased as the fraction of -OH groups on the Surface increased. AFM studies of FN conformation revealed formation of a protein network on the more hydrophobic surfaces. The density of this network diminished as the fraction of -OH groups in the sample increased, up to a maximal -OH concentration at which, instead of the network, only IN aggregates were observed. The kinetics of network development was followed at different adsorption times. Immunofluorescence for vinculin revealed the formation of well-developed focal adhesion complexes on the more hydrophobic surface (similar to the control glass), which became less defined as the fraction of -OH groups increased. Thus, the efficiency of cell adhesion is enhanced by the formation of FN networks on the substrate, directly revealing the importance of the adsorbed protein conformation for cell adhesion. However, cell-dependent reorganization of substrate-associated FN, which usually takes place on more hydrophilic substrates (as do at the control glass slides), was not observed in this system, suggesting the increased strength of protein-to-substrate interaction. Instead, the late FN matrix formation-after 3 days of culture-was again better pronounced on the more hydrophobic substrates and decreased as the fraction of -OH groups increase, which is in a good agreement with the results for overall cell morphology and focal adhesion formation.

JTD Keywords: Cell adhesion, Fibronectin, Fibroblast, Extracellular matrix, AFM


Trepat, X., Wasserman, M. R., Angelini, T. E., Millet, E., Weitz, D. A., Butler, J. P., Fredberg, J. J., (2009). Physical forces during collective cell migration Nature Physics 5, (6), 426-430

Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions(1-3), and to drive these motions cells exert traction forces on their surroundings(4). Current understanding emphasizes that these traction forces arise mainly in 'leader cells' at the front edge of the advancing cell sheet(5-9). Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails(10-12). Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.

JTD Keywords: Focal adhesions, Granular matter, Bead packs, Morphogenesis, Sheets, Actin, Fluctuations, Fibroblasts, Microscopy, Diversity


Carreras, A., Almendros, I., Acerbi, I., Montserrat, J. M., Navajas, D., Farre, R., (2009). Obstructive apneas induce early release of mesenchymal stem cells into circulating blood Sleep , 32, (1), 117-119

STUDY OBJECTIVES: To investigate whether noninvasive application of recurrent airway obstructions induces early release of mesenchymal stem cells into the circulating blood in a rat model of obstructive sleep apnea. DESIGN: Prospective controlled animal study. SETTING: University laboratory. PATIENTS OR PARTICIPANTS: Twenty male Sprague-Dawley rats (250-300 g). INTERVENTIONS: A specially designed nasal mask was applied to the anesthetized rats. Ten rats were subjected to a pattern of recurrent obstructive apneas (60 per hour, lasting 15 seconds each) for 5 hours. Ten anesthetized rats were used as controls. MEASUREMENTS AND RESULTS: Mesenchymal stem cells from the blood and bone marrow samples were isolated and cultured to count the total number of colony-forming unit fibroblasts (CFU-F) of adherent cells after 9 days in culture. The number of CFU-F from circulating blood was significantly (P = 0.02) higher in the rats subjected to recurrent obstructive apneas (5.00 +/- 1.16; mean +/- SEM) than in controls (1.70 +/- 0.72). No significant (P = 0.54) differences were observed in CFU-F from bone marrow. CONCLUSIONS: Application of a pattern of airway obstructions similar to those experienced by patients with sleep apnea induced an early mobilization of mesenchymal stem cells into circulating blood.

JTD Keywords: Adipocytes/cytology, Animals, Blood Cell Count, Bone Marrow Cells/ cytology, Cell Adhesion/physiology, Cell Count, Cell Differentiation/physiology, Cell Division/physiology, Disease Models, Animal, Fibroblasts/cytology, Male, Mesenchymal Stem Cells/ cytology, Osteocytes/cytology, Rats, Rats, Sprague-Dawley, Sleep Apnea, Obstructive/ blood, Stem Cells/cytology


Kirchhof, K., Hristova, K., Krasteva, N., Altankov, G., Groth, T., (2009). Multilayer coatings on biomaterials for control of MG-63 osteoblast adhesion and growth Journal of Materials Science: Materials in Medicine , 20, (4), 897-907

Here, the layer-by-layer technique (LbL) was used to modify glass as model biomaterial with multilayers of chitosan and heparin to control the interaction with MG-63 osteoblast-like cells. Different pH values during multilayer formation were applied to control their physico-chemical properties. In the absence of adhesive proteins like plasma fibronectin (pFN) both plain layers were rather cytophobic. Hence, the preadsorption of pFN was used to enhance cell adhesion which was strongly dependent on pH. Comparing the adhesion promoting effects of pFN with an engineered repeat of the FN III fragment and collagen I which both lack a heparin binding domain it was found that multilayers could bind pFN specifically because only this protein was capable of promoting cell adhesion. Multilayer surfaces that inhibited MG-63 adhesion did also cause a decreased cell growth in the presence of serum, while an enhanced adhesion of cells was connected to an improved cell growth.

JTD Keywords: Cell-adhesion, Polyelectrolyte multilayers, Substratum chemistry, Surface-properties, Fibroblast-growth, Fibronectin, Polymers, Chitosan, Polysaccharides, Wettability


Maneva-Radicheva, L., Ebert, U., Dimoudis, N., Altankov, G., (2008). Fibroblast remodeling of adsorbed collagen type IV is altered in contact with cancer cells Histology and Histopathology , 23, (7), 833-842

A series of co-culture experiments between fibroblasts and H-460 human lung carcinoma cells were performed to learn more about the fate of adsorbed type IV collagen (Coll IV). Fibroblasts were able to spatially rearrange Coll IV in a specific linear pattern, similar but not identical to the fibronectin (FN) fibrils. Coll IV partly co-aligns with fibroblast actin cytoskeleton and transiently co-localize with FN, as well as with beta 1 and a 2 integrin clusters, suggesting a cell-dependent process. We further found that this Coll IV reorganization is suppressed in contact with H460 cells. Zymography revealed strongly elevated MMP-2 activity in supernatants of co-cultures, but no activity when fibroblasts or cancer cells were cultured alone. Thus, we provide evidence that reorganization of substrate associated Coll IV is a useful morphological approach for in vitro studies on matrix remodeling activity during tumorigenesis.

JTD Keywords: Adsorbed collagen IV reorganization, Fibroblasts and cancer cells co-culture, MMP-2