DONATE

Publications

by Keyword: Separation

Wagner, AM, Kostina, NY, Xiao, Q, Klein, ML, Percec, V, Rodriguez-Emmenegger, C, (2024). Glycan-Driven Formation of Raft-Like Domains with Hierarchical Periodic Nanoarrays on Dendrimersome Synthetic Cells Biomacromolecules 25, 366-378

The accurate spatial segregation into distinct phases within cell membranes coordinates vital biochemical processes and functionalities in living organisms. One of nature's strategies to localize reactivity is the formation of dynamic raft domains. Most raft models rely on liquid-ordered L-0 phases in a liquid-disordered L-d phase lacking correlation and remaining static, often necessitating external agents for phase separation. Here, we introduce a synthetic system of bicomponent glycodendrimersomes coassembled from Janus dendrimers and Janus glycodendrimers (JGDs), where lactose-lactose interactions exclusively drive lateral organization. This mechanism results in modulated phases across two length scales, yielding raft-like microdomains featuring nanoarrays at the nanoscale. By varying the density of lactose and molecular architecture of JGDs, the nanoarray type and size, shape, and spacing of the domains were controlled. Our findings offer insight into the potential primordial origins of rudimentary raft domains and highlight the crucial role of glycans within the glycocalyx.

JTD Keywords: Article, Artificial cells, Atomic force microscopy, Bicomponents, Bilayer, Bilayer membrane, Biochemical functionality, Biochemical process, Biological-membranes, Cell component, Cell membrane, Cellular parameters, Chemical interaction, Chemical structure, Chemistry, Cytology, Defined janus glycodendrimers, Dehydration, Dendrimer, Dendrimers, Dilution, Dimer, External agents, Fourier transform, Giant vesicles, Glycan, Glycans, Glycocalyx, Glycodendrimers, Janus dendrimer, Janus glycodendrimer, Lactose, Lateral organization, Lectin, Lipid rafts, Living organisms, Membrane damage, Membrane microdomain, Membrane microdomains, Membrane structure, Metabolism, Modulated phases, Molecule, Monomer, Nanoarrays, Oligosaccharide, Organization, Periodicity, Phase separation, Phase-separation, Phospholipids, Polysaccharide, Polysaccharides, Raft like domain, Relative humidity, Spatial segregation, Structure analysis, Sugars, Synthetic systems, Tetramer, Unclassified drug, Unilamellar vesicles, Water


Resina, L, Alemán, C, Ferreira, FC, Esteves, T, (2023). Protein-imprinted polymers: How far have "plastic antibodies" come? Biotechnology Advances 68, 108220

Antibodies are highly selective and sensitive, making them the gold standard for recognition affinity tools. However, their production cost is high and their downstream processing is time-consuming. Molecularly imprinted polymers (MIPs) are tailor-made by incorporating specific molecular recognition sites in their structure, thus translating into receptor-like activity mode of action. The interest in molecular imprinting technology, applied to biomacromolecules, has increased in the past decade. MIPs, produced using biomolecules as templates, commonly referred to as "plastic antibodies" or "artificial receptors", have been considered as suitable cheaper and easy to produce alternatives to antibodies. Research on MIPs, designed to recognize proteins or peptides is particularly important, with potential contributions towards biomedical applications, namely biosensors and targeted drug delivery systems. This mini review will cover recent advances on (bio)molecular imprinting technology, where proteins or peptides are targeted or mimicked for sensing and therapeutic applications. Polymerization methods are reviewed elsewhere, being out of the scope of this review. Template selection and immobilization approaches, monomers and applications will be discussed, highlighting possible drawbacks and gaps in research.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

JTD Keywords: artificial antibodies, assay, biomimetics, biomolecules, biosensors, delivery, diagnostics, drug delivery, electrochemical detection, nanoparticles, receptors, science-and-technology, selective recognition, selective targeting, separation, templates, Artificial antibodies, Biomimetics, Biomolecules, Biosensors, Diagnostics, Drug delivery, Molecularly imprinted polymers, Nanoparticles, Selective targeting, Solid-phase synthesis


Almadhi, S, Forth, J, Rodriguez-Arco, L, Duro-Castano, A, Williams, I, Ruiz-Pérez, L, Battaglia, G, (2023). Bottom-Up Preparation of Phase-Separated Polymersomes Macromolecular Bioscience 23, 2300068

A bottom-up approach to fabricating monodisperse, two-component polymersomes that possess phase-separated ("patchy") chemical topology is presented. This approach is compared with already-existing top-down preparation methods for patchy polymer vesicles, such as film rehydration. These findings demonstrate a bottom-up, solvent-switch self-assembly approach that produces a high yield of nanoparticles of the target size, morphology, and surface topology for drug delivery applications, in this case patchy polymersomes of a diameter of ≈50 nm. In addition, an image processing algorithm to automatically calculate polymersome size distributions from transmission electron microscope images based on a series of pre-processing steps, image segmentation, and round object identification is presented.© 2023 Wiley-VCH GmbH.

JTD Keywords: assemblies, copolymers, evolution, membranes, micelles, ph, phase separation, polymersomes, rafts, self-assembly, size, vesicles, Cell biology, Drug delivery, Phase separation, Polymersomes, Self-assembly, Vesicles


De Corato, M, Arroyo, M, (2022). A theory for the flow of chemically responsive polymer solutions: Equilibrium and shear-induced phase separation Journal Of Rheology 66, 813-835

Chemically responsive polymers are macromolecules that respond to local variations of the chemical composition of the solution by changing their conformation, with notable examples including polyelectrolytes, proteins, and DNA. The polymer conformation changes can occur in response to changes in the pH, the ionic strength, or the concentration of a generic solute that interacts with the polymer. These chemical stimuli can lead to drastic variations of the polymer flexibility and even trigger a transition from a coil to a globule polymer conformation. In many situations, the spatial distribution of the chemical stimuli can be highly inhomogeneous, which can lead to large spatial variations of polymer conformation and of the rheological properties of the mixture. In this paper, we develop a theory for the flow of a mixture of solute and chemically responsive polymers. The approach is valid for generic flows and inhomogeneous distributions of polymers and solutes. To model the polymer conformation changes introduced by the interactions with the solute, we consider the polymers as linear elastic dumbbells whose spring stiffness depends on the solute concentration. We use Onsager's variational formalism to derive the equations governing the evolution of the variables, which unveils novel couplings between the distribution of dumbbells and that of the solute. Finally, we use a linear stability analysis to show that the governing equations predict an equilibrium phase separation and a distinct shear-induced phase separation whereby a homogeneous distribution of solute and dumbbells spontaneously demix. Similar phase transitions have been observed in previous experiments using stimuli-responsive polymers and may play an important role in living systems. (C) 2022 The Society of Rheology.

JTD Keywords: Coil-globule transition, Constitutive equation, Dilute-solutions, Dumbbell model, Dynamics, Macromolecules, Nonequilibrium thermodynamics, Polyelectrolytes, Polymer migration, Polymer phase separation, Polymers, Predictions, Rheology, Shear-induced phase separation, Solute-polymer interactions, Stress, Viscoelasticity


Seuma, M, Bolognesi, B, (2022). Understanding and evolving prions by yeast multiplexed assays Current Opinion In Genetics & Development 75, 101941

Yeast genetics made it possible to derive the first fundamental insights into prion composition, conformation, and propagation. Fast-forward 30 years and the same model organism is now proving an extremely powerful tool to comprehensively explore the impact of mutations in prion sequences on their function, toxicity, and physical properties. Here, we provide an overview of novel multiplexed strategies where deep mutagenesis is combined to a range of tailored selection assays in yeast, which are particularly amenable for investigating prions and prion-like sequences. By mimicking evolution in a flask, these multiplexed approaches are revealing mechanistic insights on the consequences of prion self-assembly, while also reporting on the structure prion sequences adopt in vivo.Copyright © 2022 Elsevier Ltd. All rights reserved.

JTD Keywords: aggregation, appearance, domains, inheritance, mutations, nucleation, physical basis, propagation, protein, Phase-separation


Sole-Marti, X, Vilella, T, Labay, C, Tampieri, F, Ginebra, MP, Canal, C, (2022). Thermosensitive hydrogels to deliver reactive species generated by cold atmospheric plasma: a case study with methylcellulose Biomaterials Science 10, 3845-3855

Hydrogels have been recently proposed as suitable materials to generate reactive oxygen and nitrogen species (RONS) upon gas-plasma treatment, and postulated as promising alternatives to conventional cancer therapies. Acting as delivery vehicles that allow a controlled release of RONS to the diseased site, plasma-treated hydrogels can overcome some of the limitations presented by plasma-treated liquids in in vivo therapies. In this work, we optimized the composition of a methylcellulose (MC) hydrogel to confer it with the ability to form a gel at physiological temperatures while remaining in the liquid phase at room temperature to allow gas-plasma treatment with suitable formation of plasma-generated RONS. MC hydrogels demonstrated the capacity for generation, prolonged storage and release of RONS. This release induced cytotoxic effects on the osteosarcoma cancer cell line MG-63, reducing its cell viability in a dose-response manner. These promising results postulate plasma-treated thermosensitive hydrogels as good candidates to provide local anticancer therapies.

JTD Keywords: Cellulose, Phase-separation, Stability, Substituent, Thermoreversible gelation


Kaurin, D, Bal, PK, Arroyo, M, (2022). Peeling dynamics of fluid membranes bridged by molecular bonds: moving or breaking Journal Of The Royal Society Interface 19, 20220183

Biological adhesion is a critical mechanical function of complex organisms. At the scale of cell-cell contacts, adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. It is physically supported by transient and laterally mobile molecular bonds embedded in fluid membranes. Thus, unlike specific adhesion at solid-solid or solid-fluid interfaces, peeling at fluid-fluid interfaces can proceed by breaking bonds, by moving bonds or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling diffusion, reactions and mechanics. Mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective fracture energy. In a reaction-dominated regime, peeling proceeds by travelling fronts where marginal diffusion and unbinding control peeling speed. In a mixed reaction-diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.

JTD Keywords: cell–cell adhesion, peeling, Adhesive contact, Cadherins, Cell-cell adhesion, Detachment, Detailed mechanics, Diffusion, Growth, Kinetics, Peeling, Red-blood-cells, Repulsion, Separation, Vesicle adhesion


Sierra-Agudelo, J, Rodriguez-Trujillo, R, Samitier, J, (2022). Microfluidics for the Isolation and Detection of Circulating Tumor Cells Microfluidics And Biosensors In Cancer Research 1379, 389-412

Nowadays, liquid biopsy represents one of the most promising techniques for early diagnosis, monitoring, and therapy screening of cancer. This novel methodology includes, among other techniques, the isolation, capture, and analysis of circulating tumor cells (CTCs). Nonetheless, the identification of CTC from whole blood is challenging due to their extremely low concentration (1-100 per ml of whole blood), and traditional methods result insufficient in terms of purity, recovery, throughput and/or viability of the processed sample. In this context, the development of microfluidic devices for detecting and isolating CTCs offers a wide range of new opportunities due to their excellent properties for cell manipulation and the advantages to integrate and bring different laboratory processes into the microscale improving the sensitivity, portability, reducing cost and time. This chapter explores current and recent microfluidic approaches that have been developed for the analysis and detection of CTCs, which involve cell capture methods based on affinity binding and label-free methods and detection based on electrical, chemical, and optical sensors. All the exposed technologies seek to overcome the limitations of commercial systems for the analysis and isolation of CTCs, as well as to provide extended analysis that will allow the development of novel and more efficient diagnostic tools.© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

JTD Keywords: cancer detection, cancer diagnosis, cancer-cells, capture, chip, circulating tumor cells, enrichment, liquid biopsy, microchannel, separation, ultra-fast, Cancer detection, Cancer diagnosis, Circulating tumor cells, Label-free isolation, Liquid biopsy, Microfluidics


Vilela, D, Guix, M, Parmar, J, Blanco-Blanes, A, Sánchez, S, (2022). Micromotor‐in‐Sponge Platform for Multicycle Large‐Volume Degradation of Organic Pollutants Small 18, 2107619

The presence of organic pollutants in the environment is a global threat to human health and ecosystems due to their bioaccumulation and long-term persistence. Hereby a micromotor-in-sponge concept is presented that aims not only at pollutant removal, but towards an efficient in situ degradation by exploiting the synergy between the sponge hydrophobic nature and the rapid pollutant degradation promoted by the cobalt-ferrite (CFO) micromotors embedded at the sponge's core. Such a platform allows the use of extremely low fuel concentration (0.13% H2 O2 ), as well as its reusability and easy recovery. Moreover, the authors demonstrate an efficient multicycle pollutant degradation and treatment of large volumes (1 L in 15 min) by using multiple sponges. Such a fast degradation process is due to the CFO bubble-propulsion motion mechanism, which induces both an enhanced fluid mixing within the sponge and an outward flow that allows a rapid fluid exchange. Also, the magnetic control of the system is demonstrated, guiding the sponge position during the degradation process. The micromotor-in-sponge configuration can be extrapolated to other catalytic micromotors, establishing an alternative platform for an easier implementation and recovery of micromotors in real environmental applications.© 2022 Wiley-VCH GmbH.

JTD Keywords: effective removal, fabrication, microbots, microjets, organic pollutants, propelled micromotors, self-propelled micromotors, sponges, water treatment, Oil-water separation, Organic pollutants, Water treatment


Zeinali, R, del Valle, LJ, Franco, L, Yousef, I, Rintjema, J, Aleman, C, Bravo, F, Kleij, AW, Puiggali, J, (2022). Biobased Terpene Derivatives: Stiff and Biocompatible Compounds to Tune Biodegradability and Properties of Poly(butylene succinate) Polymers 14, 161

Different copolymers incorporating terpene oxide units (e.g., limonene oxide) have been evaluated considering thermal properties, degradability, and biocompatibility. Thus, polycarbonates and polyesters derived from aromatic, monocyclic and bicyclic anhydrides have been considered. Furthermore, ring substitution with myrcene terpene has been evaluated. All polymers were amorphous when evaluated directly from synthesis. However, spherulites could be observed after the slow evaporation of diluted chloroform solutions of polylimonene carbonate, with all isopropene units possessing an R configuration. This feature was surprising considering the reported information that suggested only the racemic polymer was able to crystallize. All polymers were thermally stable and showed a dependence of the maximum degradation rate temperature (from 242 °C to 342 °C) with the type of terpene oxide. The graduation of glass transition temperatures (from 44 °C to 172 °C) was also observed, being higher than those corresponding to the unsubstituted polymers. The chain stiffness of the studied polymers hindered both hydrolytic and enzymatic degradation while a higher rate was detected when an oxidative medium was assayed (e.g., weight losses around 12% after 21 days of exposure). All samples were biocompatible according to the adhesion and proliferation tests performed with fibroblast cells. Hydrophobic and mechanically consistent films (i.e., contact angles between 90° and 110°) were obtained after the evaporation of chloroform from the solutions, having different ratios of the studied biobased polyterpenes and poly(butylene succinate) (PBS). The blend films were comparable in tensile modulus and tensile strength with the pure PBS (e.g., values of 330 MPa and 7 MPa were determined for samples incorporating 30 wt.% of poly(PA-LO), the copolyester derived from limonene oxide and phthalic anhydride. Blends were degradable, biocompatible and appropriate to produce oriented-pore and random-pore scaffolds via a thermally-induced phase separation (TIPS) method and using 1,4-dioxane as solvent. The best results were attained with the blend composed of 70 wt.% PBS and 30 wt.% poly(PA-LO). In summary, the studied biobased terpene derivatives showed promising properties to be used in a blended form for biomedical applications such as scaffolds for tissue engineering.

JTD Keywords: alternating copolymerization, biobased materials, biodegradability, composites, crystallization, cyclohexene oxide, induced phase-separation, limonene oxide, mechanical-properties, polyesters, scaffolds, spherulites, terpene derivatives, thermal properties, thermally-induced phase separation, Acetone, Bio-based, Bio-based materials, Biobased materials, Biocompatibility, Biodegradability, Butenes, Cell culture, Chlorine compounds, Degradation, Evaporation, Glass transition, Limonene oxide, Monoterpenes, Phase separation, Poly (butylenes succinate), Polybutylene succinate, Property, Ring-opening copolymerization, Scaffolds, Spheru-lites, Tensile strength, Terpene derivatives, Thermal properties, Thermally induced phase separation, Thermally-induced phase separation, Thermally?induced phase separation, Thermodynamic properties, Thermogravimetric analysis


Avalos-Padilla, Y, Georgiev, VN, Dimova, R, (2021). ESCRT-III induces phase separation in model membranes prior to budding and causes invagination of the liquid-ordered phase Biochimica Et Biophysica Acta-Biomembranes 1863, 183689

Membrane fission triggered by the endosomal sorting complex required for transport (ESCRT) is an important process observed in several pathogenic and non-pathogenic cellular events. From a synthetic-biology viewpoint, ESCRT proteins represent an interesting machinery for the construction of cell mimetic sub-compartments produced by fission. Since their discovery, the studies on ESCRT-III-mediated action, have mainly focused on protein dynamics, ignoring the role of lipid organization and membrane phase state. Recently, it has been suggested that membrane buds formed by the action of ESCRT-III are generated from transient microdomains in endosomal membranes. However, the interplay between membrane domain formation and ESCRT remodeling pathways has not been investigated. Here, giant unilamellar vesicles made of ternary lipid mixtures, either homogeneous in phase or exhibiting liquid-ordered/liquid-disordered phase coexistence, were employed as a model membrane system. These vesicles were incubated with purified recombinant ESCRT-III proteins from the parasite Entamoeba histolytica. In homogeneous membranes, we observe that EhVps32 can trigger domain formation while EhVps20 preferentially co-localizes in the liquid disordered phase. The addition of EhVps24 appears to induce the formation of intraluminal vesicles produced from the liquid-ordered phase. In phase separated membranes, the intraluminal vesicles are also generated from the liquid-ordered phase and presumably emerge from the phase boundary region. Our findings reinforce the hypothesis that ESCRT-mediated remodeling depends on the membrane phase state. Furthermore, the obtained results point to a potential synthetic biology approach for establishing eukaryotic mimics of artificial cells with microcompartments of specific membrane composition, which can also differ from that of the mother vesicle.

JTD Keywords: cell-membranes, coexistence, complex, escrt-iii, fission, guvs, lipid domains, lipid rafts, membrane fission, microcompartments, microscopy, phase separation, plasma-membrane, protein microarrays, structural basis, ternary mixtures, Escrt-iii, Giant unilamellar vesicles, Guvs, Lipid domains, Membrane fission, Microcompartments, Phase separation, Ternary mixtures


Checa, M, Millan-Solsona, R, Mares, AG, Pujals, S, Gomila, G, (2021). Dielectric imaging of fixed hela cells by in‐liquid scanning dielectric force volume microscopy Nanomaterials 11, 1402

Mapping the dielectric properties of cells with nanoscale spatial resolution can be an im-portant tool in nanomedicine and nanotoxicity analysis, which can complement structural and mechanical nanoscale measurements. Recently we have shown that dielectric constant maps can be obtained on dried fixed cells in air environment by means of scanning dielectric force volume mi-croscopy. Here, we demonstrate that such measurements can also be performed in the much more challenging case of fixed cells in liquid environment. Performing the measurements in liquid media contributes to preserve better the structure of the fixed cells, while also enabling accessing the local dielectric properties under fully hydrated conditions. The results shown in this work pave the way to address the nanoscale dielectric imaging of living cells, for which still further developments are required, as discussed here.

JTD Keywords: atomic force microscopy (afm), capacitance, constant, dielectric properties, electrostatic force microscopy (efm), functional microscopy, nanoscale, scanning dielectric microscopy (sdm), Atomic force microscopy (afm), Dielectric properties, Dielectrophoretic separation, Electrostatic force microscopy (efm), Functional micros-copy, Scanning dielectric microscopy (sdm), Scanning probe microscopy (spm)


Santos-Pata, D, Amil, AF, Raikov, IG, Rennó-Costa, C, Mura, A, Soltesz, I, Verschure, PFMJ, (2021). Entorhinal mismatch: A model of self-supervised learning in the hippocampus Iscience 24, 102364

The hippocampal formation displays a wide range of physiological responses to different spatial manipulations of the environment. However, very few attempts have been made to identify core computational principles underlying those hippocampal responses. Here, we capitalize on the observation that the entorhinal-hippocampal complex (EHC) forms a closed loop and projects inhibitory signals “countercurrent” to the trisynaptic pathway to build a self-supervised model that learns to reconstruct its own inputs by error backpropagation. The EHC is then abstracted as an autoencoder, with the hidden layers acting as an information bottleneck. With the inputs mimicking the firing activity of lateral and medial entorhinal cells, our model is shown to generate place cells and to respond to environmental manipulations as observed in rodent experiments. Altogether, we propose that the hippocampus builds conjunctive compressed representations of the environment by learning to reconstruct its own entorhinal inputs via gradient descent.

JTD Keywords: cognitive neuroscience, grid cells, long-term, networks, neural networks, novelty, oscillations, pattern separation, region, representation, working-memory, Cognitive neuroscience, Neural networks, Rat dentate gyrus, Systems neuroscience


Zeinali, R, del Valle, LJ, Torras, J, Puiggalí, J, (2021). Recent progress on biodegradable tissue engineering scaffolds prepared by thermally-induced phase separation (Tips) International Journal Of Molecular Sciences 22, 3504

Porous biodegradable scaffolds provide a physical substrate for cells allowing them to attach, proliferate and guide the formation of new tissues. A variety of techniques have been developed to fabricate tissue engineering (TE) scaffolds, among them the most relevant is the thermally-induced phase separation (TIPS). This technique has been widely used in recent years to fabricate three-dimensional (3D) TE scaffolds. Low production cost, simple experimental procedure and easy processability together with the capability to produce highly porous scaffolds with controllable architecture justify the popularity of TIPS. This paper provides a general overview of the TIPS methodology applied for the preparation of 3D porous TE scaffolds. The recent advances in the fabrication of porous scaffolds through this technique, in terms of technology and material selection, have been reviewed. In addition, how properties can be effectively modified to serve as ideal substrates for specific target cells has been specifically addressed. Additionally, examples are offered with re-spect to changes of TIPS procedure parameters, the combination of TIPS with other techniques and innovations in polymer or filler selection.

JTD Keywords: biodegradable polymer, composites, morphology, pore structure, porosity, processing parameters, thermally induced phase separation, Biodegradable polymer, Composites, Morphology, Pore structure, Porosity, Processing parameters, Thermally induced phase separation, Tissue engineering scaffold


De Corato, M., Pagonabarraga, I., Abdelmohsen, L. K. E. A., Sánchez, S., Arroyo, M., (2020). Spontaneous polarization and locomotion of an active particle with surface-mobile enzymes Physical Review Fluids 5, (12), 122001

We examine a mechanism of locomotion of active particles whose surface is uniformly coated with mobile enzymes. The enzymes catalyze a reaction that drives phoretic flows but their homogeneous distribution forbids locomotion by symmetry. We find that the ability of the enzymes to migrate over the surface combined with self-phoresis can lead to a spontaneous symmetry-breaking instability whereby the homogeneous distribution of enzymes polarizes and the particle propels. The instability is driven by the advection of enzymes by the phoretic flows and occurs above a critical Péclet number. The transition to polarized motile states occurs via a supercritical or subcritical pitchfork bifurcations, the latter of which enables hysteresis and coexistence of uniform and polarized states.

JTD Keywords: Biomimetic & bio-inspired materials, Locomotion, Surface-driven phase separation


Quiliano, Miguel, Pabón, Adriana, Moles, Ernest, Bonilla-Ramirez, Leonardo, Fabing, Isabelle, Fong, Kim Y., Nieto-Aco, Diego A., Wright, David W., Pizarro, Juan C., Vettorazzi, Ariane, López de Cerain, Adela, Deharo, Eric, Fernàndez-Busquets, Xavier, Garavito, Giovanny, Aldana, Ignacio, Galiano, Silvia, (2018). Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery European Journal of Medicinal Chemistry 152, 489-514

Design, synthesis, structure-activity relationship, cytotoxicity studies, in silico drug-likeness, genotoxicity screening, and in vivo studies of new 1-aryl-3-substituted propanol derivatives led to the identification of nine compounds with promising in vitro (55, 56, 61, 64, 66, and 70–73) and in vivo (66 and 72) antimalarial profiles against Plasmodium falciparum and Plasmodium berghei. Compounds 55, 56, 61, 64, 66 and 70–73 exhibited potent antiplasmodial activity against chloroquine-resistant strain FCR-3 (IC50s < 0.28 μM), and compounds 55, 56, 64, 70, 71, and 72 showed potent biological activity in chloroquine-sensitive and multidrug-resistant strains (IC50s < 0.7 μM for 3D7, D6, FCR-3 and C235). All of these compounds share appropriate drug-likeness profiles and adequate selectivity indexes (77 < SI < 184) as well as lack genotoxicity. In vivo efficacy tests in a mouse model showed compounds 66 and 72 to be promising candidates as they exhibited significant parasitemia reductions of 96.4% and 80.4%, respectively. Additional studies such as liver stage and sporogony inhibition, target exploration of heat shock protein 90 of P. falciparum, targeted delivery by immunoliposomes, and enantiomer characterization were performed and strongly reinforce the hypothesis of 1-aryl-3-substituted propanol derivatives as promising antimalarial compounds.

JTD Keywords: Antiplasmodial, Antimalarial, Arylamino alcohol, Multi-stage activity, Hsp90, Enantiomer separation


O'Neill, R., McCarthy, H. O., Montufar, E. B., Ginebra, M. P., Wilson, D. I., Lennon, A., Dunne, N., (2017). Critical review: Injectability of calcium phosphate pastes and cements Acta Biomaterialia 50, 1-19

Calcium phosphate cements (CPC) have seen clinical success in many dental and orthopaedic applications in recent years. The properties of CPC essential for clinical success are reviewed in this article, which includes properties of the set cement (e.g. bioresorbability, biocompatibility, porosity and mechanical properties) and unset cement (e.g. setting time, cohesion, flow properties and ease of delivery to the surgical site). Emphasis is on the delivery of calcium phosphate (CaP) pastes and CPC, in particular the occurrence of separation of the liquid and solid components of the pastes and cements during injection; and established methods to reduce this phase separation. In addition a review of phase separation mechanisms observed during the extrusion of other biphasic paste systems and the theoretical models used to describe these mechanisms are discussed. Statement of Significance Occurrence of phase separation of calcium phosphate pastes and cements during injection limits their full exploitation as a bone substitute in minimally invasive surgical applications. Due to lack of theoretical understanding of the phase separation mechanism(s), optimisation of an injectable CPC that satisfies clinical requirements has proven difficult. However, phase separation of pastes during delivery has been the focus across several research fields. Therefore in addition to a review of methods to reduce phase separation of CPC and the associated constraints, a review of phase separation mechanisms observed during extrusion of other pastes and the theoretical models used to describe these mechanisms is presented. It is anticipated this review will benefit future attempts to develop injectable calcium phosphate based systems.

JTD Keywords: Bone cements, Calcium phosphates, Injectability, Material properties, Phase separation


Oller-Moreno, S., Singla-Buxarrais, G., Jiménez-Soto, J. M., Pardo, Antonio, Garrido-Delgado, R., Arce, L., Marco, Santiago, (2015). Sliding window multi-curve resolution: Application to gas chromatography - Ion Mobility Spectrometry Sensors and Actuators B: Chemical 15th International Meeting on Chemical Sensors , Elsevier (Buenos Aires, Argentina) 217, 13-21

Abstract Blind Source Separation (BSS) techniques aim to extract a set of source signals from a measured mixture in an unsupervised manner. In the chemical instrumentation domain source signals typically refer to time-varying analyte concentrations, while the measured mixture is the set of observed spectra. Several techniques exist to perform BSS on Ion Mobility Spectrometry, being Simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) and Multivariate Curve Resolution (MCR) the most commonly used. The addition of a multi-capillary gas chromatography column using the ion mobility spectrometer as detector has been proposed in the past to increase chemical resolution. Short chromatography times lead to high levels of co-elution, and ion mobility spectra are key to resolve them. For the first time, BSS techniques are used to deconvolve samples of the gas chromatography - ion mobility spectrometry tandem. We propose a method to extract spectra and concentration profiles based on the application of MCR in a sliding window. Our results provide clear concentration profiles and pure spectra, resolving peaks that were not detected by the conventional use of MCR. The proposed technique could also be applied to other hyphenated instruments with similar strong co-elutions.

JTD Keywords: Blind Source Separation, Multivariate Curve Resolution, Ion Mobility Spectrometry, Gas Chromatography, Hyphenated instrumentation, SIMPLISMA, co-elution


Ivon Rodriguez-Villarreal, Angeles, Tarn, Mark D., Madden, Leigh A., Lutz, Julia B., Greenman, John, Samitier, Josep, Pamme, Nicole, (2011). Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup Lab on a Chip 11, (7), 1240-1248

The continuous flow focussing and manipulation of particles and cells are important factors in microfluidic applications for performing accurate and reproducible procedures downstream. Many particle focussing methods require complex setups or channel designs that can limit the process and its applications. Here, we present diamagnetic repulsion as a simple means of focussing objects in continuous flow, based only on their intrinsic properties without the requirement of any label. Diamagnetic polystyrene particles were suspended in a paramagnetic medium and pumped through a capillary between a pair of permanent magnets, whereupon the particles were repelled by each magnet into the central axis of the capillary, thus achieving focussing. By investigating this effect, we found that the focussing was greatly enhanced with (i) increased magnetic susceptibility of the medium, (ii) reduced flow rate of the suspension, (iii) increased particle size, and (iv) increased residence time in the magnetic field. Furthermore, we applied diamagnetic repulsion to the flow focussing of living, label-free HaCaT cells.

JTD Keywords: Feeble magnetic substances, On-chip, Blood-cells, Microfluidic device, Separation, Field, Levitation, Magnetophoresis, Fractionation, Nanoparticles


Jaramillo, M. D., Torrents, E., Martinez-Duarte, R., Madou, M. J., Juarez, A., (2010). On-line separation of bacterial cells by carbon-electrode dielectrophoresis Electrophoresis , 31, (17), 2921-2928

Dielectrophoresis (DEP) represents a powerful approach to manipulate and study living cells. Hitherto, several approaches have used 2-D DEP chips. With the aim to increase sample volume, in this study we used a 3-D carbon-electrode DEP chip to trap and release bacterial cells. A continuous flow was used to plug an Escherichia coli cell suspension first, to retain cells by positive DEP, and thereafter to recover them by washing with peptone water washing solution. This approach allows one not only to analyze DEP behavior of living cells within the chip, but also to further recover fractions containing DEP-trapped cells. Bacterial concentration and flow rate appeared as critical parameters influencing the separation capacity of the chip. Evidence is presented demonstrating that the setup developed in this study can be used to separate different types of bacterial cells.

JTD Keywords: Bacteria, Carbon electrode, Dielectrophoresis, E. coli, Separation


Pomareda, V., Calvo, D., Pardo, A., Marco, S., (2010). Hard modeling multivariate curve resolution using LASSO: Application to ion mobility spectra Chemometrics and Intelligent Laboratory Systems , 104, (2), 318-332

Multivariate Curve Resolution (MCR) aims to blindly recover the concentration profile and the source spectra without any prior supervised calibration step. It is well known that imposing additional constraints like positiveness, closure and others may improve the quality of the solution. When a physico-chemical model of the process is known, this can be also introduced constraining even more the solution. In this paper, we apply MCR to Ion Mobility Spectra. Since instrumental models suggest that peaks are of Gaussian shape with a width depending on the instrument resolution, we introduce that each source is characterized by a linear superposition of Gaussian peaks of fixed spread. We also prove that this model is able to fit wider peaks departing from pure Gaussian shape. Instead of introducing a non-linear Gaussian peak fitting, we use a very dense model and rely on a least square solver with L1-norm regularization to obtain a sparse solution. This is accomplished via Least Absolute Shrinkage and Selection Operator (LASSO). Results provide nicely resolved concentration profiles and spectra improving the results of the basic MCR solution.

JTD Keywords: Blind source separation, Ion mobility spectrometry, Multivariate curve resolution, Sparse solution, Non negative matrix factorization


Marco, S., Pomareda, V., Pardo, A., Kessler, M., Goebel, J., Mueller, G., (2009). Blind source separation for ion mobility spectra Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 551-553

Miniaturization is a powerful trend for smart chemical instrumentation in a diversity of applications.. It is know that miniaturization in IMS leads to a degradation of the system characteristics. For the present work, we are interested in signal processing solutions to mitigate limitations introduced by limited drift tube length that basically involve a loss of chemical selectivity. While blind source separation techniques (BSS) are popular in other domains, their application for smart chemical instrumentation is limited. However, in some conditions, basically linearity, BSS may fully recover the concentration time evolution and the pure spectra with few underlying hypothesis. This is extremely helpful in conditions where non-expected chemical interferents may appear, or unwanted perturbations may pollute the spectra. SIMPLISMA has been advocated by Harrington et al. in several papers. However, more modem methods of BSS for bilinear decomposition with the restriction of positiveness have appeared in the last decade. In order to explore and compare the performances of those methods a series of experiments were performed.

JTD Keywords: Ion Mobility Spectrometry (IMS), Blind Source Separation (BSS), Multivariate Analysis, SIMPLISMA, MCR, Non-Negative Matrix Factorization (NMF)


Castellarnau, Marc, Errachid, Abdelhamid, Madrid, Cristina, Juárez, Antonio, Samitier, Josep, (2006). Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli Biophysical Journal , 91, (10), 3937-3945

In this study we report on an experimental method based on dielectrophoretic analysis to identify changes in four Escherichia coli isogenic strains that differed exclusively in one mutant allele. The dielectrophoretic properties of wild-type cells were compared to those of hns, hha, and hha hns mutant derivatives. The hns and hha genes code respectively for the global regulators Hha and H-NS. The Hha and H-NS proteins modulate gene expression in Escherichia coli and other Gram negative bacteria. Mutations in either hha or hns genes result in a pleiotropic phenotype. A two-shell prolate ellipsoidal model has been used to fit the experimental data, obtained from dielectrophoresis measurements, and to study the differences in the dielectric properties of the bacterial strains. The experimental results show that the mutant genotype can be predicted from the dielectrophoretic analysis of the corresponding cultures, opening the way to the development of microdevices for specific identification. Therefore, this study shows that dielectrophoresis can be a valuable tool to study bacterial populations which, although apparently homogeneous, may present phenotypic variability.

JTD Keywords: H-NS, Dielectric behaviour, Hemolysin genes, Cells, Separation, Expression, Proteins, HHA, Electrorotation, Polarization