by Keyword: Urea
Fraire JC, Prado-Morales C, Aldaz Sagredo A, Caelles AG, Lezcano F, Peetroons X, Bakenecker AC, Di Carlo V, Sánchez S, (2024). Swarms of Enzymatic Nanobots for Efficient Gene Delivery Acs Applied Materials & Interfaces 16, 47192-47205
This study investigates the synthesis and optimization of nanobots (NBs) loaded with pDNA using the layer-by-layer (LBL) method and explores the impact of their collective motion on the transfection efficiency. NBs consist of biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and are powered by the urease enzyme, enabling autonomous movement and collective swarming behavior. In vitro experiments were conducted to validate the delivery efficiency of fluorescently labeled NBs, using two-dimensional (2D) and three-dimensional (3D) cell models: murine urothelial carcinoma cell line (MB49) and spheroids from human urothelial bladder cancer cells (RT4). Swarms of pDNA-loaded NBs showed enhancements of 2.2- to 2.6-fold in delivery efficiency and 6.8- to 8.1-fold in material delivered compared to inhibited particles (inhibited enzyme) and the absence of fuel in a 2D cell culture. Additionally, efficient intracellular delivery of pDNA was demonstrated in both cell models by quantifying and visualizing the expression of eGFP. Swarms of NBs exhibited a >5-fold enhancement in transfection efficiency compared to the absence of fuel in a 2D culture, even surpassing the Lipofectamine 3000 commercial transfection agent (cationic lipid-mediated transfection). Swarms also demonstrated up to a 3.2-fold enhancement in the amount of material delivered in 3D spheroids compared to the absence of fuel. The successful transfection of 2D and 3D cell cultures using swarms of LBL PLGA NBs holds great potential for nucleic acid delivery in the context of bladder treatments.
JTD Keywords: Animals, Barrier, Cell line, tumor, Dna, Drug delivery, Drug-delivery, Enzyme catalysis, Gene delivery, Gene transfer techniques, Humans, Lactic acid, Mice, Nanobots, Nanoparticles, Pdna, Plasmids, Polyglycolic acid, Polylactic acid-polyglycolic acid copolymer, Swarming, Transfectio, Transfection, Urease, Urinary bladder neoplasms
Ruiz-González, N, Esporrín-Ubieto, D, Hortelao, AC, Fraire, JC, Bakenecker, AC, Guri-Canals, M, Cugat, R, Carrillo, JM, Garcia-Batlletbó, M, Laiz, P, Patiño, T, Sánchez, S, (2024). Swarms of Enzyme-Powered Nanomotors Enhance the Diffusion of Macromolecules in Viscous Media Small 20, 2309387
Over the past decades, the development of nanoparticles (NPs) to increase the efficiency of clinical treatments has been subject of intense research. Yet, most NPs have been reported to possess low efficacy as their actuation is hindered by biological barriers. For instance, synovial fluid (SF) present in the joints is mainly composed of hyaluronic acid (HA). These viscous media pose a challenge for many applications in nanomedicine, as passive NPs tend to become trapped in complex networks, which reduces their ability to reach the target location. This problem can be addressed by using active NPs (nanomotors, NMs) that are self-propelled by enzymatic reactions, although the development of enzyme-powered NMs, capable of navigating these viscous environments, remains a considerable challenge. Here, the synergistic effects of two NMs troops, namely hyaluronidase NMs (HyaNMs, Troop 1) and urease NMs (UrNMs, Troop 2) are demonstrated. Troop 1 interacts with the SF by reducing its viscosity, thus allowing Troop 2 to swim more easily through the SF. Through their collective motion, Troop 2 increases the diffusion of macromolecules. These results pave the way for more widespread use of enzyme-powered NMs, e.g., for treating joint injuries and improving therapeutic effectiveness compared with traditional methods. The conceptual idea of the novel approach using hyaluronidase NMs (HyaNMs) to interact with and reduce the viscosity of the synovial fluid (SF) and urease NMs (UrNMs) for a more efficient transport of therapeutic agents in joints.image
JTD Keywords: Biological barrier, Clinical research, Clinical treatments, Collective motion, Collective motion,nanomotors,nanorobots,swarming,viscous medi, Collective motions, Complex networks, Enzymatic reaction, Enzymes, Hyaluronic acid, Hyaluronic-acid,ph,viscoelasticity,adsorption,barriers,behavior,ureas, Macromolecules, Medical nanotechnology, Nano robots, Nanomotors, Nanorobots, Swarming, Synovial fluid, Target location, Viscous media, Viscous medium
Villasante, A, Corominas, J, Alcon, C, Garcia-Lizarribar, A, Mora, J, Lopez-Fanarraga, M, Samitier, J, (2024). Identification of GB3 as a Novel Biomarker of Tumor-Derived Vasculature in Neuroblastoma Using a Stiffness-Based Model Cancers 16, 1060
Simple Summary Neuroblastoma (NB), a prevalent childhood cancer, presents challenges in treatment due to its cellular diversity and the presence of tumor-derived endothelial cells (TECs) associated with chemoresistance. We lack specific biomarkers for TECs, hindering effective therapies. We developed a stiffness-based in vitro platform simulating arterial and venous conditions to address this gap. Notably, adrenergic NB cells transdifferentiated into TECs where there was an arterial-like stiffness, while mesenchymal cells did not. This platform facilitated the identification of Globotriaosylceramide (GB3) as a novel TEC biomarker. Moreover, we harnessed Shiga toxin-functionalized nanoparticles for the specific targeting of GB3-positive cells, showing promise for future therapeutic strategies. Our study provides insights into NB heterogeneity, offers a predictive tool for assessing aggressiveness, and introduces potential targets for precision therapies.Abstract Neuroblastoma (NB) is a childhood cancer in sympathetic nervous system cells. NB exhibits cellular heterogeneity, with adrenergic and mesenchymal states displaying distinct tumorigenic potentials. NB is highly vascularized, and blood vessels can form through various mechanisms, including endothelial transdifferentiation, leading to the development of tumor-derived endothelial cells (TECs) associated with chemoresistance. We lack specific biomarkers for TECs. Therefore, identifying new TEC biomarkers is vital for effective NB therapies. A stiffness-based platform simulating human arterial and venous stiffness was developed to study NB TECs in vitro. Adrenergic cells cultured on arterial-like stiffness transdifferentiated into TECs, while mesenchymal state cells did not. The TECs derived from adrenergic cells served as a model to explore new biomarkers, with a particular focus on GB3, a glycosphingolipid receptor implicated in angiogenesis, metastasis, and drug resistance. Notably, the TECs unequivocally expressed GB3, validating its novelty as a marker. To explore targeted therapeutic interventions, nanoparticles functionalized with the non-toxic subunit B of the Shiga toxin were generated, because they demonstrated a robust affinity for GB3-positive cells. Our results demonstrate the value of the stiffness-based platform as a predictive tool for assessing NB aggressiveness, the discovery of new biomarkers, and the evaluation of the effectiveness of targeted therapeutic strategies.
JTD Keywords: Alternative vasculature, Angiogenesis, Cells, Differentiation, Gb3, Neuroblastoma, Origin, Tumor-derived endothelial cells
Sans, Jordi, Arnau, Marc, Bosque, Ricard, Turon, Pau, Aleman, Carlos, (2024). Synthesis of urea from CO2 and N2 fixation under mild conditions using polarized hydroxyapatite as a catalyst Sustainable Energy & Fuels 8, 1473-1482
Polarized hydroxyapatite (p-HAp) has been used as a catalyst for the synthesis of urea coupling N-2, CO2 and water under mild reaction conditions when compared to classical nitrogen fixation reactions, such as the Haber-Bosch process. The reaction of 3 bar of N-2 and 3 bar of CO2 under UV illumination at 120 degrees C (for 48 h) results in a urea yield of 1.5 +/- 0.1 mmol per gram of catalyst (g(c)) with a selectivity close to 80%, whereas the reaction is not successful without UV irradiation. However, the addition of small amounts of NO (314 ppm) produces 15.2 +/- 0.6 and 4.6 +/- 0.4 mmol g(c)(-1) with and without UV illumination, respectively, with the selectivity in both cases being close to 100%. As nitrogen fixation without UV irradiation using p-HAp as a catalyst is a challenge, studies with NO have been conducted varying the reaction conditions (time, pressure and temperature). The results suggest a mechanism based on the production of NH4+ through the oxidation of N-2.
JTD Keywords: Carbon dioxide, Carbon,dinitrogen,reduction,nitrogen,ammonia,dioxid, Catalyst selectivity, Condition, Haber-bosch process, Hydroxyapatite, Irradiation, Metabolism, Mild reaction conditions, Nitrogen fixation, Pressure and temperature, Reaction conditions, Time pressures, Time-temperature, Urea, Uv illuminations, Without uv irradiations, ]+ catalyst
Jonkman, AH, Warnaar, RSP, Baccinelli, W, Carbon, NM, D'Cruz, RF, Doorduin, J, van Doorn, JLM, Elshof, J, Estrada-Petrocelli, L, Grasshoff, J, Heunks, LMA, Koopman, AA, Langer, D, Moore, CM, Silveira, JMN, Petersen, E, Poddighe, D, Ramsay, M, Rodrigues, A, Roesthuis, LH, Rossel, A, Torres, A, Duiverman, ML, Oppersma, E, (2024). Analysis and applications of respiratory surface EMG: report of a round table meeting Critical Care 28, 2
Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.
JTD Keywords: Acute respiratory failure, Artificial ventilation, Asthmatic-children, Breathing muscle, Clinical monitoring, Clinical practice, Clinical research, Consensus development, Data interpretation, Disease exacerbation, Drive, Electrode positioning, Electrode removal, Electromyography, Force, Home care, Human, Human diaphragm, Humans, Information processing, Inspiratory muscle training, Inspiratory muscles, Intensive care unit, Knowledge gap, Long term care, Mechanical ventilation, Medical procedures, Muscle contraction, Muscle fatigue, Muscle function, Muscle training, Muscle, skeletal, Muscle-activity, Noninvasive ventilation, Patient monitoring, Patient-ventilator asynchrony, Physiology, Prognosis, Quality of life, Reporting and data system, Respiratory failure, Respiratory muscles, Review, Severe exacerbations, Signal processing, Skeletal muscle, Standardization, Surface electromyography, Time factor
Macedo, MH, Torras, N, García-Díaz, M, Barrias, C, Sarmento, B, Martínez, E, (2023). The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model Biomaterials Advances 153, 213564
The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier. In vitro intestinal models are routinely used to study different physiological and pathological processes in the gut, including compound absorption. Still, standard models are typically two-dimensional (2D) and represent only the epithelial barrier, lacking the cues offered by the 3D architecture and the stromal components present in vivo, often leading to inaccurate results. In this work, we studied the impact of the 3D architecture of the gut on drug transport using a bioprinted 3D model of the intestinal mucosa containing both the epithelial and the stromal compartments. Human intestinal fibroblasts were embedded in a previously optimized hydrogel bioink, and enterocytes and goblet cells were seeded on top to mimic the intestinal mucosa. The embedded fibroblasts thrived inside the hydrogel, remodeling the surrounding extracellular matrix. The epithelial cells fully covered the hydrogel scaffolds and formed a uniform cell layer with barrier properties close to in vivo. In particular, the villus-like model revealed overall increased permeability compared to a flat counterpart composed by the same hydrogel and cells. In addition, the efflux activity of the P-glycoprotein (P-gp) transporter was significantly reduced in the villus-like scaffold compared to a flat model, and the genetic expression of other drugs transporters was, in general, more relevant in the villus-like model. Globally, this study corroborates that the presence of the 3D architecture promotes a more physiological differentiation of the epithelial barrier, providing more accurate data on drug absorbance measurements.Copyright © 2023. Published by Elsevier B.V.
JTD Keywords: 3d architecture, alkaline-phosphatase, caco-2 cells, culture, drug development, efflux proteins, gene-expression, human-colon, intestinal absorption, intestinal models, microenvironment, paracellular transport, permeability, photopolymerization, villi, 3d architecture, 3d bioprinting, Drug development, In-vitro, Intestinal absorption, Intestinal models, Photopolymerization, Villi
Tejedera-Villafranca, A, Montolio, M, Ramón-Azcón, J, Fernández-Costa, JM, (2023). Mimicking sarcolemmal damage in vitro: a contractile 3D model of skeletal muscle for drug testing in Duchenne muscular dystrophy Biofabrication 15, 45024
Duchenne muscular dystrophy (DMD) is the most prevalent neuromuscular disease diagnosed in childhood. It is a progressive and wasting disease, characterized by a degeneration of skeletal and cardiac muscles caused by the lack of dystrophin protein. The absence of this crucial structural protein leads to sarcolemmal fragility, resulting in muscle fiber damage during contraction. Despite ongoing efforts, there is no cure available for DMD patients. One of the primary challenges is the limited efficacy of current preclinical tools, which fail in modeling the biological complexity of the disease. Human-based three-dimensional (3D) cell culture methods appear as a novel approach to accelerate preclinical research by enhancing the reproduction of pathophysiological processes in skeletal muscle. In this work, we developed a patient-derived functional 3D skeletal muscle model of DMD that reproduces the sarcolemmal damage found in the native DMD muscle. These bioengineered skeletal muscle tissues exhibit contractile functionality, as they responded to electrical pulse stimulation. Sustained contractile regimes induced the loss of myotube integrity, mirroring the pathological myotube breakdown inherent in DMD due to sarcolemmal instability. Moreover, damaged DMD tissues showed disease functional phenotypes, such as tetanic fatigue. We also evaluated the therapeutic effect of utrophin upregulator drug candidates on the functionality of the skeletal muscle tissues, thus providing deeper insight into the real impact of these treatments. Overall, our findings underscore the potential of bioengineered 3D skeletal muscle technology to advance DMD research and facilitate the development of novel therapies for DMD and related neuromuscular disorders.
JTD Keywords: 3d cell culture, disease modeling, drug testing, duchenne muscular dystrophy, sarcolemmal damage, skeletal muscle, 3d cell culture, Animal-models, Disease modeling, Dmso, Drug testing, Duchenne muscular dystrophy, Gene, Humans, Image, Mechanisms, Muscle fibers, skeletal, Muscle, skeletal, Muscular dystrophy, duchenne, Myocardium, Sarcolemmal damage, Skeletal muscle, Tissue engineering, Utrophin
Fernández-Garibay, X, Gómez-Florit, M, Domingues, RMA, Gomes, ME, Fernández-Costa, JM, Ramón-Azcón, J, (2022). Xeno-free bioengineered human skeletal muscle tissue using human platelet lysate-based hydrogels Biofabrication 14, 45015
Abstract Bioengineered human skeletal muscle tissues have emerged in the last years as new in vitro systems for disease modeling. These bioartificial muscles are classically fabricated by encapsulating human myogenic precursor cells in a hydrogel scaffold that resembles the extracellular matrix. However, most of these hydrogels are derived from xenogenic sources, and the culture media is supplemented with animal serum, which could interfere in drug testing assays. On the contrary, xeno-free biomaterials and culture conditions in tissue engineering offer increased relevance for developing human disease models. In this work, we used human platelet lysate-based nanocomposite hydrogels (HUgel) as scaffolds for human skeletal muscle tissue engineering. These hydrogels consist of human platelet lysate reinforced with cellulose nanocrystals (a-CNC) that allow tunable mechanical, structural, and biochemical properties for the 3D culture of stem cells. Here, we developed hydrogel casting platforms to encapsulate human muscle satellite stem cells in HUgel. The a-CNC content was modulated to enhance matrix remodeling, uniaxial tension, and self-organization of the cells, resulting in the formation of highly aligned, long myotubes expressing sarcomeric proteins. Moreover, the bioengineered human muscles were subjected to electrical stimulation, and the exerted contractile forces were measured in a non-invasive manner. Overall, our results demonstrated that the bioengineered human skeletal muscles could be built in xeno-free cell culture platforms to assess tissue functionality, which is promising for drug development applications.
JTD Keywords: 3d culture, generation, identification, image, manipulate, matrigel, mechanics, model, platelet lysate, scaffolds, skeletal muscle, tissue engineering, xeno-free, 3d culture, Animals, Extracellular matrix, Humans, Hydrogels, Muscle development, Muscle, skeletal, Platelet lysate, Platform, Skeletal muscle, Tissue engineering, Tissue scaffolds, Xeno-free
Castagna, R, Kolarski, D, Durand-de Cuttoli, R, Maleeva, G, (2022). Orthogonal Control of Neuronal Circuits and Behavior Using Photopharmacology Journal Of Molecular Neuroscience 72, 1433-1442
Over the last decades, photopharmacology has gone far beyond its proof-of-concept stage to become a bona fide approach to study neural systems in vivo. Indeed, photopharmacological control has expanded over a wide range of endogenous targets, such as receptors, ion channels, transporters, kinases, lipids, and DNA transcription processes. In this review, we provide an overview of the recent progresses in the in vivo photopharmacological control of neuronal circuits and behavior. In particular, the use of small aquatic animals for the in vivo screening of photopharmacological compounds, the recent advances in optical modulation of complex behaviors in mice, and the development of adjacent techniques for light and drug delivery in vivo are described.
JTD Keywords: brain circuits, circadian rhythm, in vivo photomodulation, in vivo technology, neuronal receptors, Architecture, Azobenzene photoswitches, Brain circuits, Channels, Circadian rhythm, In vivo photomodulation, In vivo technology, Light, Modulator, Neuronal receptors, Optical control, Optogenetics, Pharmacology, Photopharmacology, Receptors, Systems
Andreu, I, Granero-Moya, I, Garcia-Manyes, S, Roca-Cusachs, P, (2022). Understanding the role of mechanics in nucleocytoplasmic transport Apl Bioengineering 6, 20901
Cell nuclei are submitted to mechanical forces, which in turn affect nuclear and cell functions. Recent evidence shows that a crucial mechanically regulated nuclear function is nucleocytoplasmic transport, mediated by nuclear pore complexes (NPCs). Mechanical regulation occurs at two levels: first, by force application to the nucleus, which increases NPC permeability likely through NPC stretch. Second, by the mechanical properties of the transported proteins themselves, as mechanically labile proteins translocate through NPCs faster than mechanically stiff ones. In this perspective, we discuss this evidence and the associated mechanisms by which mechanics can regulate the nucleo-cytoplasmic partitioning of proteins. Finally, we analyze how mechanical regulation of nucleocytoplasmic transport can provide a systematic approach to the study of mechanobiology and open new avenues both in fundamental and applied research. (C) 2022 Author(s).
JTD Keywords: Architecture, Association, Force, Nuclear-pore complex, Pathways, Protein import, Sun1
Marti, D, Martin-Martinez, E, Torras, J, Betran, O, Turon, P, Aleman, C, (2022). In silico study of substrate chemistry effect on the tethering of engineered antibodies for SARS-CoV-2 detection: Amorphous silica vs gold Colloids And Surfaces B-Biointerfaces 213, 112400
The influence of the properties of different solid substrates on the tethering of two antibodies, IgG1-CR3022 and IgG1-S309, which were specifically engineered for the detection of SARS-CoV-2, has been examined at the molecular level using conventional and accelerated Molecular Dynamics (cMD and aMD, respectively). Two surfaces with very different properties and widely used in immunosensors for diagnosis, amorphous silica and the most stable facet of the face-centered cubic gold structure, have been considered. The effects of such surfaces on the structure and orientation of the immobilized antibodies have been determined by quantifying the tilt and hinge angles that describe the orientation and shape of the antibody, respectively, and the dihedrals that measure the relative position of the antibody arms with respect to the surface. Results show that the interactions with amorphous silica, which are mainly electrostatic due to the charged nature of the surface, help to preserve the orientation and structure of the antibodies, especially of the IgG1-CR3022, indicating that the primary sequence of those antibodies also plays some role. Instead, short-range van der Waals interactions with the inert gold surface cause a higher degree tilting and fraying of the antibodies with respect to amorphous silica. The interactions between the antibodies and the surface also affect the correlation among the different angles and dihedrals, which increases with their strength. Overall, results explain why amorphous silica substrates are frequently used to immobilize antibodies in immunosensors. © 2022 The Authors
JTD Keywords: amorphous silica, antibody immobilization, enzyme, gol d, gold, immobilization, immunosensor, molecu l a r dynamics, molecular dynamics, protein adsorption, sars-cov-2 immunosensor, simulations, spike protein, surface interactions, target, vaccine, Amorphous silica, Antibodies, Antibody engineering, Antibody immobilization, Antibody structure, Article, Chemical detection, Computer model, Controlled study, Dihedral angle, Gold, In-silico, Molecular dynamics, Molecular levels, Molecular-dynamics, Nonhuman, Property, Sars, Sars-cov-2 immunosensor, Severe acute respiratory syndrome coronavirus 2, Silica, Silico studies, Silicon dioxide, Solid substrates, Structure analysis, Substrate chemistry, Substrates, Van der waals forces, Virus detection
Valles, M, Pujals, S, Albertazzi, L, Sánchez, S, (2022). Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors Acs Nano 16, 5615-5626
Enzyme-powered micro- and nanomotors make use of biocatalysis to self-propel in aqueous media and hold immense promise for active and targeted drug delivery. Most (if not all) of these micro- and nanomotors described to date are fabricated using a commercially available enzyme, despite claims that some commercial preparations may not have a sufficiently high degree of purity for downstream applications. In this study, the purity of a commercial urease, an enzyme frequently used to power the motion of micro- and nanomotors, was evaluated and found to be impure. After separating the hexameric urease from the protein impurities by size-exclusion chromatography, the hexameric urease was subsequently characterized and used to functionalize hollow silica microcapsules. Micromotors loaded with purified urease were found to be 2.5 times more motile than the same micromotors loaded with unpurified urease, reaching average speeds of 5.5 ?m/s. After comparing a number of parameters, such as enzyme distribution, protein loading, and motor reusability, between micromotors functionalized with purified vs unpurified urease, it was concluded that protein purification was essential for optimal performance of the enzyme-powered micromotor.
JTD Keywords: canavalin, catalysis, delivery, dls, enhanced diffusion, enzyme, lipase immobilization, micromotors, self-propulsion, super-resolution microscopy, urease, Mesoporous silica nanoparticles, Micromotors, Super-resolution microscopy
Torabi, N, Qiu, XK, López-Ortiz, M, Loznik, M, Herrmann, A, Kermanpur, A, Ashrafi, A, Chiechi, RC, (2021). Fullerenes Enhance Self-Assembly and Electron Injection of Photosystem i in Biophotovoltaic Devices Langmuir 37, 11465-11473
This paper describes the fabrication of microfluidic devices with a focus on controlling the orientation of photosystem I (PSI) complexes, which directly affects the performance of biophotovoltaic devices by maximizing the efficiency of the extraction of electron/hole pairs from the complexes. The surface chemistry of the electrode on which the complexes assemble plays a critical role in their orientation. We compared the degree of orientation on self-assembled monolayers of phenyl-C61-butyric acid and a custom peptide on nanostructured gold electrodes. Biophotovoltaic devices fabricated with the C61 fulleroid exhibit significantly improved performance and reproducibility compared to those utilizing the peptide, yielding a 1.6-fold increase in efficiency. In addition, the C61-based devices were more stable under continuous illumination. Our findings show that fulleroids, which are well-known acceptor materials in organic photovoltaic devices, facilitate the extraction of electrons from PSI complexes without sacrificing control over the orientation of the complexes, highlighting this combination of traditional organic semiconductors with biomolecules as a viable approach to coopting natural photosynthetic systems for use in solar cells.
JTD Keywords: architecture, arrays, construction, metal, nanotubes, performance, photosynthetic proteins, polymer-fullerene, solar-cells, Photocurrent generation
Fernández-Garibay, X, Ortega, MA, Cerro-Herreros, E, Comelles, J, Martínez, E, Artero, R, Fernández-Costa, JM, Ramón-Azcón, J, (2021). Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle Biofabrication 13, 35035
Myotonic dystrophy type 1 (DM1) is the most common hereditary myopathy in the adult population. The disease is characterized by progressive skeletal muscle degeneration that produces severe disability. At present, there is still no effective treatment for DM1 patients, but the breakthroughs in understanding the molecular pathogenic mechanisms in DM1 have allowed the testing of new therapeutic strategies. Animal models and in vitro two-dimensional cell cultures have been essential for these advances. However, serious concerns exist regarding how faithfully these models reproduce the biological complexity of the disease. Biofabrication tools can be applied to engineer human three-dimensional (3D) culture systems that complement current preclinical research models. Here, we describe the development of the first in vitro 3D model of DM1 human skeletal muscle. Transdifferentiated myoblasts from patient-derived fibroblasts were encapsulated in micromolded gelatin methacryloyl-carboxymethyl cellulose methacrylate hydrogels through photomold patterning on functionalized glass coverslips. These hydrogels present a microstructured topography that promotes myoblasts alignment and differentiation resulting in highly aligned myotubes from both healthy and DM1 cells in a long-lasting cell culture. The DM1 3D microtissues recapitulate the molecular alterations detected in patient biopsies. Importantly, fusion index analyses demonstrate that 3D micropatterning significantly improved DM1 cell differentiation into multinucleated myotubes compared to standard cell cultures. Moreover, the characterization of the 3D cultures of DM1 myotubes detects phenotypes as the reduced thickness of myotubes that can be used for drug testing. Finally, we evaluated the therapeutic effect of antagomiR-23b administration on bioengineered DM1 skeletal muscle microtissues. AntagomiR-23b treatment rescues both molecular DM1 hallmarks and structural phenotype, restoring myotube diameter to healthy control sizes. Overall, these new microtissues represent an improvement over conventional cell culture models and can be used as biomimetic platforms to establish preclinical studies for myotonic dystrophy.
JTD Keywords: 3d cell culture, hydrogel micropatterning, myotonic dystrophy, skeletal muscle, tissue engineering, 3d cell culture, Animals, Cell differentiation, Humans, Hydrogel micropatterning, Muscle fibers, skeletal, Muscle, skeletal, Myoblasts, Myotonic dystrophy, Skeletal muscle, Tissue engineering
Cereta, AD, Oliveira, VR, Costa, IP, Guimaraes, LL, Afonso, JPR, Fonseca, AL, de Sousa, ART, Silva, GAM, Mello, DACPG, de Oliveira, LVF, da Palma, RK, (2021). Early Life Microbial Exposure and Immunity Training Effects on Asthma Development and Progression Frontiers Of Medicine 8, 662262
Asthma is the most common inflammatory disease affecting the lungs, which can be caused by intrauterine or postnatal insults depending on the exposure to environmental factors. During early life, the exposure to different risk factors can influence the microbiome leading to undesired changes to the immune system. The modulations of the immunity, caused by dysbiosis during development, can increase the susceptibility to allergic diseases. On the other hand, immune training approaches during pregnancy can prevent allergic inflammatory diseases of the airways. In this review, we focus on evidence of risk factors in early life that can alter the development of lung immunity associated with dysbiosis, that leads to asthma and affect childhood and adult life. Furthermore, we discuss new ideas for potential prevention strategies that can be applied during pregnancy and postnatal period.
JTD Keywords: asthma, dysbiosis, early life immunity, lung microbiome, Adulthood, Antibiotic exposure, Asthma, Childhood, Disease, Disease exacerbation, Dysbiosis, Early life immunity, Gut microbiome, Human, Immunity, Intestine flora, Lung development, Lung microbiome, Lung microbiota, Nonhuman, Perinatal period, Pregnancy, Prevention, Prevention strategies, Review, Risk, Risk factor, Sensitization, Supplementation, Vitamin-d, Wheeze
Vilela, D, Blanco-Cabra, N, Eguskiza, A, Hortelao, AC, Torrents, E, Sanchez, S, (2021). Drug-Free Enzyme-Based Bactericidal Nanomotors against Pathogenic Bacteria Acs Applied Materials & Interfaces 13, 14964-14973
The low efficacy of current conventional treatments for bacterial infections increases mortality rates worldwide. To alleviate this global health problem, we propose drug-free enzyme-based nanomotors for the treatment of bacterial urinary-tract infections. We develop nanomotors consisting of mesoporous silica nanoparticles (MSNPs) that were functionalized with either urease (U-MSNPs), lysozyme (L-MSNPs), or urease and lysozyme (M-MSNPs), and use them against nonpathogenic planktonic Escherichia coli. U-MSNPs exhibited the highest bactericidal activity due to biocatalysis of urea into NaHCO3 and NH3, which also propels U-MSNPs. In addition, U-MSNPs in concentrations above 200 μg/mL were capable of successfully reducing 60% of the biofilm biomass of a uropathogenic E. coli strain. This study thus provides a proof-of-concept, demonstrating that enzyme-based nanomotors are capable of fighting infectious diseases. This approach could potentially be extended to other kinds of diseases by selecting appropriate biomolecules.
JTD Keywords: biofilms, carbonate, e. coli, enzymatic nanomotors, infections, lysozyme, micromotors, nanomachines, proteins, self-propulsion, Anti-bacterial agents, Biocatalysis, Biofilms, Canavalia, Drug carriers, E. coli, Eliminate escherichia-coli, Enzymatic nanomotors, Escherichia coli, Escherichia coli infections, Humans, Infections, Muramidase, Nanomachines, Nanoparticles, Self-propulsion, Silicon dioxide, Urease, Urinary tract infections
Blaya, D, Pose, E, Coll, M, Lozano, JJ, Graupera, I, Schierwagen, R, Jansen, C, Castro, P, Fernandez, S, Sidorova, J, Vasa-Nicotera, M, Sola, E, Caballeria, J, Trebicka, J, Gines, P, Sancho-Bru, P, (2021). Profiling circulating microRNAs in patients with cirrhosis and acute-on-chronic liver failure Jhep Rep 3, 100233
Background & Aims: MicroRNAs (miRNAs) circulate in several body fluids and can be useful biomarkers. The aim of this study was to identify blood-circulating miRNAs associated with cirrhosis progression and acute-on-chronic liver failure (ACLF). Methods: Using high-throughput screening of 754 miRNAs, serum samples from 45 patients with compensated cirrhosis, decompensated cirrhosis, or ACLF were compared with those from healthy individuals (n = 15). miRNA levels were correlated with clinical parameters, organ failure, and disease progression and outcome. Dysregulated miRNAs were evaluated in portal and hepatic vein samples (n = 33), liver tissues (n = 17), and peripheral blood mononuclear cells (PBMCs) (n = 16). Results: miRNA screening analysis revealed that circulating miRNAs are dysregulated in cirrhosis progression, with 51 miRNAs being differentially expressed among all groups of patients. Unsupervised clustering and principal component analysis indicated that the main differences in miRNA expression occurred at decompensation, showing similar levels in patients with decompensated cirrhosis and those with ACLF. Of 43 selected miRNAs examined for differences among groups, 10 were differentially expressed according to disease progression. Moreover, 20 circulating miRNAs were correlated with model for end-stage liver disease and Child-Pugh scores. Notably, 11 dysregulated miRNAs were associated with kidney or liver failure, encephalopathy, bacterial infection, and poor outcomes. The most severely dysregulated miRNAs (i.e. miR-146a5p, miR-26a-5p, and miR-191-5p) were further evaluated in portal and hepatic vein blood and liver tissue, but showed no differences. However, PBMCs from patients with cirrhosis showed significant downregulation of miR-26 and miR-146a, suggesting a extrahepatic origin of some circulating miRNAs. Conclusions: This study is a repository of circulating miRNA data following cirrhosis progression and ACLF. Circulating miRNAs were profoundly dysregulated during the progression of chronic liver disease, were associated with failure of several organs and could have prognostic utility. Lay summary: Circulating miRNAs are small molecules in the blood that can be used to identify or predict a clinical condition. Our study aimed to identify miRNAs for use as biomarkers in patients with cirrhosis or acute-on-chronic liver failure. Several miRNAs were found to be dysregulated during the progression of disease, and some were also related to organ failure and disease-related outcomes. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL).
JTD Keywords: aclf, acute-on-chronic liver failure, alt, alanine aminotransferase, ast, aspartate aminotransferase, biomarkers, chronic liver disease, cxcl10, c-x-c motif chemokine ligand 10, ef clif, european foundation for the study of chronic liver failure, foxo, forkhead box o, inr, international normalised ratio, ldh, lactate dehydrogenase, liver decompensation, mapk, mitogen-activated protein kinase, meld, model for end-stage liver disease, nash, non-alcoholic steatohepatitis, non-coding rnas, pbmcs, peripheral blood mononuclear cells, pca, principal component analysis, tgf, transforming growth factor, tips, transjugular intrahepatic portosystemic shunt, Biomarkers, Chronic liver disease, Expression, Liver decompensation, Markers, Mir-146a, Non-coding rnas, Qpcr, quantitative pcr
Hortelao, AC, Simó, C, Guix, M, Guallar-Garrido, S, Julián, E, Vilela, D, Rejc, L, Ramos-Cabrer, P, Cossío, U, Gómez-Vallejo, V, Patiño, T, Llop, J, Sánchez, S, (2021). Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder Science Robotics 6, eabd2823
Enzyme-powered nanomotors are an exciting technology for biomedical applications due to their ability to navigate within biological environments using endogenous fuels. However, limited studies into their collective behavior and demonstrations of tracking enzyme nanomotors in vivo have hindered progress toward their clinical translation. Here, we report the swarming behavior of urease-powered nanomotors and its tracking using positron emission tomography (PET), both in vitro and in vivo. For that, mesoporous silica nanoparticles containing urease enzymes and gold nanoparticles were used as nanomotors. To image them, nanomotors were radiolabeled with either I on gold nanoparticles or F-labeled prosthetic group to urease. In vitro experiments showed enhanced fluid mixing and collective migration of nanomotors, demonstrating higher capability to swim across complex paths inside microfabricated phantoms, compared with inactive nanomotors. In vivo intravenous administration in mice confirmed their biocompatibility at the administered dose and the suitability of PET to quantitatively track nanomotors in vivo. Furthermore, nanomotors were administered directly into the bladder of mice by intravesical injection. When injected with the fuel, urea, a homogeneous distribution was observed even after the entrance of fresh urine. By contrast, control experiments using nonmotile nanomotors (i.e., without fuel or without urease) resulted in sustained phase separation, indicating that the nanomotors’ self-propulsion promotes convection and mixing in living reservoirs. Active collective dynamics, together with the medical imaging tracking, constitute a key milestone and a step forward in the field of biomedical nanorobotics, paving the way toward their use in theranostic applications. 124 18
JTD Keywords: cell, reversal, silica nanoparticles, size, step, transport, Administration, intravesical, Animals, Equipment design, Female, Gold, Metal nanoparticles, Mice, Mice, inbred c57bl, Motion, Phantoms, imaging, Positron emission tomography computed tomography, Precision medicine, Propelled micromotors, Robotics, Translational research, biomedical, Urease, Urinary bladder
Praktiknjo, M., Simón-Talero, M., Römer, J., Roccarina, D., Martínez, J., Lampichler, K., Baiges, A., Low, G., Llop, E., Maurer, M. H., Zipprich, A., Triolo, M., Maleux, G., Fialla, A. D., Dam, C., Vidal-González, J., Majumdar, A., Picón, C., Toth, D., Darnell, A., Abraldes, J. G., López, M., Jansen, C., Chang, J., Schierwagen, R., Uschner, F., Kukuk, G., Meyer, C., Thomas, D., Wolter, K., Strassburg, C. P., Laleman, W., La Mura, V., Ripoll, C., Berzigotti, A., Calleja, J. L., Tandon, P., Hernandez-Gea, V., Reiberger, T., Albillos, A., Tsochatzis, E. A., Krag, A., Genescà , J., Trebicka, J., (2020). Total area of spontaneous portosystemic shunts independently predicts hepatic encephalopathy and mortality in liver cirrhosis Journal of Hepatology 72, (6), 1140-1150
Background & Aims: Spontaneous portosystemic shunts (SPSS) frequently develop in liver cirrhosis. Recent data suggested that the presence of a single large SPSS is associated with complications, especially overt hepatic encephalopathy (oHE). However, the presence of >1 SPSS is common. This study evaluates the impact of total cross-sectional SPSS area (TSA) on outcomes in patients with liver cirrhosis.
Methods: In this retrospective international multicentric study, CT scans of 908 cirrhotic patients with SPSS were evaluated for TSA. Clinical and laboratory data were recorded. Each detected SPSS radius was measured and TSA calculated. One-year survival was the primary endpoint and acute decompensation (oHE, variceal bleeding, ascites) was the secondary endpoint.
Results: A total of 301 patients (169 male) were included in the training cohort. Thirty percent of all patients presented with >1 SPSS. A TSA cut-off of 83 mm2 was used to classify patients with small or large TSA (S-/L-TSA). Patients with L-TSA presented with higher model for end-stage liver disease score (11 vs. 14) and more commonly had a history of oHE (12% vs. 21%, p <0.05). During follow-up, patients with L-TSA experienced more oHE episodes (33% vs. 47%, p <0.05) and had lower 1-year survival than those with S-TSA (84% vs. 69%, p <0.001). Multivariate analysis identified L-TSA (hazard ratio 1.66; 95% CI 1.02–2.70, p <0.05) as an independent predictor of mortality. An independent multicentric validation cohort of 607 patients confirmed that patients with L-TSA had lower 1-year survival (77% vs. 64%, p <0.001) and more oHE development (35% vs. 49%, p <0.001) than those with S-TSA.
Conclusion: This study suggests that TSA >83 mm2 increases the risk for oHE and mortality in patients with cirrhosis. Our results support the clinical use of TSA/SPSS for risk stratification and decision-making in the management of patients with cirrhosis.
Lay summary: The prevalence of spontaneous portosystemic shunts (SPSS) is higher in patients with more advanced chronic liver disease. The presence of more than 1 SPSS is common in advanced chronic liver disease and is associated with the development of hepatic encephalopathy. This study shows that total cross-sectional SPSS area (rather than diameter of the single largest SPSS) predicts survival in patients with advanced chronic liver disease. Our results support the clinical use of total cross-sectional SPSS area for risk stratification and decision-making in the management of SPSS.
JTD Keywords: ACLF, Acute decompensation, Acute-on-chronic liver failure, Ascites, Cirrhosis, Computed tomography, Hepatic encephalopathy, Liver, Portal hypertension, Spontaneous portosystemic shunt, SPSS, TIPS
Pollastri, S., Jorba, I., Hawkins, T. J., Llusià , J., Michelozzi, M., Navajas, D., Peñuelas, J., Hussey, P. J., Knight, M. R., Loreto, F., (2019). Leaves of isoprene-emitting tobacco plants maintain PSII stability at high temperatures New Phytologist 223, (3), 1307-1318
At high temperatures, isoprene-emitting plants display a higher photosynthetic rate and a lower nonphotochemical quenching (NPQ) compared with nonemitting plants. The mechanism of this phenomenon, which may be very important under current climate warming, is still elusive. NPQ was dissected into its components, and chlorophyll fluorescence lifetime imaging microscopy (FLIM) was used to analyse the dynamics of excited chlorophyll relaxation in isoprene-emitting and nonemitting plants. Thylakoid membrane stiffness was also measured using atomic force microscope (AFM) to identify a possible mode of action of isoprene in improving photochemical efficiency and photosynthetic stability. We show that, when compared with nonemitters, isoprene-emitting tobacco plants exposed at high temperatures display a reduced increase of the NPQ energy-dependent component (qE) and stable (1) chlorophyll fluorescence lifetime; (2) amplitude of the fluorescence decay components; and (3) thylakoid membrane stiffness. Our study shows for the first time that isoprene maintains PSII stability at high temperatures by preventing the modifications of the surrounding environment, namely providing a more steady and homogeneous distribution of the light-absorbing centres and a stable thylakoid membrane stiffness. Isoprene photoprotects leaves with a mechanism alternative to NPQ, enabling plants to maintain a high photosynthetic rate at rising temperatures.
JTD Keywords: (High) temperature, Atomic force microscopy (AFM), Chlorophyll fluorescence (quenching and lifetime), Fluorescence lifetime imaging microscopy (FLIM), Isoprene, Nonphotochemical quenching (NPQ), Photosynthesis
Alvarez-Silva, C., Schierwagen, R., Pohlmann, A., Magdaleno, F., Uschner, F. E., Ryan, P., Vehreschild, M. J. G. T., Claria, J., Latz, E., Lelouvier, B., Arumugam, M., Trebicka, J., (2019). Compartmentalization of immune response and microbial translocation in decompensated cirrhosis Frontiers in Immunology 10, 69
Background: Acquired dysfunctional immunity in cirrhosis predisposes patients to frequent bacterial infections, especially spontaneous bacterial peritonitis (SBP), leading to systemic inflammation that is associated with poor outcome. But systemic inflammation can also be found in the absence of a confirmed infection. Detection of bacterial DNA has been investigated as a marker of SBP and as a predictor of prognosis. Data is, however, contradictory. Here we investigated whether levels of IL-6 and IL-8 putatively produced by myeloid cells in ascites are associated with systemic inflammation and whether inflammation depends on the presence of specific bacterial DNA.
Methods and Materials: We enrolled 33 patients with decompensated liver cirrhosis from whom we collected paired samples of blood and ascites. IL-6 and IL-8 were measured in serum samples of all patients using ELISA. In a subset of 10 representative patients, bacterial DNA was extracted from ascites and whole blood, followed by 16S rRNA gene amplicon sequencing.
Results: There were significantly higher levels of IL-6 in ascites fluid compared to blood samples in all patients. Interestingly, IL-6 levels in blood correlated tightly with disease severity and surrogates of systemic inflammation, while IL-6 levels in ascites did not. Moreover, patients with higher blood CRP levels showed greater SBP prevalence compared to patients with lower levels, despite similar positive culture results. Bacterial richness was also significantly higher in ascites compared to the corresponding patient blood. We identified differences in microbial composition and diversity between ascites and blood, but no tight relationship with surrogates of systemic inflammation could be observed.
Discussion: In decompensated cirrhosis, markers of systemic inflammation and microbiota composition seem to be dysregulated in ascites and blood. While a relationship between systemic inflammation and microbiota composition seems to exist in blood, this is not the case for ascites in our hands. These data may suggest compartmentalization of the immune response and interaction of the latter with the microbiota especially in the blood compartment.
JTD Keywords: Acute-on-chronic liver failure, Ascites, Cirrhosis, Cytokines, Microbiome, Myeloid cells, Systemic inflammation
Pujol, E., Blanco-Cabra, N., Julián, E., Leiva, R., Torrents, E., Vázquez, S., (2018). Pentafluorosulfanyl-containing triclocarban analogs with potent antimicrobial activity Molecules 23, (11), 2853
Concerns have been raised about the long-term accumulating effects of triclocarban, a polychlorinated diarylurea widely used as an antibacterial soap additive, in the environment and in human beings. Indeed, the Food and Drug Administration has recently banned it from personal care products. Herein, we report the synthesis, antibacterial activity and cytotoxicity of novel N,N′-diarylureas as triclocarban analogs, designed by reducing one or more chlorine atoms of the former and/or replacing them by the novel pentafluorosulfanyl group, a new bioisostere of the trifluoromethyl group, with growing importance in drug discovery. Interestingly, some of these pentafluorosulfanyl-bearing ureas exhibited high potency, broad spectrum of antimicrobial activity against Gram-positive bacterial pathogens, and high selectivity index, while displaying a lower spontaneous mutation frequency than triclocarban. Some lines of evidence suggest a bactericidal mode of action for this family of compounds.
JTD Keywords: Antibacterial, Gram-positive, N,N'-diarylureas, Pentafluorosulfanyl, Staphylococcus aureus, Triclocarban
Giménez, A., Uriarte, J. J., Vieyra, J., Navajas, D., Alcaraz, J., (2017). Elastic properties of hydrogels and decellularized tissue sections used in mechanobiology studies probed by atomic force microscopy Microscopy Research and Technique , 80, (1), 85-96
The increasing recognition that tissue elasticity is an important regulator of cell behavior in normal and pathologic conditions such as fibrosis and cancer has driven the development of cell culture substrata with tunable elasticity. Such development has urged the need to quantify the elastic properties of these cell culture substrata particularly at the nanometer scale, since this is the relevant length scale involved in cell-extracellular matrix (ECM) mechanical interactions. To address this need, we have exploited the versatility of atomic force microscopy to quantify the elastic properties of a variety of cell culture substrata used in mechanobiology studies, including floating collagen gels, ECM-coated polyacrylamide gels, and decellularized tissue sections. In this review we summarize major findings in this field from our group within the context of the state-of-the-art in the field, and provide a critical discussion on the applicability and complementarity of currently available cell culture assays with tunable elasticity. In addition, we briefly describe how the limitations of these assays provide opportunities for future research, which is expected to continue expanding our understanding of the mechanobiological aspects that support both normal and diseased conditions.
JTD Keywords: 3D culture, Atomic force microscopy, Elastic modulus, Extracellular matrix, Polyacrylamide
Garde, A., Sörnmo, L., Jané, R., Giraldo, B., (2010). Breathing pattern characterization in chronic heart failure patients using the respiratory flow signal Annals of Biomedical Engineering , 38, (12), 3572-3580
This study proposes a method for the characterization of respiratory patterns in chronic heart failure (CHF) patients with periodic breathing (PB) and nonperiodic breathing (nPB), using the flow signal. Autoregressive modeling of the envelope of the respiratory flow signal is the starting point for the pattern characterization. Spectral parameters extracted from the discriminant frequency band (DB) are used to characterize the respiratory patterns. For each classification problem, the most discriminant parameter subset is selected using the leave-one-out cross-validation technique. The power in the right DB provides an accuracy of 84.6% when classifying PB vs. nPB patterns in CHF patients, whereas the power of the DB provides an accuracy of 85.5% when classifying the whole group of CHF patients vs. healthy subjects, and 85.2% when classifying nPB patients vs. healthy subjects.
JTD Keywords: Chronic heart failure, AR modeling, Respiratory pattern, Discriminant band, Periodic and nonperiodic breathing
Caballero-Briones, F., Artes, J. M., Diez-Perez, I., Gorostiza, P., Sanz, F., (2009). Direct observation of the valence band edge by in situ ECSTM-ECTS in p-type Cu2O layers prepared by copper anodization Journal of Physical Chemistry C 113, (3), 1028-1036
Polycrystalline Cu2O layers have been selectively grown by electrochemical anodization of polycrystalline Cu electrodes in an alkaline medium (pH 12.85). Uniform layers with thicknesses around 100 nm have been obtained. Using electrochemical impedance spectroscopy, it was concluded that the Cu2O films behave as a p-type semiconductor. The Mott-Schottky plot gives a value for the flat band potential of U-FB = -255 mV vs silver/silver chloride electrode (SSC), an estimated carrier density N-A = 6.1 x 10(17) cm(-3), and the space charge layer width was calculated to be W-SCL = 9 nm at a band bending of 120 mV. The electronic structure of the Cu vertical bar Cu2O vertical bar electrolyte interface was for the first time probed by in situ electrochemical tunneling spectroscopy. The use of in situ electrochemical scanning tunneling microscopy allows us to directly observed the valence band edge and determine its position against the absolute energy scale to be E-VB = -4.9 eV. Finally, we constructed a quantitative electronic diagram of the Cu vertical bar Cu2O vertical bar electrolyte interface, where the positions of the valence and conduction band edges are depicted, as well as the edge of the previously reported electronic subband.
JTD Keywords: 0.1 m NaOH, Electrochemical tunneling spectroscopy, Cuprous-oxide films, Anodic-oxidation, Electronic-structure, Alkaline-solution, Aqueous-solution, Initial-stages, Passive film, Thin-films
Baccar, Z. M., Caballero, D., Zine, N., Jaffrezic-Renault, N., Errachid, A., (2009). Development of urease/layered double hydroxides nanohybrid materials for the urea detection: Synthesis, analytical and catalytic characterizations Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 676-682
We developed new hybrid nanomaterials, urease/LDH (layered double hydroxides), for the urea detection. The LDH that were prepared by co-precipitation in constant pH and in ambient temperature are hydrotalcites (Mg2Al, Mg3Al) and zaccagnaite (Zn2Al and Zn3Al). The immobilization of urease in these various layered hybrid materials is realized by auto-assembly. The structures of hosted matrices were studied by X-ray diffraction, Absorbance Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allowed the characterisation of the urease immobilization and its interactions with LDH chemical groups. The urease was adsorbed and its morphology was conserved in its new environment. Furthermore, the study of catalytic parameters of Urease/LDH biomembranes and of the kinetics reaction of urea hydrolysis shows a good conformation of the enzyme in hydrotalcite matrices and that the affinity is similar to free urease.
JTD Keywords: Ldh hybrid nanomaterials, Surface properties, Urea biosensors, Urease thin films
Baccar, Z. M., Hidouri, S., El Bari, N., Jaffrezic-Renault, N., Errachid, A., Zine, N., (2009). Stable immobilization of anti-beta casein antibody onto layered double hydroxides materials for biosensor applications Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 647-655
This review presents the development of new kind of antibody/LDH (layered double hydroxides) hybrid nanomaterials for beta casein detection. The preparation method of the LDH is described. It is based on the co-precipitation of metallic salts in constant pH and temperature. The chosen LDH are hydrotalcites (Mg2AICO3, Mg3AICO3), Zaccagnaite: Zn2AICO3 and hydrocalumite: Ca 2AICI. Finally, the antibody is immobilized into the LDH materials using Layer-by-Layer method by autoassembly. In this work, we studied the surface properties of the prepared hybrid biomembranes using X-ray diffraction, Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allow describing the antibody immobilization and its interactions with LDH. The antibody was adsorbed and its morphology was conserved in its new environment after more than 15 days continuously in PBS solution, promising a constant biosensor performance.
JTD Keywords: Anti β-casein antibody, Antibody immobilization, Ldh hybrid biomaterials, Urea biosensors