Controlling brain states with a ray of light 

A study led by researchers from IBEC and IDIBAPS achieves, for the first time, the control of brain state transitions using a molecule responsive to light, named PAI.  The results not only pave the way to act on the brain patterns activity, but they also could lead to the development of photomodulated drugs for the treatment of brain lesions or diseases such as depression, bipolar disorders or Parkinson’s or Alzheimer’s diseases. 

Read more…

Bioengineered mini organs move towards the fight against cancer thanks to the AECC

A 3-years research project led by the ICREA Research Professor at IBEC, Núria Montserrat, has been dedicated to study kidney cancer by using laboratory organoids, thanks to the “LAB 2017” grants from the Spanish Association Against Cancer (AECC). Researchers have managed to create the first renal organoid-based animal model for this type of cancer, and to identify early signs of the development of the disease.

Read more…

DAM and IBEC develop a drone that improves odor management in water treatment plants

The company Depuración de Aguas del Mediterráneo (DAM) and the Institute for Bioengineering of Catalonia (IBEC) develop a system equipped with chemical sensors that provides information, in real time, on the intensity and location of odor sources in the Waste Water Treatment Plants (WWTP). The system has been calibrated and validated under real operating conditions through several measurement campaigns at the Molina de Segura WWTP (Murcia).

Read more…

New molecules allow to switch on and off neuronal circuits using light

Researchers from IBEC, in collaboration with an international team, describe the first molecules capable of regulate glycine receptors with light: Glyght and Azo-NZ1. The new molecules are a promising way to study neuronal circuits, to develop drug-based phototherapies non-invasively, and to understand neurological disorders related with the incorrect functioning of glycine receptors, as hyperekplexia, epilepsy and autism.

Read more…

Towards a treatment for myotonic dystrophy: the first 3D model with patient cells

IBEC researchers led by Javier Ramón and Juan M. Fernández develop the first three-dimensional model for myotonic dystrophy, a rare disease that currently has no cure. The model combines patient cells and bioengineering techniques and represents a major advance over the use of animals and cell cultures. This new model will help in the design of personalized and more effective treatments, and for drug testing in a much more efficient way.

Read more…