by Keyword: Fusion
Jurado A, Ulldemolins A, Lluís H, Gasull X, Gavara N, Sunyer R, Otero J, Gozal D, Almendros I, Farré R, (2023). Fast cycling of intermittent hypoxia in a physiomimetic 3D environment: A novel tool for the study of the parenchymal effects of sleep apnea Frontiers In Pharmacology 13, 1081345-1081345
Background: Patients with obstructive sleep apnea (OSA) experience recurrent hypoxemic events with a frequency sometimes exceeding 60 events/h. These episodic events induce downstream transient hypoxia in the parenchymal tissue of all organs, thereby eliciting the pathological consequences of OSA. Whereas experimental models currently apply intermittent hypoxia to cells conventionally cultured in 2D plates, there is no well-characterized setting that will subject cells to well-controlled intermittent hypoxia in a 3D environment and enable the study of the effects of OSA on the cells of interest while preserving the underlying tissue environment.Aim: To design and characterize an experimental approach that exposes cells to high-frequency intermittent hypoxia mimicking OSA in 3D (hydrogels or tissue slices).Methods: Hydrogels made from lung extracellular matrix (L-ECM) or brain tissue slices (300-800-mu m thickness) were placed on a well whose bottom consisted of a permeable silicone membrane. The chamber beneath the membrane was subjected to a square wave of hypoxic/normoxic air. The oxygen concentration at different depths within the hydrogel/tissue slice was measured with an oxygen microsensor.Results: 3D-seeded cells could be subjected to well-controlled and realistic intermittent hypoxia patterns mimicking 60 apneas/h when cultured in L-ECM hydrogels & AP;500 mu m-thick or ex-vivo in brain slices 300-500 mu m-thick.Conclusion: This novel approach will facilitate the investigation of the effects of intermittent hypoxia simulating OSA in 3D-residing cells within the parenchyma of different tissues/organs.
JTD Keywords: 3d culture, cell culture, diffusion, disease model, hydrogels, hypoxia, model, oxygen diffusion, tissue slice, transport, 3d culture, Cell culture, Disease model, Hydrogels, Hypoxia, Obstructive sleep apnea, Oxygen, Oxygen diffusion, Tissue slice
Joseph A, Wagner AM, Garay-Sarmiento M, Aleksanyan M, Haraszti T, Söder D, Georgiev VN, Dimova R, Percec V, Rodriguez-Emmenegger C, (2022). Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes Advanced Materials 34, 2206288
Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, we introduce a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC ) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.
JTD Keywords: biological-membranes, bottom-up synthetic biology, chain, hybrid vesicles, hydroethidine, organization, polymersome, proteins, stability, synthetic cells, thickness, vesicle fusion, vesicle motility, vesicles, zwitterionic dendrimersomes, Biosensor, Biosensors, Bottom-up synthetic biology, Hybrid vesicles, Lipid-bilayers, Synthetic cells, Vesicle fusion, Vesicle motility, Zwitterionic dendrimersomes
Checa, Marti, Jin, Xin, Millan-Solsona, Ruben, Neumayer, Sabine M., Susner, Michael A., McGuire, Michael A., OHara, Andrew, Gomila, Gabriel, Maksymovych, Petro, Pantelides, Sokrates T., Collins, Liam, (2022). Revealing Fast Cu-Ion Transport and Enhanced Conductivity at the CuInP2S6?In4/3P2S6 Heterointerface Acs Nano 16, 15347-15357
JTD Keywords: diffusion, elastic band method, ferroelectrics, ionic conductor, migration, nanoscale, phase transition, piezoresponse force microscopy, scanning dielectric microscopy, transition, Copper indium thiophosphate, Initio molecular-dynamics
Kaurin, D, Bal, PK, Arroyo, M, (2022). Peeling dynamics of fluid membranes bridged by molecular bonds: moving or breaking Journal Of The Royal Society Interface 19, 20220183
Biological adhesion is a critical mechanical function of complex organisms. At the scale of cell-cell contacts, adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. It is physically supported by transient and laterally mobile molecular bonds embedded in fluid membranes. Thus, unlike specific adhesion at solid-solid or solid-fluid interfaces, peeling at fluid-fluid interfaces can proceed by breaking bonds, by moving bonds or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling diffusion, reactions and mechanics. Mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective fracture energy. In a reaction-dominated regime, peeling proceeds by travelling fronts where marginal diffusion and unbinding control peeling speed. In a mixed reaction-diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.
JTD Keywords: Adhesive contact, Cadherins, Cell-cell adhesion, Detachment, Detailed mechanics, Diffusion, Growth, Kinetics, Peeling, Red-blood-cells, Repulsion, Separation, Vesicle adhesion
Tuveri, GM, Ceccarelli, M, Pira, A, Bodrenko, IV, (2022). The Optimal Permeation of Cyclic Boronates to Cross the Outer Membrane via the Porin Pathway Antibiotics 11, 840
We investigated the diffusion of three cyclic boronates formulated as beta-lactamase inhibitors through the porin OmpF to evaluate their potential to cross OM via the porin pathway. The three nonbeta-lactam molecules diffuse through the porin eyelet region with the same mechanism observed for beta-lactam molecules and diazobicyclooctan derivatives, with the electric dipole moment aligned with the transversal electric field. In particular, the BOH group can interact with both the basic ladder and the acidic loop L3, which is characteristic of the size-constricted region of this class of porins. On one hand, we confirm that the transport of small molecules through enterobacter porins has a common general mechanism; on the other, the class of cyclic boronate molecules does not seem to have particular difficulties in diffusing through enterobacter porins, thus representing a good scaffold for new anti-infectives targeting Gram-negative bacteria research.
JTD Keywords: Antibiotics, Beta-lactamase inhibitors, Cyclic boronates, Diffusion, Diffusion current, Discovery, Electric-field, Metadynamics, Molecular dynamics simulations, Molecular-dynamics simulations, Nanopores, Permeability, Permeation, Porins, Rules, Translocation
Valles, Morgane, Pujals, Sílvia, Albertazzi, Lorenzo, Sánchez, Samuel, (2022). Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors Acs Nano 16, 5615-5626
JTD Keywords: canavalin, catalysis, delivery, dls, enhanced diffusion, enzyme, lipase immobilization, self-propulsion, super-resolution microscopy, urease, Mesoporous silica nanoparticles, Micromotors
Bonilla-Pons SÀ, Nakagawa S, Bahima EG, Fernández-Blanco Á, Pesaresi M, D'Antin JC, Sebastian-Perez R, Greco D, Domínguez-Sala E, Gómez-Riera R, Compte RIB, Dierssen M, Montserrat Pulido, N, Cosma MP, (2022). Müller glia fused with adult stem cells undergo neural differentiation in human retinal models Ebiomedicine 77,
Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons.We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation.We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids.We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies.This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).Published by Elsevier B.V.
JTD Keywords: cell fusion, expression, fusion, ganglion-cells, in-vitro, mouse, müller glia, neural differentiation, organoids, regeneration, retina regeneration, stem cells, stromal cells, transplantation, 4',6 diamidino 2 phenylindole, 5' nucleotidase, Agarose, Alcohol, Arpe-19 cell line, Article, Beta catenin, Beta tubulin, Bone-marrow-cells, Bromophenol blue, Buffer, Calcium cell level, Calcium phosphate, Calretinin, Canonical wnt signaling, Cd34 antigen, Cell culture, Cell fusion, Cell viability, Coculture, Complementary dna, Confocal microscopy, Cornea transplantation, Cryopreservation, Cryoprotection, Crystal structure, Current clamp technique, Dimethyl sulfoxide, Dodecyl sulfate sodium, Edetic acid, Electrophysiology, Endoglin, Fetal bovine serum, Fibroblast growth factor 2, Flow cytometry, Fluorescence activated cell sorting, Fluorescence intensity, Glyceraldehyde 3 phosphate dehydrogenase, Glycerol, Glycine, Hoe 33342, Immunofluorescence, Immunohistochemistry, Incubation time, Interleukin 1beta, Lentivirus vector, Matrigel, Mercaptoethanol, Microinjection, Mueller cell, Müller glia, N methyl dextro aspartic acid, Nerve cell differentiation, Neural differentiation, Nitrogen, Nonhuman, Organoids, Paraffin, Paraffin embedding, Paraformaldehyde, Patch clamp technique, Penicillin derivative, Phenolsulfonphthalein, Phenotype, Phosphate buffered saline, Phosphoprotein phosphatase inhibitor, Polyacrylamide gel electrophoresis, Potassium chloride, Povidone iodine, Promoter region, Proteinase inhibitor, Real time polymerase chain reaction, Receptor type tyrosine protein phosphatase c, Restriction endonuclease, Retina, Retina dystrophy, Retina regeneration, Retinol, Rhodopsin, Rna extraction, Stem cell, Stem cells, Subcutaneous fat, Tunel assay, Visual impairment, Western blotting
Hoogduijn, M.J., Montserrat, N., van der Laan, L.J.W., Dazzi, F., Perico, N., Kastrup, J., Gilbo, N., Ploeg, R.J., Roobrouck, V., Casiraghi, F., Johnson, C.L., Franquesa, M., Dahlke, M.H., Massey, E., Hosgood, S., Reinders, M.E.J., (2020). The emergence of regenerative medicine in organ transplantation: 1st European Cell Therapy and Organ Regeneration Section meeting Transplant International 33, (8), 833-840
Regenerative medicine is emerging as a novel field in organ transplantation. In September 2019, the European Cell Therapy and Organ Regeneration Section (ECTORS) of the European Society for Organ Transplantation (ESOT) held its first meeting to discuss the state-of-the-art of regenerative medicine in organ transplantation. The present article highlights the key areas of interest and major advances in this multidisciplinary field in organ regeneration and discusses its implications for the future of organ transplantation.
JTD Keywords: Cell therapy, Machine perfusion, Mesenchymal stromal cell, Organoid, Regeneration, Transplantation
Valls-Margarit, M., Iglesias-García, O., Di Guglielmo, C., Sarlabous, L., Tadevosyan, K., Paoli, R., Comelles, J., Blanco-Almazán, D., Jiménez-Delgado, S., Castillo-Fernández, O., Samitier, J., Jané, R., Martínez, Elena, Raya, Á., (2019). Engineered macroscale cardiac constructs elicit human myocardial tissue-like functionality Stem Cell Reports 13, (1), 207-220
In vitro surrogate models of human cardiac tissue hold great promise in disease modeling, cardiotoxicity testing, and future applications in regenerative medicine. However, the generation of engineered human cardiac constructs with tissue-like functionality is currently thwarted by difficulties in achieving efficient maturation at the cellular and/or tissular level. Here, we report on the design and implementation of a platform for the production of engineered cardiac macrotissues from human pluripotent stem cells (PSCs), which we term “CardioSlice.” PSC-derived cardiomyocytes, together with human fibroblasts, are seeded into large 3D porous scaffolds and cultured using a parallelized perfusion bioreactor with custom-made culture chambers. Continuous electrical stimulation for 2 weeks promotes cardiomyocyte alignment and synchronization, and the emergence of cardiac tissue-like properties. These include electrocardiogram-like signals that can be readily measured on the surface of CardioSlice constructs, and a response to proarrhythmic drugs that is predictive of their effect in human patients.
JTD Keywords: Cardiac tissue engineering, CardioSlice, ECG-like signals, Electrical stimulation, Heart physiology, Human induced pluripotent stem cells, Perfusion bioreactor, Tissue-like properties
Muro, Silvia, (2018). Alterations in cellular processes involving vesicular trafficking and implications in drug delivery Biomimetics 3, (3), 19
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.
JTD Keywords: Cellular vesicles, Vesicle fusion, Fission and intracellular trafficking, Drug delivery systems and nanomedicines, Transcytosis and endocytosis of drugs carriers, Disease effects on vesicular trafficking, Drug effects on vesicular trafficking, Role of the biological environment
Peyman, Zirak, Clara, Gregori-Pla, Igor, Blanco, Ana, Fortuna, Gianluca, Cotta, Pau, Bramon, Isabel, Serra, Anna, Mola, Jordi, Solà-Soler, Beatriz, F. Giraldo-Giraldo, Turgut, Durduran, Mercedes, Mayos, (2018). Characterization of the microvascular cerebral blood flow response to obstructive apneic events during night sleep Neurophotonics 5, (4), 045003
Obstructive apnea causes periodic changes in cerebral and systemic hemodynamics, which may contribute to the increased risk of cerebrovascular disease of patients with obstructive sleep apnea (OSA) syndrome. The improved understanding of the consequences of an apneic event on the brain perfusion may improve our knowledge of these consequences and then allow for the development of preventive strategies. Our aim was to characterize the typical microvascular, cortical cerebral blood flow (CBF) changes in an OSA population during an apneic event. Sixteen patients (age 58 ± 8 years, 75% male) with a high risk of severe OSA were measured with a polysomnography device and with diffuse correlation spectroscopy (DCS) during one night of sleep with 1365 obstructive apneic events detected. All patients were later confirmed to suffer from severe OSA syndrome with a mean of 83 ± 15 apneas and hypopneas per hour. DCS has been shown to be able to characterize the microvascular CBF response to each event with a sufficient contrast-to-noise ratio to reveal its dynamics. It has also revealed that an apnea causes a peak increase of microvascular CBF (30 ± 17 % ) at the end of the event followed by a drop (−20 ± 12 % ) similar to what was observed in macrovascular CBF velocity of the middle cerebral artery. This study paves the way for the utilization of DCS for further studies on these populations.
JTD Keywords: Sleep disorder breathing, Cerebral blood flow, Brain perfusion, Diffuse correlation spectroscopy
Fonollosa, Jordi, Solórzano, Ana, Marco, Santiago, (2018). Chemical sensor systems and associated algorithms for fire detection: A review Sensors 18, (2), 553
Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative
JTD Keywords: Fire detection, Gas sensor, Pattern recognition, Sensor fusion, Machine learning, Toxicants, Carbon monoxide, Hydrogen cyanide, Standard test fires, Transducers, Smoke
Solorzano, A., Fonollosa, J., Fernandez, L., Eichmann, J., Marco, S., (2017). Fire detection using a gas sensor array with sensor fusion algorithms IEEE Conference Publications
ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) , IEEE (Montreal, Canada) , 1-3
Conventional fire alarms are based on smoke detection. Nevertheless, in some fire scenarios volatiles are released before smoke. Fire detectors based only on chemical sensors have already been proposed as they may provide faster response, but they are still prone to false alarms in the presence of nuisances. These systems rely heavily on pattern recognition techniques to discriminate fires from nuisances. In this context, it is important to test the systems according to international standards for fires and testing the system against a diversity of nuisances. In this work, we investigate the behavior of a gas sensor array coupled to sensor fusion algorithms for fire detection when exposed to standardized fires and several nuisances. Results confirmed the ability to detect fires (97% Sensitivity), although the system still produces a significant rate of false alarms (35%) for nuisances not presented in the training set.
JTD Keywords: Fire alarm, Gas sensor array, Machine Olfaction, Multisensor system, Sensor fusion
Klein, S., Schierwagen, R., Uschner, F. E., Trebicka, J., (2017). Mouse and rat models of induction of hepatic fibrosis and assessment of portal hypertension
Fibrosis (Methods in Molecular Biology) (ed. Rittié, L.), Humana Press (New York, USA) 1627, 91-116
Portal hypertension either develops due to progressive liver fibrosis or is the consequence of vascular liver diseases such as portal vein thrombosis or non-cirrhotic portal hypertension. This chapter focuses on different rodent models of liver fibrosis with portal hypertension and also in few non-cirrhotic portal hypertension models. Importantly, after the development of portal hypertension, the proper assessment of drug effects in the portal and systemic circulation should be discussed. The last part of the chapter is dedicated in these techniques to assess the in vivo hemodynamics and the ex vivo techniques of the isolated liver perfusion and vascular contractility.
JTD Keywords: Aortic ring contraction, Bile duct ligation, Carbon tetrachloride, Colored microsphere technique, High-fat diet, Isolated in situ liver perfusion, Methionine-choline-deficient diet, Partial portal vein ligation, Portal hypertension
Crespo, Anna, Pedraz, Lucas, Astola, Josep, Torrents, Eduard, (2016). Pseudomonas aeruginosa exhibits deficient biofilm formation in the absence of class II and III ribonucleotide reductases due to hindered anaerobic growth Frontiers in Microbiology 7, Article 688
Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments. Ribonucleotide reductases (RNRs) are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II, and III). Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development. In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the understanding of this complex growth pattern, essential for P. aeruginosa chronic infections.
JTD Keywords: Pseudomonas aeruginosa, Ribonucleotide Reductases, Vitamin B 12, Anaerobic metabolism, Biofilm formation, DNA Synthesis, Oxygen diffusion, nrd genes.
Marbán, Arturo, Casals, Alicia, Fernández, Josep, Amat, Josep, (2014). Haptic feedback in surgical robotics: Still a challenge Advances in Intelligent Systems and Computing
ROBOT2013: First Iberian Robotics Conference (ed. Armada, Manuel A., Sanfeliu, Alberto, Ferre, Manuel), Springer International Publishing 252, 245-253
Endowing current surgical robotic systems with haptic feedback to perform minimally invasive surgery (MIS), such as laparoscopy, is still a challenge. Haptic is a feature lost in surgical teleoperated systems limiting surgeons capabilities and ability. The availability of haptics would provide important advantages to the surgeon: Improved tissue manipulation, reducing the breaking of sutures and increase the feeling of telepresence, among others. To design and develop a haptic system, the measurement of forces can be implemented based on two approaches: Direct and indirect force sensing. MIS performed with surgical robots, imposes many technical constraints to measure forces, such as: Miniaturization, need of sterilization or materials compatibility, making it necessary to rely on indirect force sensing. Based on mathematical models of the components involved in an intervention and indirect force sensing techniques, a global perspective on how to address the problem of measurement of tool-tissue interaction forces is presented.
JTD Keywords: Surgical robotics, Haptic feedback, Indirect force sensing, Machine learning, Data fusion, Mathematical models
Redondo-Morata, L., Giannotti, M. I., Sanz, F., (2012). AFM-based force-clamp monitors lipid bilayer failure kinetics Langmuir 28, (15), 6403-6410
The lipid bilayer rupture phenomenon is here explored by means of atomic force microscopy (AFM)-based force clamp, for the first time to our knowledge, to evaluate how lipid membranes respond when compressed under an external constant force, in the range of nanonewtons. Using this method, we were able to directly quantify the kinetics of the membrane rupture event and the associated energy barriers, for both single supported bilayers and multibilayers, in contradistinction to the classic studies performed at constant velocity. Moreover, the affected area of the membrane during the rupture process was calculated using an elastic deformation model. The elucidated information not only contributes to a better understanding of such relevant process, but also proves the suitability of AFM-based force clamp to study model structures as lipid bilayers. These findings on the kinetics of lipid bilayers rupture could be extended and applied to the study of other molecular thin films. Furthermore, systems of higher complexity such as models mimicking cell membranes could be studied by means of AFM-based force-clamp technique.
JTD Keywords: Chain-Length, Spectroscopy, Nanomechanics, Microscopy, Elasticity, Stability, Membranes, Reveals, Fusion, Ions
Malandrino, Andrea, Noailly, Jerome, Lacroix, Damien, (2011). The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes PLoS Computational Biology
Plos Computational Biology , 7, (8), 1-12
Intervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was coupled with oxygen and lactate transport models. Deformations and fluid flow were linked to transport predictions by including strain-dependent diffusion and advection. The two solute transport models were also coupled to account for cell metabolism. With this approach, the relevance of metabolic and mechano-transport couplings were assessed in the healthy disc under loading-recovery daily compression. Disc height, cell density and material degenerative changes were parametrically simulated to study their influence on the calculated solute concentrations. The effects of load frequency and amplitude were also studied in the healthy disc by considering short periods of cyclic compression. Results indicate that external loads influence the oxygen and lactate regional distributions within the disc when large volume changes modify diffusion distances and diffusivities, especially when healthy disc properties are simulated. Advection was negligible under both sustained and cyclic compression. Simulating degeneration, mechanical changes inhibited the mechanical effect on transport while disc height, fluid content, nucleus pressure and overall cell density reductions affected significantly transport predictions. For the healthy disc, nutrient concentration patterns depended mostly on the time of sustained compression and recovery. The relevant effect of cell density on the metabolic transport indicates the disturbance of cell number as a possible onset for disc degeneration via alteration of the metabolic balance. Results also suggest that healthy disc properties have a positive effect of loading on metabolic transport. Such relation, relevant to the maintenance of the tissue functional composition, would therefore link disc function with disc nutrition.
JTD Keywords: Bovine nucleus pulposus, Human anulus fibrosus, Finite-element, Fluid-flow, Hydraulic permeability, Confined compression, Coupled diffusion, Solute transport, Water-content, Lumbar spine
Sánchez-Martín, M. J., Urbán, P., Pujol, M., Haro, I., Alsina, M. A., Busquets, M. A., (2011). Biophysical investigations of GBV-C E1 peptides as potential inhibitors of HIV-1 fusion peptide
ChemPhysChem , 12, (15), 2816-2822
Five peptide sequences corresponding to the E1 protein of GBV-C [NCCAPEDIGFCLEGGCLV (P7), APEDIGFCLEGGCLVALG (P8), FCLEGGCLVALGCTICTD (P10), QAGLAVRPGKSAAQLVGE (P18), and AQLVGELGSLYGPLSVSA (P22)] were synthesized because they were capable of interfering with the HIV-1 fusion peptide (HIV-1 FP)-vesicle interaction. In this work the interaction of these peptides with the HIV-1 FP, as well as with membrane models, was analyzed to corroborate their inhibition ability and to understand if the interaction with the fusion peptide takes place in solution or at the membrane level. Several studies were carried out on aggregation and membrane fusion, surface Plasmon resonance, and conformational analysis by circular dichroism. Moreover, in vitro toxicity assays, including cytotoxicity studies in 3T3 fibroblasts and hemolysis assays in human red blood cells, were performed to evaluate if these peptides could be potentially used in anti-HIV-1 therapy. Results show that P10 is not capable of inhibiting membrane fusion caused by HIV-1 and it aggregates liposomes and fuses membranes, thus we decided to discard it for futures studies. P18 and P22 do not inhibit membrane fusion, but they inhibit the ability of HIV-1 FP to form pores in bilayers, thus we have not discarded them yet. P7 and P8 were selected as the best candidates for future studies because they are capable of inhibiting membrane fusion and the interaction of HIV-1 FP with bilayers. Therefore, these peptides could be potentially used in future anti-HIV-1 research. Part of the gang: Liposomes are deposited on a surface plasmon resonance chip (see AFM image of the chip) to observe the interaction of peptides corresponding to the E1 envelop protein of the hepatitis G virus with membranes to show how they reduce the interaction of the HIV-1 fusion peptide.
JTD Keywords: HIV-1 fusion protein, Liposomes, Membranes, Peptides, Viruses
Morgenstern, R., Morgenstern, C., Jané, R., Lee, S. H., (2011). Usefulness of an expandable interbody spacer for the treatment of foraminal stenosis in extremely collapsed disks preliminary clinical experience with endoscopic posterolateral transforaminal approach
Journal of Spinal Disorders & Techniques , 24, (8), 485-491
Study Design: Clinical series of patients with degenerative disk disease undergoing an endoscopic posterolateral transforaminal procedure that used a reaming foraminoplasty technique to enlarge the foramen coupled with insertion of the B-Twin expandable spacer. Objectives: This retrospective analysis of 107 consecutive patients sought to assess the outcome of this surgical procedure. Summary of Background Data: Reamed endoscopic foraminoplasty under direct endoscopic vision has been shown to be suitable for extremely collapsed disks (> 50% total disk height) despite the difficult access, especially at L5-S1. The authors tried to investigate the efficacy of an expandable spacer being inserted by the endoscopic transforaminal approach to solve foraminal stenosis without bone fusion techniques. Methods: The procedure consists of bone reaming under direct endoscopic control to wide the foramen followed by insertion of the B-Twin expandable device as a disk spacer to restore partially or to maintain the height of the collapsed disk. Outcome measures included visual analog scale (VAS) for pain, the Oswestry Disability Index (ODI) for functional disability, and radioimaging studies. Results: Mean follow-up was 27.2 months. Clinical outcome was considered excellent in 64 patients, good in 25, fair in 10, and poor in 8. Results were similar in single and double B-Twin spacer insertions. Postoperative mean values for VAS and ODI scores improved significantly as compared with preoperative data. Mean VAS and ODI scores were significantly higher in patients with fair or poor results than in those with excellent or good outcome. In 2 cases, clear signs of end plate bone resorption in the control computed tomographic scans at 6 months and 12 months leading to a substantial loss of disk height were documented. Conclusions: This preliminary study has shown the efficacy of an endoscopic surgical technique for the treatment of foraminal stenosis in extremely collapsed disks.
JTD Keywords: Foraminal stenosis, B-twin expandable spacer, Endoscopic foraminoplasty, Minimally invasive surgery, Surgical technique, Spinal spacer, Lumbar, Diskectomy, Fusion, Discectomy
Kodippili, G. C., Spector, J., Kang, G. E., Liu, H., Wickrema, A., Ritchie, K., Low, P. S., (2010). Analysis of the kinetics of band 3 diffusion in human erythroblasts during assembly of the erythrocyte membrane skeleton
British Journal of Haematology , 150, (5), 592-600
Summary During definitive erythropoiesis, erythroid precursors undergo differentiation through multiple nucleated states to an enucleated reticulocyte, which loses its residual RNA/organelles to become a mature erythrocyte. Over the course of these transformations, continuous changes in membrane proteins occur, including shifts in protein abundance, rates of expression, isoform prominence, states of phosphorylation, and stability. In an effort to understand when assembly of membrane proteins into an architecture characteristic of the mature erythrocyte occurs, we quantitated the lateral diffusion of the most abundant membrane protein, band 3 (AE1), during each stage of erythropoiesis using single particle tracking. Analysis of the lateral trajectories of individual band 3 molecules revealed a gradual reduction in mobility of the anion transporter as erythroblasts differentiated. Evidence for this progressive immobilization included a gradual decline in diffusion coefficients as determined at a video acquisition rate of 120 frames/s and a decrease in the percentage of compartment sizes >100 nm. Because complete acquisition of the properties of band 3 seen in mature erythrocytes is not observed until circulating erythrocytes are formed, we suggest that membrane maturation involves a gradual and cooperative assembly process that is not triggered by the synthesis of any single protein.
JTD Keywords: Band 3 diffusion, Erythrocyte, Progenitor cells, Single particle tracking, Streptavidin quantum dot