DONATE

Publications

by Keyword: cell culture

Hafa, L, Breideband, L, Posada, LR, Torras, N, Martinez, E, Stelzer, EHK, Pampaloni, F, (2024). Light Sheet-Based Laser Patterning Bioprinting Produces Long-Term Viable Full-Thickness Skin Constructs Advanced Materials 36, e2306258

Tissue engineering holds great promise for biomedical research and healthcare, offering alternatives to animal models and enabling tissue regeneration and organ transplantation. Three-dimensional (3D) bioprinting stands out for its design flexibility and reproducibility. Here, we present an integrated fluorescent light sheet bioprinting and imaging system that combines high printing speed (0.66 mm3 /s) and resolution (9 μm) with light sheet-based imaging. This approach employs direct laser patterning and a static light sheet for confined voxel crosslinking in photocrosslinkable materials. The developed bioprinter enables real-time monitoring of hydrogel crosslinking using fluorescent recovery after photobleaching (FRAP) and brightfield imaging as well as in situ light sheet imaging of cells. Human fibroblasts encapsulated in a thiol-ene click chemistry-based hydrogel exhibited high viability (83% ± 4.34%) and functionality. Furthermore, full-thickness skin constructs displayed characteristics of both epidermal and dermal layers and remained viable for 41 days. The integrated approach demonstrates the capabilities of light sheet bioprinting, offering high speed, resolution, and real-time characterization. Future enhancements involving solid-state laser scanning devices such as acousto-optic deflectors and modulators will further enhance resolution and speed, opening new opportunities in light-based bioprinting and advancing tissue engineering. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.

JTD Keywords: cadherin, collagen, culture, differentiation, fluorescence microscopy, full-thickness skin model, hydrogels, light sheet bioprinter, light sheet fluorescence microscopy, proliferation, survival, tissue engineering, Animal, Animals, Biofabrication, Bioprinting, Cell culture, Crosslinking, Fluorescence, Fluorescence microscopy, Full-thickness skin model, Hair follicle, Human, Humans, Hydrogel, Hydrogels, Image resolution, Laser patterning, Light sheet, Light sheet bioprinter, Light sheet fluorescence microscopy, Molecular biology, Photobleaching, Printing, three-dimensional, Procedures, Reproducibility, Reproducibility of results, Skin model, Three dimensional printing, Tissue, Tissue engineering, Tissue regeneration, Tissue scaffolds, Tissues engineerings


Deng, LL, Olea, AR, Ortiz-Perez, A, Sun, BB, Wang, JH, Pujals, S, Palmans, ARA, Albertazzi, L, (2024). Imaging Diffusion and Stability of Single-Chain Polymeric Nanoparticles in a Multi-Gel Tumor-on-a-Chip Microfluidic Device Small Methods , e2301072

The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.© 2024 The Authors. Small Methods published by Wiley-VCH GmbH.

JTD Keywords: 3d cancer cell uptake, Cancer cells, Cell culture, Cell uptake, Cellular uptake, Diseases, Ecm penetration, Extracellular matrices, Extracellular matrix penetration, Functional polymers, Hydrogen bonds, Medical applications, Microfluidics, Microstructure, Nanoparticles, Polymeric nanoparticles, Scpns, Single chains, Single-chain polymeric nanoparticle, Stability, Tumor-on-a-chip, Tumors


Garcia-de-Albeniz, N, Ginebra, MP, Jimenez-Piqué, E, Roa, JJ, Mas-Moruno, C, (2024). Influence of nanosecond laser surface patterning on dental 3Y-TZP: Effects on the topography, hydrothermal degradation and cell response Dental Materials 40, 139-150

Laser surface micropatterning of dental-grade zirconia (3Y-TZP) was explored with the objective of providing defined linear patterns capable of guiding bone-cell response.A nanosecond (ns-) laser was employed to fabricate microgrooves on the surface of 3Y-TZP discs, yielding three different groove periodicities (i.e., 30, 50 and 100 µm). The resulting topography and surface damage were characterized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). X-Ray diffraction (XRD) and Raman spectroscopy techniques were employed to assess the hydrothermal degradation resistance of the modified topographies. Preliminary biological studies were conducted to evaluate adhesion (6 h) of human mesenchymal stem cells (hMSC) to the patterns in terms of cell number and morphology. Finally, Staphylococcus aureus adhesion (4 h) to the microgrooves was investigated.The surface analysis showed grooves of approximately 1.8 µm height that exhibited surface damage in the form of pile-up at the edge of the microgrooves, microcracks and cavities. Accelerated aging tests revealed a slight decrease of the hydrothermal degradation resistance after laser patterning, and the Raman mapping showed the presence of monoclinic phase heterogeneously distributed along the patterned surfaces. An increase of the hMSC area was identified on all the microgrooved surfaces, although only the 50 µm periodicity, which is closer to the cell size, significantly favored cell elongation and alignment along the grooves. A decrease in Staphylococcus aureus adhesion was observed on the investigated micropatterns.The study suggests that linear microgrooves of 50 µm periodicity may help in promoting hMSC adhesion and alignment, while reducing bacterial cell attachment.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

JTD Keywords: abutment material, alumina toughened zirconia, antibacterial, bacterial adhesion, biofilm growth, cell adhesion, dental implants, hydrothermal degradation, implant surfaces, in-vitro, laser patterning, osseointegration, osteogenic differentiation, part 1, surface topography, y-tzp ceramics, Antibacterial, Antibacterials, Bacteria, Bone, Cell adhesion, Cell culture, Cells adhesion, Ceramics, Chemistry, Degradation resistance, Dental implants, Dental material, Dental materials, Dental prostheses, Human, Human mesenchymal stem cells, Humans, Hydrothermal degradation, Laser patterning, Laser surface, Lasers, Low-temperature degradation, Materials testing, Microscopy, electron, scanning, Nanosecond lasers, Osseointegration, Piles, Scanning electron microscopy, Staphylococcus aureus, Stem cells, Surface analysis, Surface damages, Surface properties, Surface property, Surface topography, Topography, Yttrium, Zirconia, Zirconium


Pereira, I, Lopez-Martinez, MJ, Samitier, J, (2023). Advances in current in vitro models on neurodegenerative diseases Frontiers In Bioengineering And Biotechnology 11, 1260397

Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.

JTD Keywords: 3d in vitro models, bioprinting, ipsc cell culture, microfluidic device, 3d in vitro models, Bioprinting, Blood-brain-barrier, Cerebral organoids, Culture model, Endothelial-cells, Expression profile, Extracellular-matrix, Ipsc cell culture, Microfluidic device, Neurodegenerative diseases, On-a-chip, Pluripotent stem-cells, Shear-stress, Substrate stiffness


Tejedera-Villafranca, A, Montolio, M, Ramón-Azcón, J, Fernández-Costa, JM, (2023). Mimicking sarcolemmal damage in vitro: a contractile 3D model of skeletal muscle for drug testing in Duchenne muscular dystrophy Biofabrication 15, 45024

Duchenne muscular dystrophy (DMD) is the most prevalent neuromuscular disease diagnosed in childhood. It is a progressive and wasting disease, characterized by a degeneration of skeletal and cardiac muscles caused by the lack of dystrophin protein. The absence of this crucial structural protein leads to sarcolemmal fragility, resulting in muscle fiber damage during contraction. Despite ongoing efforts, there is no cure available for DMD patients. One of the primary challenges is the limited efficacy of current preclinical tools, which fail in modeling the biological complexity of the disease. Human-based three-dimensional (3D) cell culture methods appear as a novel approach to accelerate preclinical research by enhancing the reproduction of pathophysiological processes in skeletal muscle. In this work, we developed a patient-derived functional 3D skeletal muscle model of DMD that reproduces the sarcolemmal damage found in the native DMD muscle. These bioengineered skeletal muscle tissues exhibit contractile functionality, as they responded to electrical pulse stimulation. Sustained contractile regimes induced the loss of myotube integrity, mirroring the pathological myotube breakdown inherent in DMD due to sarcolemmal instability. Moreover, damaged DMD tissues showed disease functional phenotypes, such as tetanic fatigue. We also evaluated the therapeutic effect of utrophin upregulator drug candidates on the functionality of the skeletal muscle tissues, thus providing deeper insight into the real impact of these treatments. Overall, our findings underscore the potential of bioengineered 3D skeletal muscle technology to advance DMD research and facilitate the development of novel therapies for DMD and related neuromuscular disorders.

JTD Keywords: 3d cell culture, disease modeling, drug testing, duchenne muscular dystrophy, sarcolemmal damage, skeletal muscle, 3d cell culture, Animal-models, Disease modeling, Dmso, Drug testing, Duchenne muscular dystrophy, Gene, Image, Mechanisms, Sarcolemmal damage, Skeletal muscle, Tissue engineering


Malandain, N, Sanz-Fraile, H, Farre, R, Otero, J, Roig, A, Laromaine, A, (2023). Cell-Laden 3D Hydrogels of Type I Collagen Incorporating Bacterial Nanocellulose Fibers Acs Applied Bio Materials 6, 3638-3647

There is a growing interest in developing natural hydrogel-based scaffolds to culture cells in a three-dimensional (3D) millieu that better mimics the in vivo cells' microenvironment. A promising approach is to use hydrogels from animal tissues, such as decellularized extracellular matrices; however, they usually exhibit suboptimal mechanical properties compared to native tissue and their composition with hundreds of different protein complicates to elucidate which stimulus triggers cell's responses. As simpler scaffolds, type I collagen hydrogels are used to study cell behavior in mechanobiology even though they are also softer than native tissues. In this work, type I collagen is mixed with bacterial nanocellulose fibers (BCf) to develop reinforced scaffolds with mechanical properties suitable for 3D cell culture. BCf were produced from blended pellicles biosynthesized from Komagataeibacter xylinus. Then, BCf were mixed with concentrated collagen from rat-tail tendons to form composite hydrogels. Confocal laser scanning microscopy and scanning electron microscopy images confirmed the homogeneous macro- and microdistribution of both natural polymers. Porosity analysis confirmed that BCf do not disrupt the scaffold structure. Tensile strength and rheology measurements demonstrated the reinforcement action of BCf (43% increased stiffness) compared to the collagen hydrogel while maintaining the same viscoelastic response. Additionally, this reinforcement of collagen hydrogels with BCf offers the possibility to mix cells before gelation and then proceed to the culture of the 3D cell scaffolds. We obtained scaffolds with human bone marrow-derived mesenchymal stromal cells or human fibroblasts within the composite hydrogels, allowing a homogeneous 3D viable culture for at least 7 days. A smaller surface shrinkage in the reinforced hydrogels compared to type I collagen hydrogels confirmed the strengthening of the composite hydrogels. These collagen hydrogels reinforced with BCf might emerge as a promising platform for 3D in vitro organ modeling, tissue-engineering applications, and suitable to conduct fundamental mechanobiology studies.

JTD Keywords: 3d cell culture, bacterial cellulose, collagen, composite hydrogels, 3d cell culture, Bacterial cellulose, Cellulose/collagen composite, Collagen, Composite hydrogels, Contraction, Cross-linking, Cytocompatibility, Fibroblasts, Matrix, Mechanical-properties, Reinforcement, Stiffness, Tissue engineering


Ugarte-Orozco, MJ, Lopez-Munoz, GA, Antonio-Perez, A, Esquivel-Ortiz, KM, Ramon-Azcon, J, (2023). High-throughput biointerfaces for direct, label-free, and multiplexed metaplasmonic biosensing Current Research In Biotechnology 5, 100119

In recent years, metaplasmonic biosensors have emerged as a novel counterpart of well-established plasmonic biosensors based on thin metallic layers. Metaplasmonic biosensors offer high potential for sensor miniaturiza-tion, extreme sensitivity biosensing, and high multiplexing capabilities with detection methods free of coupling optical elements. These capabilities make metaplasmonic biosensors highly attractive for Point-of-Care and handled/portable devices or novel On-Chip devices; as a result, it has increased the number of prototypes and potential applications that emerged during the last years. One of the main challenges to achieving fully operative devices is the achievement of high-throughput biointerfaces for sensitive and selective biodetection in complex media. Despite the superior surface sensitivity achieved by metaplasmonic sensors compared to conventional plasmonic sensors based on metallic thin films, the main limitations to achieving high-throughput and multiplexed biosensing usually are associated with the sensitivity and selectivity of the bioin-terface and, as a consequence, their application to the direct analysis of real complex samples. This graphical review discusses the potential challenges and capabilities of different biofunctionalization strategies, biorecog-nition elements, and antifouling strategies to achieve scalable and high-throughput metaplasmonic biosensing for Point-of-Care devices and bioengineering applications like Organs-On-Chip.

JTD Keywords: Biointerfaces, Biosensing, Biosensors, Cell culture monitoring, Metaplasmonic, Nanoplasmonic, Organ-on-chip, Point-of-care


Jurado, A, Ulldemolins, A, Lluís, H, Gasull, X, Gavara, N, Sunyer, R, Otero, J, Gozal, D, Almendros, I, Farré, R, (2023). Fast cycling of intermittent hypoxia in a physiomimetic 3D environment: A novel tool for the study of the parenchymal effects of sleep apnea Frontiers In Pharmacology 13, 1081345

Background: Patients with obstructive sleep apnea (OSA) experience recurrent hypoxemic events with a frequency sometimes exceeding 60 events/h. These episodic events induce downstream transient hypoxia in the parenchymal tissue of all organs, thereby eliciting the pathological consequences of OSA. Whereas experimental models currently apply intermittent hypoxia to cells conventionally cultured in 2D plates, there is no well-characterized setting that will subject cells to well-controlled intermittent hypoxia in a 3D environment and enable the study of the effects of OSA on the cells of interest while preserving the underlying tissue environment.Aim: To design and characterize an experimental approach that exposes cells to high-frequency intermittent hypoxia mimicking OSA in 3D (hydrogels or tissue slices).Methods: Hydrogels made from lung extracellular matrix (L-ECM) or brain tissue slices (300-800-mu m thickness) were placed on a well whose bottom consisted of a permeable silicone membrane. The chamber beneath the membrane was subjected to a square wave of hypoxic/normoxic air. The oxygen concentration at different depths within the hydrogel/tissue slice was measured with an oxygen microsensor.Results: 3D-seeded cells could be subjected to well-controlled and realistic intermittent hypoxia patterns mimicking 60 apneas/h when cultured in L-ECM hydrogels & AP;500 mu m-thick or ex-vivo in brain slices 300-500 mu m-thick.Conclusion: This novel approach will facilitate the investigation of the effects of intermittent hypoxia simulating OSA in 3D-residing cells within the parenchyma of different tissues/organs.

JTD Keywords: 3d culture, cell culture, diffusion, disease model, hydrogels, hypoxia, model, oxygen diffusion, tissue slice, transport, 3d culture, Cell culture, Disease model, Hydrogels, Hypoxia, Obstructive sleep apnea, Oxygen, Oxygen diffusion, Tissue slice


Garreta, E, Moya-Rull, D, Stanifer, ML, Monteil, V, Prado, P, Marco, A, Tarantino, C, Gallo, M, Jonsson, G, Hagelkruys, A, Mirazimi, A, Boulant, S, Penninger, JM, Montserrat, N, (2022). Protocol for SARS-CoV-2 infection of kidney organoids derived from human pluripotent stem cells Star Protocols 3, 101872

This protocol presents the use of SARS-CoV-2 isolates to infect human kidney organoids, enabling exploration of the impact of SARS-CoV-2 infection in a human multicellular in vitro system. We detail steps to generate kidney organoids from human pluripotent stem cells (hPSCs) and emulate a diabetic milieu via organoids exposure to diabetogenic-like cell culture conditions. We further describe preparation and titration steps of SARS-CoV-2 virus stocks, their subsequent use to infect the kidney organoids, and assessment of the infection via immunofluorescence.

JTD Keywords: cell culture, cell differentiation, microbiology, microscopy, organoids, Cell culture, Microbiología, Microscopy, Stem cells


Admella, J, Torrents, E, (2022). A Straightforward Method for the Isolation and Cultivation of Galleria mellonella Hemocytes International Journal Of Molecular Sciences 23, 13483

Galleria mellonella is an alternative animal model of infection. The use of this species presents a wide range of advantages, as its maintenance and rearing are both easy and inexpensive. Moreover, its use is considered to be more ethically acceptable than other models, it is conveniently sized for manipulation, and its immune system has multiple similarities with mammalian immune systems. Hemocytes are immune cells that help encapsulate and eliminate pathogens and foreign particles. All of these reasons make this insect a promising animal model. However, cultivating G. mellonella hemocytes in vitro is not straightforward and it has many difficult challenges. Here, we present a methodologically optimized protocol to establish and maintain a G. mellonella hemocyte primary culture. These improvements open the door to easily and quickly study the toxicity of nanoparticles and the interactions of particles and materials in an in vitro environment.

JTD Keywords: cell culture, galleria mellonella, infection, nanoparticle, Bacteria, Cell culture, Galleria mellonella, Hemolin, Infection, Insect hemocytes, Larvae, Lepidoptera, Nanoparticle, Phagocytosis, Prophenoloxidase, Suspension, Systems


Herrero-Gomez, A, Azagra, M, Marco-Rius, I, (2022). A cryopreservation method for bioengineered 3D cell culture models Biomedical Materials 17, 045023

Technologies to cryogenically preserve (a.k.a. cryopreserve) living tissue, cell lines and primary cells have matured greatly for both clinicians and researchers since their first demonstration in the 1950s and are widely used in storage and transport applications. Currently, however, there remains an absence of viable cryopreservation and thawing methods for bioengineered, three-dimensional (3D) cell models, including patients' samples. As a first step towards addressing this gap, we demonstrate a viable protocol for spheroid cryopreservation and survival based on a 3D carboxymethyl cellulose scaffold and precise conditions for freezing and thawing. The protocol is tested using hepatocytes, for which the scaffold provides both the 3D structure for cells to self-arrange into spheroids and to support cells during freezing for optimal post-thaw viability. Cell viability after thawing is improved compared to conventional pellet models where cells settle under gravity to form a pseudo-tissue before freezing. The technique may advance cryobiology and other applications that demand high-integrity transport of pre-assembled 3D models (from cell lines and in future cells from patients) between facilities, for example between medical practice, research and testing facilities.

JTD Keywords: 3d cell culture, biofabrication, biomaterials, carboxymethyl cellulose, cryopreservation, hepatocytes, 3d cell culture, Biofabrication, Biomaterials, Carboxymethyl cellulose, Cryopreservation, Hepatocytes, Prevention, Scaffolds, Spheroids


Bonilla-Pons, SA, Nakagawa, S, Bahima, EG, Fernández-Blanco, A, Pesaresi, M, D'Antin, JC, Sebastian-Perez, R, Greco, D, Domínguez-Sala, E, Gómez-Riera, R, Compte, RIB, Dierssen, M, Pulido, NM, Cosma, MP, (2022). Müller glia fused with adult stem cells undergo neural differentiation in human retinal models Ebiomedicine 77, 103914

Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons.We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation.We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids.We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies.This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).Published by Elsevier B.V.

JTD Keywords: cell fusion, expression, fusion, ganglion-cells, in-vitro, mouse, müller glia, neural differentiation, organoids, regeneration, retina regeneration, stem cells, stromal cells, transplantation, 4',6 diamidino 2 phenylindole, 5' nucleotidase, Agarose, Alcohol, Arpe-19 cell line, Article, Beta catenin, Beta tubulin, Bone-marrow-cells, Bromophenol blue, Buffer, Calcium cell level, Calcium phosphate, Calretinin, Canonical wnt signaling, Cd34 antigen, Cell culture, Cell fusion, Cell viability, Coculture, Complementary dna, Confocal microscopy, Cornea transplantation, Cryopreservation, Cryoprotection, Crystal structure, Current clamp technique, Dimethyl sulfoxide, Dodecyl sulfate sodium, Edetic acid, Electrophysiology, Endoglin, Fetal bovine serum, Fibroblast growth factor 2, Flow cytometry, Fluorescence activated cell sorting, Fluorescence intensity, Glyceraldehyde 3 phosphate dehydrogenase, Glycerol, Glycine, Hoe 33342, Immunofluorescence, Immunohistochemistry, Incubation time, Interleukin 1beta, Lentivirus vector, Matrigel, Mercaptoethanol, Microinjection, Mueller cell, Müller glia, N methyl dextro aspartic acid, Nerve cell differentiation, Neural differentiation, Nitrogen, Nonhuman, Organoids, Paraffin, Paraffin embedding, Paraformaldehyde, Patch clamp technique, Penicillin derivative, Phenolsulfonphthalein, Phenotype, Phosphate buffered saline, Phosphoprotein phosphatase inhibitor, Polyacrylamide gel electrophoresis, Potassium chloride, Povidone iodine, Promoter region, Proteinase inhibitor, Real time polymerase chain reaction, Receptor type tyrosine protein phosphatase c, Restriction endonuclease, Retina, Retina dystrophy, Retina regeneration, Retinol, Rhodopsin, Rna extraction, Stem cell, Stem cells, Subcutaneous fat, Tunel assay, Visual impairment, Western blotting


Cascione, M, Rizzello, L, Manno, D, Serra, A, De Matteis, V, (2022). Green Silver Nanoparticles Promote Inflammation Shutdown in Human Leukemic Monocytes Materials (Basel) 15, 775

The use of silver nanoparticles (Ag NPs) in the biomedical field deserves a mindful analysis of the possible inflammatory response which could limit their use in the clinic. Despite the anti-cancer properties of Ag NPs having been widely demonstrated, there are still few studies concerning their involvement in the activation of specific inflammatory pathways. The inflammatory outcome depends on the synthetic route used in the NPs production, in which toxic reagents are employed. In this work, we compared two types of Ag NPs, obtained by two different chemical routes: conventional synthesis using sodium citrate and a green protocol based on leaf extracts as a source of reduction and capping agents. A careful physicochemical characterization was carried out showing spherical and stable Ag NPs with an average size between 20 nm and 35 nm for conventional and green Ag NPs respectively. Then, we evaluated their ability to induce the activation of inflammation in Human Leukemic Monocytes (THP-1) differentiated into M0 macrophages using 1 µM and 2 µM NPs concentrations (corresponded to 0.1 µg/mL and 0.2 µg/mL respectively) and two-time points (24 h and 48 h). Our results showed a clear difference in Nuclear Factor ?B (NF-?b) activation, Interleukins 6–8 (IL-6, IL-8) secretion, Tumor Necrosis Factor-? (TNF-?) and Cyclooxygenase-2 (COX-2) expression exerted by the two kinds of Ag NPs. Green Ag NPs were definitely tolerated by macrophages compared to conventional Ag NPs which induced the activation of all the factors mentioned above. Subsequently, the exposure of breast cancer cell line (MCF-7) to the green Ag NPs showed that they exhibited antitumor activity like the conventional ones, but surprisingly, using the MCF-10A line (not tumoral breast cells) the green Ag NPs did not cause a significant decrease in cell viability. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: activation, biosynthesis, gold nanoparticles, green route, inflammation response, mechanism, metal, nanotechnology, physico-chemical properties, raman-spectroscopy, resonance, silver nanoparticles, surface, Biomedical fields, Cell culture, Cell death, Chemical activation, Chemical routes, Conventional synthesis, Diseases, Green route, Inflammation response, Inflammatory response, Macrophages, Metal nanoparticles, Nf-kappa-b, Pathology, Physico-chemical properties, Physicochemical property, Property, Silver nanoparticles, Sodium compounds, Synthetic routes, Toxic reagents


Zeinali, R, del Valle, LJ, Franco, L, Yousef, I, Rintjema, J, Aleman, C, Bravo, F, Kleij, AW, Puiggali, J, (2022). Biobased Terpene Derivatives: Stiff and Biocompatible Compounds to Tune Biodegradability and Properties of Poly(butylene succinate) Polymers 14, 161

Different copolymers incorporating terpene oxide units (e.g., limonene oxide) have been evaluated considering thermal properties, degradability, and biocompatibility. Thus, polycarbonates and polyesters derived from aromatic, monocyclic and bicyclic anhydrides have been considered. Furthermore, ring substitution with myrcene terpene has been evaluated. All polymers were amorphous when evaluated directly from synthesis. However, spherulites could be observed after the slow evaporation of diluted chloroform solutions of polylimonene carbonate, with all isopropene units possessing an R configuration. This feature was surprising considering the reported information that suggested only the racemic polymer was able to crystallize. All polymers were thermally stable and showed a dependence of the maximum degradation rate temperature (from 242 °C to 342 °C) with the type of terpene oxide. The graduation of glass transition temperatures (from 44 °C to 172 °C) was also observed, being higher than those corresponding to the unsubstituted polymers. The chain stiffness of the studied polymers hindered both hydrolytic and enzymatic degradation while a higher rate was detected when an oxidative medium was assayed (e.g., weight losses around 12% after 21 days of exposure). All samples were biocompatible according to the adhesion and proliferation tests performed with fibroblast cells. Hydrophobic and mechanically consistent films (i.e., contact angles between 90° and 110°) were obtained after the evaporation of chloroform from the solutions, having different ratios of the studied biobased polyterpenes and poly(butylene succinate) (PBS). The blend films were comparable in tensile modulus and tensile strength with the pure PBS (e.g., values of 330 MPa and 7 MPa were determined for samples incorporating 30 wt.% of poly(PA-LO), the copolyester derived from limonene oxide and phthalic anhydride. Blends were degradable, biocompatible and appropriate to produce oriented-pore and random-pore scaffolds via a thermally-induced phase separation (TIPS) method and using 1,4-dioxane as solvent. The best results were attained with the blend composed of 70 wt.% PBS and 30 wt.% poly(PA-LO). In summary, the studied biobased terpene derivatives showed promising properties to be used in a blended form for biomedical applications such as scaffolds for tissue engineering.

JTD Keywords: alternating copolymerization, biobased materials, biodegradability, composites, crystallization, cyclohexene oxide, induced phase-separation, limonene oxide, mechanical-properties, polyesters, scaffolds, spherulites, terpene derivatives, thermal properties, thermally-induced phase separation, Acetone, Bio-based, Bio-based materials, Biobased materials, Biocompatibility, Biodegradability, Butenes, Cell culture, Chlorine compounds, Degradation, Evaporation, Glass transition, Limonene oxide, Monoterpenes, Phase separation, Poly (butylenes succinate), Polybutylene succinate, Property, Ring-opening copolymerization, Scaffolds, Spheru-lites, Tensile strength, Terpene derivatives, Thermal properties, Thermally induced phase separation, Thermally-induced phase separation, Thermally?induced phase separation, Thermodynamic properties, Thermogravimetric analysis


Macedo, MH, Barros, AS, Martinez, E, Barrias, CC, Sarmento, B, (2022). All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes Journal Of Controlled Release 341, 414-430

Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.

JTD Keywords: 3d intestinal model, drug absorption, drug development, endothelium, hydrogel, 3d intestinal model, 3d modeling, 3d models, 3d-modeling, Alkaline-phosphatase, Animal experiments, Biopharmaceutics classification, Caco-2 cells, Cell culture, Collagen, Collagen gel, Drug absorption, Drug development, Endothelium, Fibroblasts, Glycoproteins, Hydrogel, In-vitro, Matrix metalloproteinases, Membrane-permeability, Paracellular transport, Permeability, Single-pass vs., Speed up


Vila, JC, Castro-Aguirre, N, Lopez-Munoz, GA, Ferret-Minana, A, De Chiara, F, Ramon-Azcon, J, (2021). Disposable Polymeric Nanostructured Plasmonic Biosensors for Cell Culture Adhesion Monitoring Frontiers In Bioengineering And Biotechnology 9, 799325

Over the last years, optical biosensors based on plasmonic nanomaterials have gained great scientific interest due to their unquestionable advantages compared to other biosensing technologies. They can achieve sensitive, direct, and label-free analysis with exceptional potential for multiplexing and miniaturization. Recently, it has been demonstrated the potential of using optical discs as high throughput nanotemplates for the development of plasmonic biosensors in a cost-effective way. This work is a pilot study focused on the development of an integrated plasmonic biosensor for the monitoring of cell adhesion and growth of human retinal pigmented cell line (ARPE-19) under different media conditions (0 and 2% of FBS). We observed an increase of the plasmonic band displacement under 2% FBS compared to 0% conditions over time (1, 3, and 5 h). These preliminary results show that the proposed plasmonic biosensing approach is a direct, non-destructive, and real-time tool that could be employed in the study of living cells behavior and culture conditions. Furthermore, this setup could assess the viability of the cells and their growth over time with low variability between the technical replicates improving the experimental replicability.

JTD Keywords: cell confluency, cell culture, nanocrystals, optical biosensor, Adhesion monitoring, Biosensing, Biosensors, Cell adhesion, Cell confluency, Cell culture, Cells, Condition, Cost effectiveness, Disposables, Nano-structured, Nanocrystals, Optical bio-sensors, Optical biosensor, Plasmonic biosensors, Plasmonic nanostructures, Plasmonics, Polylysine


Lopez-Muñoz, GA, Fernández-Costa, JM, Ortega, MA, Balaguer-Trias, J, Martin-Lasierra, E, Ramón-Azcón, J, (2021). Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles Nanophotonics 10, 4477-4488

Abstract The development of nanostructured plasmonic biosensors has been widely widespread in the last years, motivated by the potential benefits they can offer in integration, miniaturization, multiplexing opportunities, and enhanced performance label-free biodetection in a wide field of applications. Between them, engineering tissues represent a novel, challenging, and prolific application field for nanostructured plasmonic biosensors considering the previously described benefits and the low levels of secreted biomarkers (?pM–nM) to detect. Here, we present an integrated plasmonic nanocrystals-based biosensor using high throughput nanostructured polycarbonate substrates. Metallic film thickness and incident angle of light for reflectance measurements were optimized to enhance the detection of antibody–antigen biorecognition events using numerical simulations. We achieved an enhancement in biodetection up to 3× as the incident angle of light decreases, which can be related to shorter evanescent decay lengths. We achieved a high reproducibility between channels with a coefficient of variation below 2% in bulk refractive index measurements, demonstrating a high potential for multiplexed sensing. Finally, biosensing potential was demonstrated by the direct and label-free detection of interleukin-6 biomarker in undiluted cell culture media supernatants from bioengineered 3D skeletal muscle tissues stimulated with different concentrations of endotoxins achieving a limit of detection (LOD) of ? 0.03 ng/mL (1.4 pM).

JTD Keywords: assay, crystals, drug, label-free biosensing, molecules, plasmonic nanostructures, sensors, skeletal muscle, tissue engineering, Biodetection, Biomarkers, Biosensors, Cell culture, Cells, Chemical detection, Histology, Interleukin-6, Interleukin6 (il6), Label free, Label-free biosensing, Muscle, Nano-structured, Nanocrystals, Plasmonic nanocrystals, Plasmonic nanostructures, Plasmonics, Polycarbonate substrates, Polycarbonates, Refractive index, Sensitivity, Skeletal muscle, Tissue engineering, Tissues engineerings


Andreu, I, Falcones, B, Hurst, S, Chahare, N, Quiroga, X, Le Roux, AL, Kechagia, Z, Beedle, AEM, Elosegui-Artola, A, Trepat, X, Farre, R, Betz, T, Almendros, I, Roca-Cusachs, P, (2021). The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening Nature Communications 12, 4229

Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved. Cells sense mechanical forces from their environment, but the precise mechanical variable sensed by cells is unclear. Here, the authors show that cells can sense the rate of force application, known as the loading rate, with effects on YAP nuclear localization and cytoskeletal stiffness remodelling.

JTD Keywords: Actin cytoskeleton, Actin filament, Actin-filament, Adhesion, Animal, Animals, Atomic force microscopy, Breathing, Cell, Cell adhesion, Cell culture, Cell nucleus, Cells, cultured, Cytoplasm, Extracellular-matrix, Fibroblast, Fibroblasts, Fibronectin, Frequency, Gene knockdown, Gene knockdown techniques, Genetics, Germfree animal, Integrin, Intracellular signaling peptides and proteins, Knockout mouse, Lung, Male, Mechanotransduction, Mechanotransduction, cellular, Metabolism, Mice, Mice, knockout, Microscopy, atomic force, Mouse, Optical tweezers, Paxillin, Physiology, Primary cell culture, Pxn protein, mouse, Rat, Rats, Rats, sprague-dawley, Respiration, Signal peptide, Softening, Specific pathogen-free organisms, Sprague dawley rat, Stress, Substrate, Substrate rigidity, Talin, Talin protein, mouse, Tln2 protein, mouse, Traction, Transmission, Ultrastructure, Yap1 protein, rat


Fernández-Garibay, X, Ortega, MA, Cerro-Herreros, E, Comelles, J, Martínez, E, Artero, R, Fernández-Costa, JM, Ramón-Azcón, J, (2021). Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle Biofabrication 13, 35035

Myotonic dystrophy type 1 (DM1) is the most common hereditary myopathy in the adult population. The disease is characterized by progressive skeletal muscle degeneration that produces severe disability. At present, there is still no effective treatment for DM1 patients, but the breakthroughs in understanding the molecular pathogenic mechanisms in DM1 have allowed the testing of new therapeutic strategies. Animal models and in vitro two-dimensional cell cultures have been essential for these advances. However, serious concerns exist regarding how faithfully these models reproduce the biological complexity of the disease. Biofabrication tools can be applied to engineer human three-dimensional (3D) culture systems that complement current preclinical research models. Here, we describe the development of the first in vitro 3D model of DM1 human skeletal muscle. Transdifferentiated myoblasts from patient-derived fibroblasts were encapsulated in micromolded gelatin methacryloyl-carboxymethyl cellulose methacrylate hydrogels through photomold patterning on functionalized glass coverslips. These hydrogels present a microstructured topography that promotes myoblasts alignment and differentiation resulting in highly aligned myotubes from both healthy and DM1 cells in a long-lasting cell culture. The DM1 3D microtissues recapitulate the molecular alterations detected in patient biopsies. Importantly, fusion index analyses demonstrate that 3D micropatterning significantly improved DM1 cell differentiation into multinucleated myotubes compared to standard cell cultures. Moreover, the characterization of the 3D cultures of DM1 myotubes detects phenotypes as the reduced thickness of myotubes that can be used for drug testing. Finally, we evaluated the therapeutic effect of antagomiR-23b administration on bioengineered DM1 skeletal muscle microtissues. AntagomiR-23b treatment rescues both molecular DM1 hallmarks and structural phenotype, restoring myotube diameter to healthy control sizes. Overall, these new microtissues represent an improvement over conventional cell culture models and can be used as biomimetic platforms to establish preclinical studies for myotonic dystrophy.

JTD Keywords: 3d cell culture, hydrogel micropatterning, myotonic dystrophy, skeletal muscle, tissue engineering, 3d cell culture, Hydrogel micropatterning, Myotonic dystrophy, Skeletal muscle, Tissue engineering


Velasco-Mallorqui, F, Rodriguez-Comas, J, Ramon-Azcon, J, (2021). Cellulose-based scaffolds enhance pseudoislets formation and functionality Biofabrication 13, 35044

In vitro research for the study of type 2 diabetes (T2D) is frequently limited by the availability of a functional model for islets of Langerhans. To overcome the limitations of obtaining pancreatic islets from different sources, such as animal models or human donors, immortalized cell lines as the insulin-producing INS1E beta-cells have appeared as a valid alternative to model insulin-related diseases. However, immortalized cell lines are mainly used in flat surfaces or monolayer distributions, not resembling the spheroid-like architecture of the pancreatic islets. To generate islet-like structures, the use of scaffolds appeared as a valid tool to promote cell aggregations. Traditionally-used hydrogel encapsulation methods do not accomplish all the requisites for pancreatic tissue engineering, as its poor nutrient and oxygen diffusion induces cell death. Here, we use cryogelation technology to develop a more resemblance scaffold with the mechanical and physical properties needed to engineer pancreatic tissue. This study shows that carboxymethyl cellulose (CMC) cryogels prompted cells to generate beta-cell clusters in comparison to gelatin-based scaffolds, that did not induce this cell organization. Moreover, the high porosity achieved with CMC cryogels allowed us to create specific range pseudoislets. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 d and a better response to glucose over conventional monolayer cultures. Overall, our results demonstrate that CMC-scaffolds can be used to control the organization and function of insulin-producing beta-cells, representing a suitable technique to generate beta-cell clusters to study pancreatic islet function.

JTD Keywords: biomaterial, cryogel, pancreatic islets, scaffold, tissue engineering, ?-cell, Architecture, Beta-cell, Beta-cell heterogeneity, Biomaterial, Carboxymethyl cellulose, Cell culture, Cell death, Cell engineering, Cell organization, Cells, Cellulose, Cryogel, Cryogels, Cytoarchitecture, Delivery, Encapsulation methods, Gelation, Gene-expression, Immortalized cells, Insulin, Insulin secretory responses, Islets of langerhans, Mechanical and physical properties, Monolayer culture, Monolayers, Pancreatic islets, Pancreatic tissue, Pancreatic-islets, Proliferation, Scaffold, Scaffolds, Scaffolds (biology), Size, Tissue, Tissue engineering, Β-cell


Hortelão, Ana C., Carrascosa, Rafael, Murillo-Cremaes, Nerea, Patiño, Tania, Sánchez, Samuel, (2019). Targeting 3D bladder cancer spheroids with urease-powered nanomotors ACS Nano 13, (1), 429-439

Cancer is one of the main causes of death around the world, lacking efficient clinical treatments that generally present severe side effects. In recent years, various nanosystems have been explored to specifically target tumor tissues, enhancing the efficacy of cancer treatment and minimizing the side effects. In particular, bladder cancer is the ninth most common cancer worldwide and presents a high survival rate but serious recurrence levels, demanding an improvement in the existent therapies. Here, we present urease-powered nanomotors based on mesoporous silica nanoparticles that contain both polyethylene glycol and anti-FGFR3 antibody on their outer surface to target bladder cancer cells in the form of 3D spheroids. The autonomous motion is promoted by urea, which acts as fuel and is inherently present at high concentrations in the bladder. Antibody-modified nanomotors were able to swim in both simulated and real urine, showing a substrate-dependent enhanced diffusion. The internalization efficiency of the antibody-modified nanomotors into the spheroids in the presence of urea was significantly higher compared with antibody-modified passive particles or bare nanomotors. Furthermore, targeted nanomotors resulted in a higher suppression of spheroid proliferation compared with bare nanomotors, which could arise from the local ammonia production and the therapeutic effect of anti-FGFR3. These results hold significant potential for the development of improved targeted cancer therapy and diagnostics using biocompatible nanomotors.

JTD Keywords: 3D cell culture, Bladder cancer, Enzymatic catalysis, Nanomachines, Nanomotors, Self-propulsion, Targeting


Torras, N., García-Díaz, M., Fernández-Majada, V., Martínez, Elena, (2018). Mimicking epithelial tissues in three-dimensional cell culture models Frontiers in Bioengineering and Biotechnology 6, Article 197

Epithelial tissues are composed of layers of tightly connected cells shaped into complex three-dimensional (3D) structures such as cysts, tubules, or invaginations. These complex 3D structures are important for organ-specific functions and often create biochemical gradients that guide cell positioning and compartmentalization within the organ. One of the main functions of epithelia is to act as physical barriers that protect the underlying tissues from external insults. In vitro, epithelial barriers are usually mimicked by oversimplified models based on cell lines grown as monolayers on flat surfaces. While useful to answer certain questions, these models cannot fully capture the in vivo organ physiology and often yield poor predictions. In order to progress further in basic and translational research, disease modeling, drug discovery, and regenerative medicine, it is essential to advance the development of new in vitro predictive models of epithelial tissues that are capable of representing the in vivo-like structures and organ functionality more accurately. Here, we review current strategies for obtaining biomimetic systems in the form of advanced in vitro models that allow for more reliable and safer preclinical tests. The current state of the art and potential applications of self-organized cell-based systems, organ-on-a-chip devices that incorporate sensors and monitoring capabilities, as well as microfabrication techniques including bioprinting and photolithography, are discussed. These techniques could be combined to help provide highly predictive drug tests for patient-specific conditions in the near future.

JTD Keywords: 3D cell culture models, Biofabrication, Disease modeling, Drug screening, Epithelial barriers, Microengineered tissues, Organ-on-a-chip, Organoids


Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., Castaño, O., (2014). Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering Materials Science and Engineering: C 44, 183-190

In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold.

JTD Keywords: Bilayer fibrous scaffold, Ceramic nanoparticles, Electrospinning, Gelatin, Polycaprolactone, Biomechanics, Bone, Calcium phosphate, Cell culture, Electrospinning, Fourier transform infrared spectroscopy, Mechanical properties, Mineralogy, Nanoparticles, Phosphatases, Polycaprolactone, Scanning electron microscopy, X ray diffraction, Polycaprolactone, Alkaline phosphatase activity, Bone tissue engineering, Calcium phosphate nanoparticles, Ceramic nanoparticles, Fibrous scaffolds, Gelatin, Simulated body fluids, Wide-angle x-ray diffraction, Electrospuns, Scaffolds (biology), Electrospinning


Rigat, L., Elizalde, A., Del Portillo, H. A., Homs-Corbera, A., Samitier, J., (2014). Selective cell culturing step using laminar co-flow to enhance cell culture in splenon-on-a-chip biomimetic platform MicroTAS 2014 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences , CBMS (San Antonio, USA) , 769-771

Constant evolution and improvements on areas such as tissue engineering, microfluidics and nanotechnology have made it possible to partially close the gap between conventional in vitro cell cultures and animal model-based studies. A step forward in this field concerns organ-on-chip technologies, capable of reproducing the most relevant physiological features of an organ in a microfluidic platform. In this work we have exploited the capabilities of laminar co-flow inside our biomimetic platform, the splenon-on-a-chip, in order to enhance cell culture inside its channels to better mimic the spleen's environment. © 14CBMS.

JTD Keywords: Cell culture, Co-flow, Laminar flow, Organ-on-a-chip, Spleen


Gil, V., Del Río, J. A., (2012). Analysis of axonal growth and cell migration in 3D hydrogel cultures of embryonic mouse CNS tissue Nature Protocols 7, (2), 268-280

This protocol uses rat tail-derived type I collagen hydrogels to analyze key processes in developmental neurobiology, such as chemorepulsion and chemoattraction. The method is based on culturing small pieces of brain tissue from embryonic or early perinatal mice inside a 3D hydrogel formed by rat tail-derived type I collagen or, alternatively, by commercial Matrigel. The neural tissue is placed in the hydrogel with other brain tissue pieces or cell aggregates genetically modified to secrete a particular molecule that can generate a gradient inside the hydrogel. The present method is uncomplicated and generally reproducible, and only a few specific details need to be considered during its preparation. Moreover, the degree and behavior of axonal growth or neural migration can be observed directly using phase-contrast, fluorescence microscopy or immunocytochemical methods. This protocol can be carried out in 4 weeks.

JTD Keywords: Cell biology, Cell culture, Developmental biology, Imaging, Model organisms, Neuroscience, Tissue culture


Gustavsson, J., Ginebra, M. P., Engel, E., Planell, J., (2011). Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media Acta Biomaterialia 7, (12), 4242-4252

Solution-mediated surface reactions occur for most calcium phosphate-based biomaterials and may influence cellular response. A reasonable extrapolation of such processes observed in vitro to in vivo performance requires a deep understanding of the underlying mechanisms. We therefore systematically investigated the nature of ion reactivity of calcium-deficient hydroxyapatite (CDHA) by exposing it for different periods of time to standard cell culture media of different chemical composition (DMEM and McCoy medium, with and without osteogenic supplements and serum proteins). Kinetic ion interaction studies of principal extracellular ions revealed non-linear sorption of Ca2+ (∼50% sorption) and K+ (∼8%) as well as acidification of all media during initial contact with CDHA (48 h). Interestingly, inorganic phosphorus (Pi) was sorbed from McCoy medium (∼50%) or when using osteogenic media containing β-glycerophosphate, but not from DMEM medium. Non-linear sorption data could be perfectly described by pseudo-first-order and pseudo-second-order sorption models. At longer contact time (21 days), and with frequent renewal of culture medium, sorption of Ca2+ remained constant throughout the experiment, while sorption of Pi gradually decreased in McCoy medium. In great contrast, CDHA began to release Pi slowly with time when using DMEM medium. Infrared spectra showed that CDHA exposed to culture media had a carbonated surface chemistry, suggesting that carbonate plays a key role in the ion reactivity of CDHA. Our data show that different compositions of the aqueous environment may provoke opposite ion reactivity of CDHA, and this must be carefully considered when evaluating the osteoinductive potential of the material.

JTD Keywords: Hydroxyapatite, Bioactive materials, Cell culture medium, Ion exchange, Sorption models


Fernandez, Javier G., Mills, C. A., Samitier, J., (2009). Complex microstructured 3D surfaces using chitosan biopolymer Small 5, (5), 614-620

A technique for producing micrometer-scale structures over large, nonplanar chitosan surfaces is described. The technique makes use of the rheological characteristics (deformability) of the chitosan to create freestanding, three-dimensional scaffolds with controlled shapes, incorporating defined microtopography. The results of an investigation into the technical limits of molding different combinations of shapes and microtopographies are presented, highlighting the versatility of the technique when used irrespectively with inorganic or delicate organic moulds. The final, replicated scaffolds presented here are patterned with arrays of one-micrometer-tall microstructures over large areas. Structural integrity is characterized by the measurement of structural degradation. Human umbilical vein endothelial cells cultured on a tubular scaffold show that early cell growth is conditioned by the microtopography and indicate possible uses for the structures in biomedical applications. For those applications requiring improved chemical and mechanical resistance, the structures can be replicated in poly(dimethyl siloxane).

JTD Keywords: Biocompatible Materials/ chemistry, Cell Adhesion, Cell Culture Techniques/ methods, Cell Proliferation, Cells, Cultured, Chitosan/ chemistry, Crystallization/methods, Endothelial Cells/ cytology/ physiology, Humans, Materials Testing, Nanostructures/ chemistry/ ultrastructure, Nanotechnology/methods, Particle Size, Surface Properties, Tissue Engineering/methods


Navarro, M., Engel, E., Planell, J. A., Amaral, I., Barbosa, M., Ginebra, M. P., (2008). Surface characterization and cell response of a PLA/CaP glass biodegradable composite material Journal of Biomedical Materials Research - Part A , 85A, (2), 477-486

Bioabsorbable materials are of great interest for bone regeneration applications, since they are able to degrade gradually as new tissue is formed. In this work, a fully biodegradable composite material containing polylactic acid (PLA) and calcium phosphate (CaP) soluble glass particles has been characterized in terms of surface properties and cell response. Cell cultures were performed in direct contact with the materials and also with their extracts, and were evaluated using the MTT assay, alkaline phosphatase activity, and osteocalcin measurements. The CaP glass and PLA were used as reference materials. No significant differences were observed in cell proliferation with the extracts containing the degradation by-products of the three materials studied. A relation between the materials wettability and the material-cell interactions at the initial stages of contact was observed. The most hydrophilic material (CaP glass) presented the highest cell adhesion values as well as an earlier differentiation, followed by the PLA/glass material. The incorporation of glass particles into the PLA matrix increased surface roughness. SEM images showed that the heterogeneity of the composite material induced morphological changes in the cells cytoskeleton.

JTD Keywords: Glass, Polylactic acid, Surface analysis, Cell culture, In vitro test