by Keyword: Stress

El Hauadi K, Resina L, Zanuy D, Esteves T, Ferreira FC, Pérez-Madrigal MM, Alemán C, (2022). Dendritic Self-assembled Structures from Therapeutic Charged Pentapeptides Langmuir 38, 12905-12914

CRENKA [Cys-Arg-(NMe)Glu-Lys-Ala, where (NMe)Glu refers to N-methyl-Glu], an anti-cancer pentapeptide that induces prostate tumor necrosis and significant reduction in tumor growth, was engineered to increase the resistance to endogenous proteases of its parent peptide, CREKA (Cys-Arg-Glu-Lys-Ala). Considering their high tendency to aggregate, the self-assembly of CRENKA and CREKA into well-defined and ordered structures has been examined as a function of peptide concentration and pH. Spectroscopic studies and atomistic molecular dynamics simulations reveal significant differences between the secondary structures of CREKA and CRENKA. Thus, the restrictions imposed by the (NMe)Glu residue reduce the conformational variability of CRENKA with respect to CREKA, which significantly affects the formation of well-defined and ordered self-assembly morphologies. Aggregates with poorly defined morphology are obtained from solutions with low and moderate CREKA concentrations at pH 4, whereas well-defined dendritic microstructures with fractal geometry are obtained from CRENKA solutions with similar peptide concentrations at pH 4 and 7. The formation of dendritic structures is proposed to follow a two-step mechanism: (1) pseudo-spherical particles are pre-nucleated through a diffusion-limited aggregation process, pre-defining the dendritic geometry, and (2) such pre-nucleated structures coalesce by incorporating conformationally restrained CRENKA molecules from the solution to their surfaces, forming a continuous dendritic structure. Instead, no regular assembly is obtained from solutions with high peptide concentrations, as their dynamics is dominated by strong repulsive peptide-peptide electrostatic interactions, and from solutions at pH 10, in which the total peptide charge is zero. Overall, results demonstrate that dendritic structures are only obtained when the molecular charge of CRENKA, which is controlled through the pH, favors kinetics over thermodynamics during the self-assembly process.

JTD Keywords: aggregation, amphiphilic peptides, breast-cancer, cells, design, oxidative stress, resistance, strategy, Molecular-dynamics

Barbacena P, Dominguez-Cejudo M, Fonseca CG, Gómez-González M, Faure LM, Zarkada G, Pena A, Pezzarossa A, Ramalho D, Giarratano Y, Ouarné M, Barata D, Fortunato IC, Misikova LH, Mauldin I, Carvalho Y, Trepat X, Roca-Cusachs P, Eichmann A, Bernabeu MO, Franco CA, (2022). Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retina Developmental Cell 57, 2321-2333.e9

Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

JTD Keywords: Angiogenesis, Cell polarity, Mechanobiology, Morphogenesis, Shear stress

De Corato, M, Arroyo, M, (2022). A theory for the flow of chemically responsive polymer solutions: Equilibrium and shear-induced phase separation Journal Of Rheology 66, 813-835

Chemically responsive polymers are macromolecules that respond to local variations of the chemical composition of the solution by changing their conformation, with notable examples including polyelectrolytes, proteins, and DNA. The polymer conformation changes can occur in response to changes in the pH, the ionic strength, or the concentration of a generic solute that interacts with the polymer. These chemical stimuli can lead to drastic variations of the polymer flexibility and even trigger a transition from a coil to a globule polymer conformation. In many situations, the spatial distribution of the chemical stimuli can be highly inhomogeneous, which can lead to large spatial variations of polymer conformation and of the rheological properties of the mixture. In this paper, we develop a theory for the flow of a mixture of solute and chemically responsive polymers. The approach is valid for generic flows and inhomogeneous distributions of polymers and solutes. To model the polymer conformation changes introduced by the interactions with the solute, we consider the polymers as linear elastic dumbbells whose spring stiffness depends on the solute concentration. We use Onsager's variational formalism to derive the equations governing the evolution of the variables, which unveils novel couplings between the distribution of dumbbells and that of the solute. Finally, we use a linear stability analysis to show that the governing equations predict an equilibrium phase separation and a distinct shear-induced phase separation whereby a homogeneous distribution of solute and dumbbells spontaneously demix. Similar phase transitions have been observed in previous experiments using stimuli-responsive polymers and may play an important role in living systems. (C) 2022 The Society of Rheology.

JTD Keywords: Coil-globule transition, Constitutive equation, Dilute-solutions, Dumbbell model, Dynamics, Macromolecules, Nonequilibrium thermodynamics, Polyelectrolytes, Polymer migration, Polymer phase separation, Polymers, Predictions, Rheology, Shear-induced phase separation, Solute-polymer interactions, Stress, Viscoelasticity

Ferrer, I, Andres-Benito, P, Ausin, K, Cartas-Cejudo, P, Lachen-Montes, M, del Rio, JA, Fernandez-Irigoyen, J, Santamaria, E, (2022). Dysregulated Protein Phosphorylation in a Mouse Model of FTLD-Tau Journal Of Neuropathology And Experimental Neurology 81, 696-706

The neocortex of P301S mice, used as a model of fronto-temporal lobar degeneration linked to tau mutation (FTLD-tau), and wild-type mice, both aged 9 months, were analyzed with conventional label-free phosphoproteomics and SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) to assess the (phospho)proteomes. The total number of identified dysregulated phosphoproteins was 328 corresponding to 524 phosphorylation sites. The majority of dysregulated phosphoproteins, most of them hyperphosphorylated, were proteins of the membranes, synapses, membrane trafficking, membrane vesicles linked to endo- and exocytosis, cytoplasmic vesicles, and cytoskeleton. Another group was composed of kinases. In contrast, proteins linked to DNA, RNA metabolism, RNA splicing, and protein synthesis were hypophosphorylated. Other pathways modulating energy metabolism, cell signaling, Golgi apparatus, carbohydrates, and lipids are also targets of dysregulated protein phosphorylation in P301S mice. The present results, together with accompanying immunohistochemical and Western-blotting studies, show widespread abnormal phosphorylation of proteins, in addition to protein tau, in P301S mice. These observations point to dysregulated protein phosphorylation as a relevant contributory pathogenic component of tauopathies.

JTD Keywords: (phospho)proteomics, Cytoskeleton, Kinases, Membranes, Networks, Oxidative stress, Pathology, Phosphoproteome analysis, Tau, Tauopathy

Perra, M, Manca, ML, Tuberoso, CIG, Caddeo, C, Marongiu, F, Peris, JE, Orru, G, Ibba, A, Fernandez-Busquets, X, Fattouch, S, Bacchetta, G, Manconi, M, (2022). A green and cost-effective approach for the efficient conversion of grape byproducts into innovative delivery systems tailored to ensure intestinal protection and gut microbiota fortification Innovative Food Science & Emerging Technologies 80, 103103

According to circular economy, wine-making by-products represent a fascinating biomass, which can be used for the sustainable exploitation of polyphenols and the development of new nanotechnological health-promoting products. In this study, polyphenols contained in the grape pomace were extracted by maceration with ethanol in an easy and low dissipative way. The obtained extract, rich in malvidin-3-glucoside, quercetin, pro-cyanidin B2 and gallic acid, was incorporated into phospholipid vesicles tailored for intestinal delivery. To improve their performances, vesicles were enriched with gelatine or a maltodextrin (Nutriose (R)), or their com-bination (gelatine-liposomes, nutriosomes and gelatine-nutriosomes). The small (-147 nm) and negatively charged (--50mV) vesicles were stable at different pH values mimicking saliva (6.75), gastric (1.20) and intestinal (7.00) environments. Vesicles effectively protected intestinal cells (Caco-2) from the oxidative stress and promoted the biofilm formation by probiotic bacteria. A preliminary evaluation of the vesicle feasibility at industrial levels was also performed, analysing the economic and energetic costs needed for their production.

JTD Keywords: Adhesion, Antioxidant activity, Caco-2 cells, Dextrin, Grape pomace extract, Lactobacillus-reuteri, Manufacturing costs, Oxidative stress, Ph, Phospholipid vesicles, Polyphenols, Probiotic bacteria, Protein

Mir, M, Palma-Florez, S, Lagunas, A, Lopez-Martinez, MJ, Samitier, J, (2022). Biosensors Integration in Blood-Brain Barrier-on-a-Chip: Emerging Platform for Monitoring Neurodegenerative Diseases Acs Sensors 7, 1237-1247

Over the most recent decades, the development of new biological platforms to study disease progression and drug efficacy has been of great interest due to the high increase in the rate of neurodegenerative diseases (NDDs). Therefore, blood-brain barrier (BBB) as an organ-on-a-chip (OoC) platform to mimic brain-barrier performance could offer a deeper understanding of NDDs as well as a very valuable tool for drug permeability testing for new treatments. A very attractive improvement of BBB-oC technology is the integration of detection systems to provide continuous monitoring of biomarkers in real time and a fully automated analysis of drug permeably, rendering more efficient platforms for commercialization. In this Perspective, an overview of the main BBB-oC configurations is introduced and a critical vision of the BBB-oC platforms integrating electronic read out systems is detailed, indicating the strengths and weaknesses of current devices, proposing the great potential for biosensors integration in BBB-oC. In this direction, we name potential biomarkers to monitor the evolution of NDDs related to the BBB and/or drug cytotoxicity using biosensor technology in BBB-oC.

JTD Keywords: Bbb, Biosensors, Blood-brain barrier (bbb), Electrical-resistance, Electrochemical biosensors, Endothelial-cells, In-vitro model, Matrix metalloproteinases, Mechanisms, Neurodegenerative diseases (ndds), Organ-on-a-chip (ooc), Permeability, Stress, Transendothelial electrical resistance (teer), Transepithelial, Transport

Schieber, Romain, Mas-Moruno, Carlos, Lasserre, Federico, Roa, Joan Josep, Ginebra, Maria-Pau, Mücklich, Frank, Pegueroles, Marta, (2022). Effectiveness of Direct Laser Interference Patterning and Peptide Immobilization on Endothelial Cell Migration for Cardio-Vascular Applications: An In Vitro Study Nanomaterials 12, 1217

Endothelial coverage of an exposed cardiovascular stent surface leads to the occurrence of restenosis and late-stent thrombosis several months after implantation. To overcome this difficulty, modification of stent surfaces with topographical or biochemical features may be performed to increase endothelial cells’ (ECs) adhesion and/or migration. This work combines both strategies on cobalt-chromium (CoCr) alloy and studies the potential synergistic effect of linear patterned surfaces that are obtained by direct laser interference patterning (DLIP), coupled with the use of Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptides. An extensive characterization of the modified surfaces was performed by using AFM, XPS, surface charge, electrochemical analysis and fluorescent methods. The biological response was studied in terms of EC adhesion, migration and proliferation assays. CoCr surfaces were successfully patterned with a periodicity of 10 µm and two different depths, D (≈79 and 762 nm). RGD and YIGSR were immobilized on the surfaces by CPTES silanization. Early EC adhesion was increased on the peptide-functionalized surfaces, especially for YIGSR compared to RGD. High-depth patterns generated 80% of ECs’ alignment within the topographical lines and enhanced EC migration. It is noteworthy that the combined use of the two strategies synergistically accelerated the ECs’ migration and proliferation, proving the potential of this strategy to enhance stent endothelialization.

JTD Keywords: adhesion, bare-metal, biofunctionalization, biomaterials, cell adhesive peptides, cobalt-chromium alloy, endothelial cell migration, functionalization, matrix, proliferation, selectivity, shear-stress, surfaces, Direct laser interference patterning (dlip), Drug-eluting stents

Yazıcı N, Opar E, Kodal M, Tanören B, Sezen M, Özkoç G, (2022). A novel practical approach for monitoring the crosslink density of an ethylene propylene diene monomer compound: Complementary scanning acoustic microscopy and FIB-SEM-EDS analyses Polymers & Polymer Composites 30,

Tuning of the crosslink density (CLD) in the rubber compounds is very crucial for optimizing the physical and mechanical properties of the ultimate rubber products. Conventionally, CLD can be measured via rheological methods such as moving die rheometer (MDR), via mechanical tests such as temperature scanning stress relaxation analysis (TSSR), or via direct swelling experiments using Flory–Rehner approach. In the current study, two novel techniques, focused ion beam - scanning electron microscopy (FIB-SEM) processing, with simultaneous energy dispersive X-ray spectrometry (EDS) mapping analysis and scanning acoustic microscopy (SAM) were combined and correlated to conventional methods on a model recipe of ethylene propylene diene monomer (EPDM) compound having different sulphur contents. Depending on the applied technique, the increase in the crosslink density with sulphur content was found to be 1.7 fold for the Flory–Rehner approach and 1.2 fold for both TSSR and MDR. It is directly monitored from the FIB-SEM-EDS analysis that the sulphur distribution and agglomeration behavior increased in line with ZnO content, which is an indirect indication of the rise in crosslink density. The impedance maps of the crosslinked samples obtained through SAM analysis revealed that the impedance of the samples increased with the increasing sulphur content, which can be attributed to higher level of crosslink density. A quantified correlation was obtained between SAM images and the crosslink density of the samples. It was shown that SAM is a promising tool for practical and non-destructive analysis for determining the formation of crosslink density of the rubbers. © The Author(s) 2022.

JTD Keywords: Cross-link densities, Crosslink density, Crosslinking, Density (specific gravity), Ethylene, Ethylene propylene diene monomer, Flory-rehner, Focused ion beam - scanning electron microscopy, Focused ion beam-scanning electron microscopies, Ii-vi semiconductors, Monomers, Moving die rheometers, Physical and mechanical properties, Propylene, Relaxation analysis, Rubber, Scanning acoustic microscopy, Scanning electron microscopy, Stress relaxation, Sulfur contents, Temperature scanning stress relaxations, Zinc oxide

Farré R, Rodríguez-Lázaro MA, Dinh-Xuan AT, Pons-Odena M, Navajas D, Gozal D, (2021). A low-cost, easy-to-assemble device to prevent infant hyperthermia under conditions of high thermal stress International Journal Of Environmental Research And Public Health 18, 13382

High ambient temperature and humidity greatly increase the risk of hyperthermia and mortality, particularly in infants, who are especially prone to dehydration. World areas at high risk of heat stress include many of the low-and middle-income countries (LMICs) where most of their inhabitants have no access to air conditioning. This study aimed to design, evaluate, and test a novel low-cost and easy-to-assemble device aimed at preventing the risk of infant hyperthermia in LMICs. The device is based on optimizing negative heat transfer from a small amount of ice and transferring it directly to the infant by airflow of refrigerated air. As a proof of concept, a device was assembled mainly using recycled materials, and its performance was assessed under laboratory-controlled conditions in a climatic chamber mimicking realistic stress conditions of high temperature and humidity. The device, which can be assembled by any layperson using easily available materials, provided sufficient refrigerating capacity for several hours from just 1–2 kg of ice obtained from a domestic freezer. Thus, application of this novel device may serve to attenuate the adverse effects of heat stress in infants, particularly in the context of the evolving climatic change trends. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: air conditioning, ambient-temperature, death, heat, heat index, heat shock, heatwave, high ambient temperature, hyperthermia, low-cost refrigeration, low-middle income countries, mortality, negative heat transfer, Air conditioning, Algorithm, Article, Climate change, Cost benefit analysis, Environmental temperature, Heat index, Heat shock, Heat stress, Heat transfer, Heating, Heatwave, High ambient temperature, High temperature, Humidity, Hyperthermia, Low income country, Low-cost refrigeration, Low-middle income countries, Middle income country, Middle-income countries, Negative heat transfer, Prevention study, Refrigeration, Temperature stress, Thawing

Nashimoto Y, Abe M, Fujii R, Taira N, Ida H, Takahashi Y, Ino K, Ramon-Azcon J, Shiku H, (2021). Topography and Permeability Analyses of Vasculature-on-a-Chip Using Scanning Probe Microscopies Advanced Healthcare Materials 10, 2101186

Microphysiological systems (MPS) or organs-on-chips (OoC) can emulate the physiological functions of organs in vitro and are effective tools for determining human drug responses in preclinical studies. However, the analysis of MPS has relied heavily on optical tools, resulting in difficulties in real-time and high spatial resolution imaging of the target cell functions. In this study, the role of scanning probe microscopy (SPM) as an analytical tool for MPS is evaluated. An access hole is made in a typical MPS system with stacked microchannels to insert SPM probes into the system. For the first study, a simple vascular model composed of only endothelial cells is prepared for SPM analysis. Changes in permeability and local chemical flux are quantitatively evaluated during the construction of the vascular system. The morphological changes in the endothelial cells after flow stimulation are imaged at the single-cell level for topographical analysis. Finally, the possibility of adapting the permeability and topographical analysis using SPM for the intestinal vascular system is further evaluated. It is believed that this study will pave the way for an in situ permeability assay and structural analysis of MPS using SPM.

JTD Keywords: cell, electrochemical microscopy, membrane-permeability, microphysiological systems, organs-chips, platform, scanning electrochemical microscopy, scanning ion conductance microscopy, scanning probe microscopy, shear-stress, surface-topography, Ion conductance microscopy, Microphysiological systems, Organs-chips, Scanning electrochemical microscopy, Scanning ion conductance microscopy, Scanning probe microscopy

Andreu, I, Falcones, B, Hurst, S, Chahare, N, Quiroga, X, Le Roux, AL, Kechagia, Z, Beedle, AEM, Elosegui-Artola, A, Trepat, X, Farre, R, Betz, T, Almendros, I, Roca-Cusachs, P, (2021). The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening Nature Communications 12, 4229

Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved. Cells sense mechanical forces from their environment, but the precise mechanical variable sensed by cells is unclear. Here, the authors show that cells can sense the rate of force application, known as the loading rate, with effects on YAP nuclear localization and cytoskeletal stiffness remodelling.

JTD Keywords: Actin cytoskeleton, Actin filament, Actin-filament, Adhesion, Animal, Animals, Atomic force microscopy, Breathing, Cell, Cell adhesion, Cell culture, Cell nucleus, Cells, cultured, Cytoplasm, Extracellular-matrix, Fibroblast, Fibroblasts, Fibronectin, Frequency, Gene knockdown, Gene knockdown techniques, Genetics, Germfree animal, Integrin, Intracellular signaling peptides and proteins, Knockout mouse, Lung, Male, Mechanotransduction, Mechanotransduction, cellular, Metabolism, Mice, Mice, knockout, Microscopy, atomic force, Mouse, Optical tweezers, Paxillin, Physiology, Primary cell culture, Pxn protein, mouse, Rat, Rats, Rats, sprague-dawley, Respiration, Signal peptide, Softening, Specific pathogen-free organisms, Sprague dawley rat, Stress, Substrate, Substrate rigidity, Talin, Talin protein, mouse, Tln2 protein, mouse, Traction, Transmission, Ultrastructure, Yap1 protein, rat

Manca ML, Ferraro M, Pace E, Di Vincenzo S, Valenti D, Fernàndez-Busquets X, Peptu CA, Manconi M, (2021). Loading of beclomethasone in liposomes and hyalurosomes improved with mucin as effective approach to counteract the oxidative stress generated by cigarette smoke extract Nanomaterials 11, 850

In this work beclomethasone dipropionate was loaded into liposomes and hyalurosomes modified with mucin to improve the ability of the payload to counteract the oxidative stress and involved damages caused by cigarette smoke in the airway. The vesicles were prepared by dispersing all components in the appropriate vehicle and sonicating them, thus avoiding the use of organic solvents. Unilamellar and bilamellar vesicles small in size (~117 nm), homogeneously dispersed (polydispersity index lower than 0.22) and negatively charged (~−11 mV), were obtained. Moreover, these vesicle dispersions were stable for five months at room temperature (~25 C). In vitro studies performed using the Next Generation Impactor confirmed the suitability of the formulations to be nebulized as they were capable of reaching the last stages of the impactor that mimic the deeper airways, thus improving the deposition of beclomethasone in the target site. Further, biocompatibility studies performed by using 16HBE bronchial epithelial cells confirmed the high biocompatibility and safety of all the vesicles. Among the tested formulations, only mucin-hyalurosomes were capable of effectively counteracting the production of reactive oxygen species (ROS) induced by cigarette smoke extract, suggesting that this formulation may represent a promising tool to reduce the damaging effects of cigarette smoke in the lung tissues, thus reducing the pathogenesis of cigarette smoke-associated diseases such as chronic obstructive pulmonary disease, emphysema, and cancer. ◦

JTD Keywords: 16hbe cells, beclomethasone, cigarette smoke extract, mucin, oxidative stress, phospholipid vesicles, pulmonary delivery, 16hbe cells, Beclomethasone, Cigarette smoke extract, Mucin, Oxidative stress, Phospholipid vesicles, Pulmonary delivery

Moya-Andérico L, Vukomanovic M, Cendra MdM, Segura-Feliu M, Gil V, del Río JA, Torrents E, (2021). Utility of Galleria mellonella larvae for evaluating nanoparticle toxicology Chemosphere 266, 129235

© 2020 Elsevier Ltd The use of nanoparticles in consumer products is currently on the rise, so it is important to have reliable methods to predict any associated toxicity effects. Traditional in vitro assays fail to mimic true physiological responses of living organisms against nanoparticles whereas murine in vivo models are costly and ethically controversial. For these reasons, this study aimed to evaluate the efficacy of Galleria mellonella as an alternative, non-rodent in vivo model for examining nanoparticle toxicity. Silver, selenium, and functionalized gold nanoparticles were synthesized, and their toxicity was assessed in G. mellonella larvae. The degree of acute toxicity effects caused by each type of NP was efficiently detected by an array of indicators within the larvae: LD50 calculation, hemocyte proliferation, NP distribution, behavioral changes, and histological alterations. G. mellonella larvae are proposed as a nanotoxicological model that can be used as a bridge between in vitro and in vivo murine assays in order to obtain better predictions of NP toxicity.

JTD Keywords: cellular uptake, cytotoxicity, galleria mellonella, gold nanoparticles, hemocytes, nanoparticles, nanotoxicity, non-rodent in vivo model, non-rodent in vivo model, oxidative stress, selenium-compounds, silica nanoparticles, silver nanoparticles, toxicity, toxicity screening, vitro, Galleria mellonella, Hemocytes, In-vivo model, Nanoparticles, Nanotoxicity, Non-rodent in vivo model, Toxicity screening

Tornín J, Villasante A, Solé-Martí X, Ginebra MP, Canal C, (2021). Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties Free Radical Biology And Medicine 164, 107-118

© 2020 The Author(s) The use of oxidative stress generated by Cold Atmospheric Plasma (CAP) in oncology is being recently studied as a novel potential anti-cancer therapy. However, the beneficial effects of CAP for treating osteosarcoma have mostly been demonstrated in 2-dimensional cultures of cells, which do not mimic the complexity of the 3-dimensional (3D) bone microenvironment. In order to evaluate the effects of CAP in a relevant context of the human disease, we developed a 3D tissue-engineered model of osteosarcoma using a bone-like scaffold made of collagen type I and hydroxyapatite nanoparticles. Human osteosarcoma cells cultured within the scaffold showed a high capacity to infiltrate and proliferate and to exhibit osteomimicry in vitro. As expected, we observed significantly different functional behaviors between monolayer and 3D cultures when treated with Cold Plasma-Activated Ringer's Solution (PAR). Our data reveal that the 3D environment not only protects cells from PAR-induced lethality by scavenging and diminishing the amount of reactive oxygen and nitrogen species generated by CAP, but also favours the stemness phenotype of osteosarcoma cells. This is the first study that demonstrates the negative effect of PAR on cancer stem-like cell subpopulations in a 3D biomimetic model of cancer. These findings will allow to suitably re-focus research on plasma-based therapies in future.

JTD Keywords: 3d tumor model, cancer stem-like cells, cold atmospheric plasma, osteosarcoma, oxidative stress, plasma activated liquids, reactive oxygen and nitrogen species, 3d tumor model, Cancer stem-like cells, Cold atmospheric plasma, Osteosarcoma, Oxidative stress, Plasma activated liquids, Reactive oxygen and nitrogen species

Mateu-Sanz, M, Tornin, J, Ginebra, MP, Canal, C, (2021). Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy Journal Of Clinical Medicine 10, 893

Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.

JTD Keywords: cancer stem cells, cold atmospheric plasma, osteosarcoma, oxidative stress, plasma treated liquids, reactive oxygen and nitrogen species, Antineoplastic activity, Antineoplastic agent, Cancer chemotherapy, Cancer stem cell, Cancer stem cells, Cancer surgery, Cancer survival, Cell therapy, Cold atmospheric plasma, Cold atmospheric plasma therapy, Electromagnetism, Human, In vitro study, Intracellular signaling, Oncogene, Osteosarcoma, Oxidative stress, Plasma treated liquids, Reactive nitrogen species, Reactive oxygen and nitrogen species, Reactive oxygen metabolite, Review, Tumor microenvironment

Feiner-Gracia N, Glinkowska Mares A, Buzhor M, Rodriguez-Trujillo R, Samitier Marti J, Amir RJ, Pujals S, Albertazzi L, (2021). Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip Acs Applied Bio Materials 4, 669-681

© 2020 American Chemical Society. The performance of supramolecular nanocarriers as drug delivery systems depends on their stability in the complex and dynamic biological media. After administration, nanocarriers are challenged by physiological barriers such as shear stress and proteins present in blood, endothelial wall, extracellular matrix, and eventually cancer cell membrane. While early disassembly will result in a premature drug release, extreme stability of the nanocarriers can lead to poor drug release and low efficiency. Therefore, comprehensive understanding of the stability and assembly state of supramolecular carriers in each stage of delivery is the key factor for the rational design of these systems. One of the main challenges is that current 2D in vitro models do not provide exhaustive information, as they fail to recapitulate the 3D tumor microenvironment. This deficiency in the 2D model complexity is the main reason for the differences observed in vivo when testing the performance of supramolecular nanocarriers. Herein, we present a real-time monitoring study of self-assembled micelles stability and extravasation, combining spectral confocal microscopy and a microfluidic cancer-on-a-chip. The combination of advanced imaging and a reliable 3D model allows tracking of micelle disassembly by following the spectral properties of the amphiphiles in space and time during the crucial steps of drug delivery. The spectrally active micelles were introduced under flow and their position and conformation continuously followed by spectral imaging during the crossing of barriers, revealing the interplay between carrier structure, micellar stability, and extravasation. Integrating the ability of the micelles to change their fluorescent properties when disassembled, spectral confocal imaging and 3D microfluidic tumor blood vessel-on-a-chip resulted in the establishment of a robust testing platform suitable for real-time imaging and evaluation of supramolecular drug delivery carrier's stability.

JTD Keywords: cancer-on-a-chip, complex, delivery, endothelial-cells, in-vitro, microfluidic, model, nanoparticle, penetration, shear-stress, stability, supramolecular, Cancer-on-a-chip, Cell-culture, Micelle, Microfluidic, Nanoparticle, Stability, Supramolecular

Minguela, J., Slawik, S., Mücklich, F., Ginebra, M. P., Llanes, L., Mas-Moruno, C., Roa, J. J., (2020). Evolution of microstructure and residual stresses in gradually ground/polished 3Y-TZP Journal of the European Ceramic Society 40, (4), 1582-1591

A comprehensive study of progressively ground/polished 3Y-TZP was performed with the aim of better understanding the mechanisms driving the microstructural modifications observed after such procedures, and identifying the processing parameters leading to optimal microstructures (i.e. ageing-protective and damage-free). Gradually ground/polished surfaces were produced, yielding four different topographies of increasing roughness (grades 1–4) and two different textures (unidirectionally, U, and multidirectionally, M). Phase transformation, microstructure and residual stresses were investigated by means of advanced characterization techniques. It was found that low-roughness mildly ground/polished specimens (i.e. 2-M/U) presented a nanometric layer with the ageing-related protective features generally associated with coarsely ground specimens. A lower limit for grain refinement in terms of surface abrasion was also found, in which partial recrystallization took place (i.e. 1-M/U). A mathematical relation was established between average surface roughness (Sa), monoclinic volume fraction (Vm) and surface compressive residual stresses, demonstrating that if the processing parameters are controlled, both Vm and residual stresses can be predicted by the measurement of Sa.

JTD Keywords: Grinding, Microstructure, Phase transformation, Residual stresses, Zirconia

Manca, M. L., Lattuada, D., Valenti, D., Marelli, O., Corradini, C., Fernàndez-Busquets, X., Zaru, M., Maccioni, A. M., Fadda, A. M., Manconi, M., (2019). Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: The use of fibroblast-like synovial cells cultured in synovial fluid European Journal of Pharmaceutics and Biopharmaceutics 136, 84-92

In the present work curcumin loaded hyalurosomes were proposed as innovative systems for the treatment of rheumatoid arthritis. Vesicles were prepared using a one-step and environmentally friendly method. Aiming at finding the most suitable formulation in terms of size, surface charge and stability on storage, an extensive pre-formulation study was performed using different type and amount of phospholipids. Curcumin loaded vesicles prepared with 180 mg/ml of Phospholipon 90G (P90G) and immobilized with sodium hyaluronate (2 mg/ml) were selected because of their small size (189 nm), homogeneous dispersion (PI 0.24), negative charge (−35 mV), suitable ability to incorporate high amount of curcumin (E% 88%) and great stability on storage. The in vitro study using fibroblast-like synovial cells cultured in synovial fluid, demonstrated the ability of these vesicles to downregulate the production of anti-apoptotic proteins IAP1 and IAP2 and stimulate the production of IL-10, while the production of IL-6 and IL-15 and reactive oxygen species was reduced, confirming their suitability in counteracting pathogenesis of rheumatoid arthritis.

JTD Keywords: Curcumin, IL-6 and IL-15, In vitro inflammation, Oxidative stress, Phospholipid vesicles, Synoviocytes

Oliveira, V. R., Uriarte, J. J., Falcones, B., Zin, W. A., Navajas, D., Farré, R., Almendros, I., (2019). Escherichia coli lipopolysaccharide induces alveolar epithelial cell stiffening Journal of Biomechanics 83, 315-318

Introduction: Application of lipopolysaccharide (LPS) is a widely employed model to mimic acute respiratory distress syndrome (ARDS). Available data regarding LPS-induced biomechanical changes on pulmonary epithelial cells are limited only to P. aeruginosa LPS. Considering that LPS from different bacteria could promote a specific mechanical response in epithelial cells, we aim to assess the effect of E. coli LPS, widely employed as a model of ARDS, in the biomechanics of alveolar epithelial cells. Methods: Young’s modulus (E) of alveolar epithelial cells (A549) was measured by atomic force microscopy every 5 min throughout 60 min of experiment after treatment with LPS from E. coli (100 μg/mL). The percentage of cells presenting actin stress fibers (F-actin staining) was also evaluated. Control cells were treated with culture medium and the values obtained were compared with LPS-treated cells for each time-point. Results: Application of LPS induced significant increase in E after 20 min (77%) till 60 min (104%) in comparison to controls. Increase in lung epithelial cell stiffness induced by LPS was associated with a higher number of cells presenting cytoskeletal remodeling. Conclusions: The observed effects of E. coli LPS on alveolar epithelial cells suggest that this widely-used LPS is able to promote a quick formation of actin stress fibers and stiffening cells, thereby facilitating the disruption of the pulmonary epithelial barrier.

JTD Keywords: Acute respiratory distress syndrome model, Alveolar epithelium, Biomechanics, E. coli, Lipopolysaccharide

Hervera, A., De Virgiliis, F., Palmisano, I., Zhou, L., Tantardini, E., Kong, G., Hutson, T., Danzi, M. C., Perry, R. B. T., Santos, C. X. C., Kapustin, A. N., Fleck, R. A., Del Río, J. A., Carroll, T., Lemmon, V., Bixby, J. L., Shah, A. M., Fainzilber, M., Di Giovanni, S., (2018). Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons Nature Cell Biology 20, (3), 307-319

Reactive oxygen species (ROS) contribute to tissue damage and remodelling mediated by the inflammatory response after injury. Here we show that ROS, which promote axonal dieback and degeneration after injury, are also required for axonal regeneration and functional recovery after spinal injury. We find that ROS production in the injured sciatic nerve and dorsal root ganglia requires CX3CR1-dependent recruitment of inflammatory cells. Next, exosomes containing functional NADPH oxidase 2 complexes are released from macrophages and incorporated into injured axons via endocytosis. Once in axonal endosomes, active NOX2 is retrogradely transported to the cell body through an importin-β1–dynein-dependent mechanism. Endosomal NOX2 oxidizes PTEN, which leads to its inactivation, thus stimulating PI3K–phosporylated (p-)Akt signalling and regenerative outgrowth. Challenging the view that ROS are exclusively involved in nerve degeneration, we propose a previously unrecognized role of ROS in mammalian axonal regeneration through a NOX2–PI3K–p-Akt signalling pathway.

JTD Keywords: Adult neurogenesis, Endocytosis, Exocytosis, Monocytes and macrophages, Stress signalling

Pardo-Pastor, Carlos, Rubio-Moscardo, Fanny, Vogel-González, Marina, Serra, Selma A., Afthinos, Alexandros, Mrkonjic, Sanela, Destaing, Olivier, Abenza, Juan F., Fernández-Fernández, José M., Trepat, Xavier, Albiges-Rizo, Corinne, Konstantopoulos, Konstantinos, Valverde, Miguel A., (2018). Piezo2 channel regulates RhoA and actin cytoskeleton to promote cell mechanobiological responses Proceedings of the National Academy of Sciences of the United States of America 115, (8), 1925-1930

The actin cytoskeleton is central to many cellular processes involving changes in cell shape, migration, and adhesiveness. Therefore, there is a great interest in the identification of the signaling pathways leading to the regulation of actin polymerization and assembly into stress fibers (SFs). However, to date it is not well understood how the mechanical interactions between cells and their environment activate the assembly of SFs. Here, we demonstrate that the mechanosensitive Piezo2 channel is required to sense physical cues from the environment to generate a calcium signal that maintains RhoA active and the formation and orientation of SFs and focal adhesions. Besides, this Piezo2-initiated signaling pathway has implications for different hallmarks of cancer invasion and metastasis.

JTD Keywords: Mechanotransduction, Calcium signaling, RhoA, Actin stress fibers, Cancer

Tomas-Roig, Jordi, Piscitelli, Fabiana, Gil, Vanesa, Quintana, Ester, Ramió-Torrentà , Lluís l, del Río, Jose Antonio, Moore, Timothy Patrick, Agbemenyah, Hope, Salinas, Gabriela, Pommerenke, Claudia, Lorenzen, Stephan, Beißbarth, Tim, Hoyer-Fender, Sigrid, Di Marzo, Vincenzo, Havemann-Reinecke, Ursula, (2018). Effects of repeated long-term psychosocial stress and acute cannabinoid exposure on mouse corticostriatal circuitries: Implications for neuropsychiatric disorders CNS Neuroscience & Therapeutics 24, (6), 528-538

Introduction: Vulnerability to psychiatric manifestations is achieved by the influence of genetic and environment including stress and cannabis consumption. Here, we used a psychosocial stress model based on resident-intruder confrontations to study the brain corticostriatal-function, since deregulation of corticostriatal circuitries has been reported in many psychiatric disorders. CB1 receptors are widely expressed in the central nervous system and particularly, in both cortex and striatum brain structures. Aims and methods: The investigation presented here is addressed to assess the impact of repeated stress following acute cannabinoid exposure on behavior and corticostriatal brain physiology by assessing mice behavior, the concentration of endocannabinoid and endocannabinoid-like molecules and changes in the transcriptome. Results: Stressed animals urinated frequently; showed exacerbated scratching activity, lower striatal N-arachidonylethanolamine (AEA) levels and higher cortical expression of cholinergic receptor nicotinic alpha 6. The cannabinoid agonist WIN55212.2 diminished locomotor activity while the inverse agonist increased the distance travelled in the center of the open field. Upon CB1 activation, N-oleoylethanolamide and Npalmitoylethanolamide, two AEA congeners that do not interact directly with cannabinoid receptors, were enhanced in the striatum. The co-administration with both cannabinoids induced an up-regulation of striatal FK506 binding protein 5. The inverse agonist in controls reversed the effects of WIN55212.2 on motor activity. When Rimonabant was injected under stress, the cortical levels of 2-arachidonoylglycerol were maximum. The agonist and the antagonist influenced the cortical expression of cholinergic receptor nicotinic alpha 6 and serotonin transporter neurotransmitter type 4 in opposite directions, while their co-administration tended to produce a null effect under stress. Conclusions: The endocannabinoid system had a direct effect on serotoninergic neurotransmission and glucocorticoid signaling. Cholinergic receptor nicotinic alpha-6 was shown to be deregulated in response to stress and following synthetic cannabinoid drugs thus could confer vulnerability to cannabis addiction and psychosis. Targeting the receptors of endocannabinoids and endocannabinoid-like mediators might be a valuable option for treating stress-related neuropsychiatric symptoms

JTD Keywords: CB1, Chrna6 and Slc6a4, Fkbp5, Pychosocial stress

Farré, N., Jorba, I., Torres, M., Falcones, B., Martí-Almor, J., Farré, R., Almendros, I., Navajas, D., (2018). Passive stiffness of left ventricular myocardial tissue is reduced by ovariectomy in a post-menopause mouse model Frontiers in Physiology 9, Article 1545

Background: Heart failure (HF) – a very prevalent disease with high morbidity and mortality – usually presents with diastolic dysfunction. Although post-menopause women are at increased risk of HF and diastolic dysfunction, poor attention has been paid to clinically and experimentally investigate this group of patients. Specifically, whether myocardial stiffness is affected by menopause is unknown. Aim: To investigate whether loss of female sexual hormones modifies the Young’s modulus (E) of left ventricular (LV) myocardial tissue in a mouse model of menopause induced by ovariectomy (OVX). Methods: After 6 months of bilateral OVX, eight mice were sacrificed, fresh LV myocardial strips were prepared (∼8 × 1 × 1 mm), and their passive stress–stretch relationship was measured. E was computed by exponential fitting of the stress–stretch relationship. Subsequently, to assess the relative role of cellular and extracellular matrix components in determining OVX-induced changes in E, the tissues strips were decellularized and subjected to the same stretching protocol to measure E. A control group of eight sham-OVX mice was simultaneously studied. Results: E (kPa; m ± SE) in OVX mice was ∼twofold lower than in controls (11.7 ± 1.8 and 22.1 ± 4.4, respectively; p < 0.05). No significant difference between groups was found in E of the decellularized tissue (31.4 ± 12.05 and 40.9 ± 11.5, respectively; p = 0.58). Conclusion: Loss of female sexual hormones in an OVX model induces a reduction in the passive stiffness of myocardial tissue, suggesting that active relaxation should play a counterbalancing role in diastolic dysfunction in post-menopausal women with HF.

JTD Keywords: Decellularized tissue, Female hormones, Heart tissue, Ovariectomy, Stress-strain

Schwab, S., Lehmann, J., Lutz, P., Jansen, C., Appenrodt, B., Lammert, F., Strassburg, C. P., Spengler, U., Nischalke, H. D., Trebicka, J., (2017). Influence of genetic variations in the SOD1 gene on the development of ascites and spontaneous bacterial peritonitis in decompensated liver cirrhosis European Journal of Gastroenterology and Hepatology , 29, (7), 800-804

Background The balance between generation and elimination of reactive oxygen species by superoxide dismutase (SOD) is crucially involved in the pathophysiology of liver cirrhosis. Reactive oxygen species damage cells and induce inflammation/fibrosis, but also play a critical role in immune defense from pathogens. As both processes are involved in the development of liver cirrhosis and its complications, genetic variation of the SOD1 gene was investigated. Patients and methods Two SOD1 single nucleotide polymorphisms (rs1041740 and rs3844942) were analyzed in 49 cirrhotic patients undergoing liver transplantation. In addition, 344 cirrhotic patients with ascites were analyzed in a cohort of 521 individuals in terms of the relationship of these polymorphisms with spontaneous bacterial peritonitis (SBP). Results Although rs3844942 showed no associations with complications of cirrhosis, we observed a significant association between rs1041740 and the presence of ascites and SBP in the discovery cohort of patients with cirrhosis. Importantly, the association with SBP was not confirmed in the validation cohort of patients with ascites. By contrast, a trend toward lower SBP rates was observed in carriers of rs1041740. In this cohort, rs1041740 was not associated with survival. Conclusion These data suggest a complex role of SOD1 in different processes leading to complications of liver cirrhosis. rs1041740 might be associated with the development of ascites and possibly plays a role in SBP once ascites has developed.

JTD Keywords: Ascites, Genetic polymorphism, Liver cirrhosis, Reactive oxygen stress, Spontaneous bacterial peritonitis, Superoxide dismutases

Przybyla, L., Lakins, J. N., Sunyer, R., Trepat, X., Weaver, V. M., (2016). Monitoring developmental force distributions in reconstituted embryonic epithelia Methods , 94, 101-113

The way cells are organized within a tissue dictates how they sense and respond to extracellular signals, as cues are received and interpreted based on expression and organization of receptors, downstream signaling proteins, and transcription factors. Part of this microenvironmental context is the result of forces acting on the cell, including forces from other cells or from the cellular substrate or basement membrane. However, measuring forces exerted on and by cells is difficult, particularly in an in vivo context, and interpreting how forces affect downstream cellular processes poses an even greater challenge. Here, we present a simple method for monitoring and analyzing forces generated from cell collectives. We demonstrate the ability to generate traction force data from human embryonic stem cells grown in large organized epithelial sheets to determine the magnitude and organization of cell-ECM and cell-cell forces within a self-renewing colony. We show that this method can be used to measure forces in a dynamic hESC system and demonstrate the ability to map intracolony protein localization to force organization.

JTD Keywords: Epiblast, Human embryonic stem cells, Mechanotransduction, Monolayer stress microscopy, Self-organization, Traction force

Tomas-Roig, J., Piscitelli, F., Gil, V., del Río, J. A., Moore, T. P., Agbemenyah, H., Salinas-Riester, G., Pommerenke, C., Lorenzen, S., Beißbarth, T., Hoyer-Fender, S., Di Marzo, V., Havemann-Reinecke, U., (2016). Social defeat leads to changes in the endocannabinoid system: An overexpression of calreticulin and motor impairment in mice Behavioural Brain Research , 303, 34-43

Prolonged and sustained stimulation of the hypothalamo-pituitary-adrenal axis have adverse effects on numerous brain regions, including the cerebellum. Motor coordination and motor learning are essential for animal and require the regulation of cerebellar neurons. The G-protein-coupled cannabinoid CB1 receptor coordinates synaptic transmission throughout the CNS and is of highest abundance in the cerebellum. Accordingly, the aim of this study was to investigate the long-lasting effects of chronic psychosocial stress on motor coordination and motor learning, CB1 receptor expression, endogenous cannabinoid ligands and gene expression in the cerebellum. After chronic psychosocial stress, motor coordination and motor learning were impaired as indicated the righting reflex and the rota-rod. The amount of the endocannabinoid 2-AG increased while CB1 mRNA and protein expression were downregulated after chronic stress. Transcriptome analysis revealed 319 genes differentially expressed by chronic psychosocial stress in the cerebellum; mainly involved in synaptic transmission, transmission of nerve impulse, and cell-cell signaling. Calreticulin was validated as a stress candidate gene. The present study provides evidence that chronic stress activates calreticulin and might be one of the pathological mechanisms underlying the motor coordination and motor learning dysfunctions seen in social defeat mice.

JTD Keywords: Psychosocial stress, Cerebellum, Calreticulin, Endocannabinoid system, Behavior, RNA seq.

Manca, M. L., Castangia, I., Zaru, M., Nácher, A., Valenti, D., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2015). Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring Biomaterials 71, 100-109

In the present work new highly biocompatible nanovesicles were developed using polyanion sodium hyaluronate to form polymer immobilized vesicles, so called hyalurosomes. Curcumin, at high concentration was loaded into hyalurosomes and physico-chemical properties and in vitro/in vivo performances of the formulations were compared to those of liposomes having the same lipid and drug content. Vesicles were prepared by direct addition of dispersion containing the polysaccharide sodium hyaluronate and the polyphenol curcumin to a commercial mixture of soy phospholipids, thus avoiding the use of organic solvents. An extensive study was carried out on the physico-chemical features and properties of curcumin-loaded hyalurosomes and liposomes. Cryogenic transmission electron microscopy and small-angle X-ray scattering showed that vesicles were spherical, uni- or oligolamellar and small in size (112-220 nm). The in vitro percutaneous curcumin delivery studies on intact skin showed an improved ability of hyalurosomes to favour a fast drug deposition in the whole skin. Hyalurosomes as well as liposomes were biocompatible, protected in vitro human keratinocytes from oxidative stress damages and promoted tissue remodelling through cellular proliferation and migration. Moreover, in vivo tests underlined a good effectiveness of curcumin-loaded hyalurosomes to counteract 12-O-tetradecanoilphorbol (TPA)-produced inflammation and injuries, diminishing oedema formation, myeloperoxydase activity and providing an extensive skin reepithelization. Thanks to the one-step and environmentally-friendly preparation method, component biocompatibility and safety, good in vitro and in vivo performances, the hyalurosomes appear as promising nanocarriers for cosmetic and pharmaceutical applications.

JTD Keywords: Cell oxidative stress, Hyaluronic acid/Hyaluronan, Phospholipid vesicles, Polyphenols, Skin inflammation, Wound healing

Serra-Picamal, Xavier, Conte, Vito, Sunyer, Raimon, Muñoz, José J., Trepat, Xavier, (2015). Mapping forces and kinematics during collective cell migration Methods in Cell Biology - Biophysical Methods in Cell Biology (ed. Wilson, L., Tran, P.), Academic Press (Santa Barbara, USA) 125, 309-330

Abstract Fundamental biological processes including morphogenesis and tissue repair require cells to migrate collectively. In these processes, epithelial or endothelial cells move in a cooperative manner coupled by intercellular junctions. Ultimately, the movement of these multicellular systems occurs through the generation of cellular forces, exerted either on the substrate via focal adhesions (cell–substrate forces) or on neighboring cells through cell–cell junctions (cell–cell forces). Quantitative measurements of multicellular forces and kinematics with cellular or subcellular resolution have become possible only in recent years. In this chapter, we describe some of these techniques, which include particle image velocimetry to map cell velocities, traction force microscopy to map forces exerted by cells on the substrate, and monolayer stress microscopy to map forces within and between cells. We also describe experimental protocols to perform these measurements. The combination of these techniques with high-resolution imaging tools and molecular perturbations will lead to a better understanding of the mechanisms underlying collective cell migration in health and disease.

JTD Keywords: Collective cell migration, Monolayer stress microscopy, Traction force microscopy

Dalmases, M., Torres, M., Márquez-Kisinousky, L., Almendros, I., Planas, A. M., Embid, C., Martínez-Garcia, M. A., Navajas, D., Farré, R., Montserrat, J. M., (2014). Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats Sleep , 37, (7), 1249-1256

Study Objectives: To test the hypotheses that brain oxygen partial pressure (PtO2) in response to obstructive apneas changes with age and that it might lead to different levels of cerebral tissue oxidative stress. Design: Prospective controlled animal study. Setting: University laboratory. Participants: Sixty-four male Wistar rats: 32 young (3 mo old) and 32 aged (18 mo). Interventions: Protocol 1: Twenty-four animals were subjected to obstructive apneas (50 apneas/h, lasting 15 sec each) or to sham procedure for 50 min. Protocol 2: Forty rats were subjected to obstructive apneas or sham procedure for 4 h. Measurements and Results: Protocol 1: Real-time PtO2 measurements were performed using a fast-response oxygen microelectrode. During successive apneas cerebral cortex PtO2 presented a different pattern in the two age groups; there was a fast increase in young rats, whereas it remained without significant changes between the beginning and the end of the protocol in the aged group. Protocol 2: Brain oxidative stress assessed by lipid peroxidation increased after apneas in young rats (1.34 ± 0.17 nmol/mg of protein) compared to old ones (0.63 ± 0.03 nmol/mg), where a higher expression of antioxidant enzymes was observed. Conclusions: The results suggest that brain oxidative stress in aged rats is lower than in young rats in response to recurrent apneas, mimicking obstructive sleep apnea. This could be due to the different PtO2 response observed between age groups and the increased antioxidant expression in aged rats.

JTD Keywords: Aging, Animal model, Obstructive apnea, Oxidative stress, Tissue oxygenation, antioxidant, glutathione disulfide, aged, animal experiment, animal model, animal tissue, apnea, arterial oxygen saturation, article, brain cortex, brain oxygen tension, brain tissue, controlled study, groups by age, hypoxia, lipid peroxidation, male, nonhuman, oxidative stress, pressure, priority journal, rat

Ramos-Fernández, E., Tajes, M., Palomer, E., Ill-Raga, G., Bosch-Morató, M., Guivernau, B., Román-Dégano, I., Eraso-Pichot, A., Alcolea, D., Fortea, J., Nuñez, L., Paez, A., Alameda, F., Fernàndez-Busquets, X., Lleó, A., Elosúa, R., Boada, M., Valverde, M. A., Muñoz, F. J., (2014). Posttranslational nitro-glycative modifications of albumin in Alzheimer's disease: Implications in cytotoxicity and amyloid-β peptide aggregation Journal of Alzheimer's Disease , 40, (3), 643-657

Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.

JTD Keywords: Albumin, Alzheimer's disease, amyloid, glycation, nitrotyrosination, oxidative stress

Peñuelas, O., Melo, E., Sánchez, C., Sánchez, I., Quinn, K., Ferruelo, A., Pérez-Vizcaíno, F., Esteban, A., Navajas, D., Nin, N., Lorente, J. A., Farré, R., (2013). Antioxidant effect of human adult adipose-derived stromal stem cells in alveolar epithelial cells undergoing stretch Respiratory Physiology & Neurobiology , 188, (1), 1-8

Introduction: Alveolar epithelial cells undergo stretching during mechanical ventilation. Stretch can modify the oxidative balance in the alveolar epithelium. The aim of the present study was to evaluate the antioxidant role of human adult adipose tissue-derived stromal cells (hADSCs) when human alveolar epithelial cells were subjected to injurious cyclic overstretching. Methods: A549 cells were subjected to biaxial stretch (0-15% change in surface area for 24. h, 0.2. Hz) with and without hADSCs. At the end of the experiments, oxidative stress was measured as superoxide generation using positive nuclear dihydroethidium (DHE) staining, superoxide dismutase (SOD) activity in cell lysates, 8-isoprostane concentrations in supernatant, and 3-nitrotyrosine by indirect immunofluorescence in fixed cells. Results: Cyclically stretching of AECs induced a significant decrease in SOD activity, and an increase in 8-isoprostane concentrations, DHE staining and 3-nitrotyrosine staining compared with non-stretched cells. Treatment with hADSCs significantly attenuated stretch-induced changes in SOD activity, 8-isoprostane concentrations, DHE and 3-nitrotyrosine staining. Conclusion: These data suggest that hADSCs have an anti-oxidative effect in human alveolar epithelial cells undergoing cyclic stretch.

JTD Keywords: Acute lung injury, Cyclic stretch, Human adipose-derived stromal stem cells, Oxidative stress

Almendros, Isaac, Farre, Ramon, Planas, Anna M., Torres, Marta, Bonsignore, Maria R., Navajas, Daniel, Montserrat, Josep M., (2011). Tissue oxygenation in brain, muscle, and fat in a rat model of sleep apnea: Differential effect of obstructive apneas and intermittent hypoxia Sleep , 34, (8), 1127-1133

Study Objectives: To test the hypotheses that the dynamic changes in brain oxygen partial pressure (PtO(2)) in response to obstructive apneas or to intermittent hypoxia differ from those in other organs and that the changes in brain PtO(2) in response to obstructive apneas is a source of oxidative stress. Design: Prospective controlled animal study. Setting: University laboratory. Participants: 98 Sprague-Dawley rats. Interventions: Cerebral cortex, skeletal muscle, or visceral fat tissues were exposed in anesthetized animals subjected to either obstructive apneas or intermittent hypoxia (apneic and hypoxic events of 15 s each and 60 events/h) for 1 h. Measurements and Results: Arterial oxygen saturation (spO(2)) presented a stable pattern, with similar desaturations during both stimuli. The PtO(2) was measured by a microelectrode. During obstructive apneas, a fast increase in cerebral PtO(2) was observed (38.2 +/- 3.4 vs. 54.8 +/- 5.9 mm Hg) but not in the rest of tissues. This particular cerebral response was not found during intermittent hypoxia. The cerebral content of reduced glutathione was decreased after obstructive apneas (46.2% +/- 15.2%) compared to controls (100.0% +/- 14.7%), but not after intermittent hypoxia. This antioxidant consumption after obstructive apneas was accompanied by increased cerebral lipid peroxidation under this condition. No changes were observed for these markers in the other tissues. Conclusions: These results suggest the cerebral cortex could be protected in some way from hypoxic periods caused by obstructive apneas. The increased cerebral PtO(2) during obstructive apneas may, however, cause harmful effects (oxidative stress). The obstructive apnea model appears to be more adequate than the intermittent hypoxia model for studying brain changes associated with OSA.

JTD Keywords: Tissue oxygenation, Obstructive apnea, Intermittent hypoxia, Animal model, Oxidative stress

Carulla, Patricia, Bribian, Ana, Rangel, Alejandra, Gavin, Rosalina, Ferrer, Isidro, Caelles, Carme, Antonio del Rio, Jose, Llorens, Franc, (2011). Neuroprotective role of PrP(C) against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding Molecular Biology of the Cell , 22, (17), 3041-3054

Cellular prion protein (PrP(C)) is a glycosyl-phosphatidylinositol-anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrP(SC)) induces transmissible spongiform encephalopathies. In contrast, PrP(C) has a number of physiological functions in several neural processes. Several lines of evidence implicate PrP(C) in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrP(C) has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)-mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnp(%) Jnk3(%) mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrP(C)-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrP(C) with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6-PSD-95 interaction after KA injections was favored by the absence of PrP(C). Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrP(C) against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.

JTD Keywords: Ischemic brain-injury, Prion protein PrP(C), Stress-inducible protein-1, Synaptic plasticity, Neurite outgrowth, Signaling module, Caspase-3 activation, Organotypic cultures, Cerebral-ischemia

Lacroix, Damien, Ramirez Patino, Juan Fernando, (2011). Finite Element Analysis of Donning Procedure of a Prosthetic Transfemoral Socket Annals of Biomedical Engineering , 39, (12), 2972-2983

Lower limb amputation is a severe psychological and physical event in a patient. A prosthetic solution can be provided but should respond to a patient-specific need to accommodate for the geometrical and biomechanical specificities. A new approach to calculate the stress-strain state at the interaction between the socket and the stump of five transfemoral amputees is presented. In this study the socket donning procedure is modeled using an explicit finite element method based on the patient-specific geometry obtained from CT and laser scan data. Over stumps the mean maximum pressure is 4 kPa (SD 1.7) and the mean maximum shear stresses are 1.4 kPa (SD 0.6) and 0.6 kPa (SD 0.3) in longitudinal and circumferential directions, respectively. Locations of the maximum values are according to pressure zones at the sockets. The stress-strain states obtained in this study can be considered more reliable than others, since there are normal and tangential stresses associated to the socket donning procedure.

JTD Keywords: Trans-tibial prosthesis, Knee residual limb, Pressure distribution, Transtibial amputees, Stump/socket interface, Mechanical conditions, Load-transfer, Soft-tissues, Stresses, Contact

Valente, T., Gella, A., Fernàndez-Busquets, X., Unzeta, M., Durany, N., (2010). Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus Neurobiology of Disease , 37, (1), 67-76

It has been extensively reported that diabetes mellitus (DM) patients have a higher risk of developing Alzheimer's disease (AD). but a mechanistic connection between both pathologies has not been provided so far Carbohydrate-derived advanced glycation endproducts (AGEs) have been implicated in the chronic complications of DM and have been reported to play an important role in the pathogenesis of AD. The earliest histopathological manifestation of AD is the apparition of extracellular aggregates of the amyloid beta peptide (A beta). To investigate possible correlations between AGEs and A beta aggregates with both pathologies. we have performed an immuhistochemical study in human post-mortem samples of AD, AD with diabetes (ADD). diabetic and nondemented controls ADD brains showed increased number of A beta dense plaques and receptor for AGEs (RACE)-positive and Tau-positive cells, higher AGEs levels and major microglial activation, compared to AD brain. Our results indicate that ADD patients present a significant increase of cell damage through a RAGE-dependent mechanism, suggesting that AGEs may promote the generation of an oxidative stress vicious cycle, which can explain the severe progression of patients with both pathologies.

JTD Keywords: Abeta, Alzheimer's disease, Rage, Ages, Diabetes, Immunohistochemistry, Advanced glycation endproducts, Beta-amyloid peptide, End-products, Oxidative stress, Advanced glycosylation, Synaptic dysfunction, Cross-linking

Estevez, M., Fernandez-Ulibarri, I., Martinez, E., Egea, G., Samitier, J., (2010). Changes in the internal organization of the cell by microstructured substrates Soft Matter 6, (3), 582-590

Surface features at the micro and nanometre scale have been shown to influence and even determine cell behaviour and cytoskeleton organization through direct mechanotransductive pathways. Much less is known about the function and internal distribution of organelles of cells grown on topographically modified surfaces. In this study, the nanoimprint lithography technique was used to manufacture poly(methyl methacrylate) (PMMA) sheets with a variety of features in the micrometre size range. Normal rat kidney (NRK) fibroblasts were cultured on these substrates and immunofluorescence staining assays were performed to visualize cell adhesion, the organization of the cytoskeleton and the morphology and subcellular positioning of the Golgi complex. The results show that different topographic features at the micrometric scale induce different rearrangements of the cell cytoskeleton, which in turn alter the positioning and morphology of the Golgi complex. Microposts and microholes alter the mechanical stability of the Golgi complex by modifying the actin cytoskeleton organization leading to the compaction of the organelle. These findings prove that physically modified surfaces are a valuable tool with which to study the dynamics of cell cytoskeleton organization and its subsequent repercussion on internal cell organization and associated function.

JTD Keywords: Actin stress fibers, Golgi-complex, Focal adhesions, Cytoskeletal organization, Osteoblast adhesion, Mammalian-cells, Micron-scale, Nanoscale, Dynamics, Rho

Almendros, I., Montserrat, J. M., Torres, M., Gonzalez, C., Navajas, D., Farre, R., (2010). Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea Respiratory Research , 11, (3), 1-6

Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO(2)) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O-2 supply during recurrent swings in arterial SpO(2) in an animal model of OSA. Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO(2) was measured by pulse oximetry. The time dependence of arterial SpO(2) and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results: Arterial SpO(2) showed a stable periodic pattern (no significant changes in maximum [95.5 +/- 0.5%; m +/- SE] and minimum values [83.9 +/- 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO(2). The minimum cerebral cortex PtO2 computed during the first apnea (29.6 +/- 2.4 mmHg) was significantly lower than baseline PtO2 (39.7 +/- 2.9 mmHg; p = 0.011). In contrast to SpO(2), the minimum and maximum values of PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 +/- 3.9 mmHg) and minimum (43.7 +/- 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of O-2 supply induced by obstructive apneas mimicking OSA.

JTD Keywords: Near-infrared spectroscopy, Sleep-apnea, Iintermittent hypoxia, Cerebral oxygenation, Oxidative stress, Blood-flow, Rat, Apoptosis, Inflammation, Hypercapnia

Sunyer, R., Trepat, X., Fredberg, J. J., Farre, R., Navajas, D., (2009). The temperature dependence of cell mechanics measured by atomic force microscopy Physical Biology 6, (2), 25009

The cytoskeleton is a complex polymer network that regulates the structural stability of living cells. Although the cytoskeleton plays a key role in many important cell functions, the mechanisms that regulate its mechanical behaviour are poorly understood. Potential mechanisms include the entropic elasticity of cytoskeletal filaments, glassy-like inelastic rearrangements of cross-linking proteins and the activity of contractile molecular motors that sets the tensional stress (prestress) borne by the cytoskeleton filaments. The contribution of these mechanisms can be assessed by studying how cell mechanics depends on temperature. The aim of this work was to elucidate the effect of temperature on cell mechanics using atomic force microscopy. We measured the complex shear modulus (G*) of human alveolar epithelial cells over a wide frequency range (0.1-25.6 Hz) at different temperatures (13-37 degrees C). In addition, we probed cell prestress by mapping the contractile forces that cells exert on the substrate by means of traction microscopy. To assess the role of actomyosin contraction in the temperature-induced changes in G* and cell prestress, we inhibited the Rho kinase pathway of the myosin light chain phosphorylation with Y-27632. Our results show that with increasing temperature, cells become stiffer and more solid-like. Cell prestress also increases with temperature. Inhibiting actomyosin contraction attenuated the temperature dependence of G* and prestress. We conclude that the dependence of cell mechanics with temperature is dominated by the contractile activity of molecular motors.

JTD Keywords: Membrane Stress Failure, Frog Skeletal-Muscle, Extracellular-Matrix, Glass-Transition, Energy Landscape, Actin-Filaments, Living Cell, Single, Traction, Cytoskeleton

Gavara, N., Roca-Cusachs, P., Sunyer, R., Farre, R., Navajas, D., (2008). Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton Biophysical Journal , 95, (1), 464-471

The mechanical properties of the living cell are intimately related to cell signaling biology through cytoskeletal tension. The tension borne by the cytoskeleton (CSK) is in part generated internally by the actomyosin machinery and externally by stretch. Here we studied how cytoskeletal tension is modified during stretch and the tensional changes undergone by the sites of cell-matrix interaction. To this end we developed a novel technique to map cell-matrix stresses during application of stretch. We found that cell-matrix stresses increased with imposition of stretch but dropped below baseline levels on stretch release. Inhibition of the actomyosin machinery resulted in a larger relative increase in CSK tension with stretch and in a smaller drop in tension after stretch release. Cell-matrix stress maps showed that the loci of cell adhesion initially bearing greater stress also exhibited larger drops in traction forces after stretch removal. Our results suggest that stretch partially disrupts the actin-myosin apparatus and the cytoskeletal structures that support the largest CSK tension. These findings indicate that cells use the mechanical energy injected by stretch to rapidly reorganize their structure and redistribute tension.

JTD Keywords: Cell Line, Computer Simulation, Cytoskeleton/ physiology, Elasticity, Epithelial Cells/ physiology, Extracellular Matrix/ physiology, Humans, Mechanotransduction, Cellular/ physiology, Models, Biological, Stress, Mechanical