DONATE

Publications

by Keyword: NDR

Pawar, Nisha, Pena-Figueroa, Miriam, Verde-Sesto, Ester, Maestro, Armando, Alvarez-Fernandez, Alberto, (2024). Exploring the Interaction of Lipid Bilayers with Curcumin-Laponite Nanoparticles: Implications for Drug Delivery and Therapeutic Applications Small 20, 2406885

Curcumin, the active compound in turmeric, is renowned for its anti-inflammatory, antioxidant, and antimicrobial properties, making it beneficial for treating conditions like arthritis, neurodegenerative diseases, and various cancers. Despite its promising therapeutic potential, curcumin's poor bioavailability-due to its rapid metabolism and low solubility-limits its clinical efficacy. To address this, recent research has focused on enhancing curcumin delivery using nanoparticles, liposomes, and novel nanomaterials. Among these, laponite, a synthetic nanoclay, has shown promise in improving curcumin delivery due to its unique properties, including large surface area, dual charge, and stability in solution. This study explores the use of curcumin-laponite nanoparticles as carrier vehicles for controlled delivery to in vitro model membranes. Utilizing advanced techniques such as neutron reflectometry, atomic force microscopy, quartz crystal microbalance with dissipation, and infrared spectroscopy, the interaction between curcumin-laponite nanoparticles and solid-supported lipid bilayers is monitored, revealing enhanced stability and controlled release of curcumin across the membrane. These findings pave the way for the development of curcumin-based therapies targeting cardiovascular, neurological, and oncological diseases, leveraging the synergistic effects of curcumin's biological activity and laponite's delivery capabilities.

JTD Keywords: Antioxidant, Apoptosis, Cell, Controlled-release, Curcumin, Drug delivery, Emulsion polymerization, Laponite, Longa, Neutron, Neutron reflectivity, Nf-kappa-b, Products, Supported lipid bilayer, Supported lipid bilayers


Fanlo-Ucar, Hugo, Picon-Pages, Pol, Herrera-Fernandez, Victor, ILL-Raga, Gerard, Munoz, Francisco J, (2024). The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology Antioxidants 13, 1208

Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid beta-peptide (A beta) into oligomers and fibrils that cause synaptotoxicity and neuronal death. A beta exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on A beta production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to A beta and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of A beta in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.

JTD Keywords: A-beta, Alzheimer's disease, Amyloid beta-peptide, Bace, Blood-brain-barrier, Central-nervous-system, Genome-wide association, Mitochondrial dysfunctio, Mouse model, Neurodegeneration, Nitric-oxide, Nitro-oxidative stress, Precursor protein, Reactive oxygen, Receptor-related protein-1


Elshof, Judith, Oppersma, Eline, Wisse, Jantine J, Bladder, Gerrie, Meijer, Petra M, Torres, Abel, Wijkstra, Peter J, Duiverman, Marieke L, (2024). Deventilation Syndrome in Patients with Chronic Obstructive Pulmonary Disease Using Nocturnal Noninvasive Ventilation: What Are the Underlying Mechanisms? Respiration 10, 723-732

Introduction: Patients with chronic obstructive pulmonary disease (COPD) commonly experience severe dyspnea after discontinuation of nocturnal noninvasive ventilation (NIV), known as deventilation syndrome (DVS), which negatively affects quality of life. Despite various hypotheses, the precise mechanisms of DVS remain unknown. Methods: An observational pilot study was performed monitoring 16 stable COPD patients before, during, and after an afternoon nap on NIV. Seven patients experienced DVS (Borg Dyspnea Scale >= 5), while nine served as controls (Borg Dyspnea Scale

JTD Keywords: Asynchrony, Chronic obstructive pulmonary disease, Copd patients, Deventilation syndrom, Dyspnea, End-expiratory pressure, Exercise, Hyperinflation, Noninvasive ventilation, Patter


Gonzalez, Hernando, Arizmendi, Carlos Julio, Giraldo, Beatriz F, (2024). Development of a Deep Learning Model for the Prediction of Ventilator Weaning International Journal Of Online And Biomedical Engineering 20, 161-178

The issue of failed weaning is a critical concern in the intensive care unit (ICU) setting. This scenario occurs when a patient experiences difficulty maintaining spontaneous breathing and ensuring a patent airway within the first 48 hours after the withdrawal of mechanical ventilation. Approximately 20% of ICU patients experience this phenomenon, which has severe repercussions on their health. It also has a substantial impact on clinical evolution and mortality, which can increase by 25% to 50%. To address this issue, we propose a medical support system that uses a convolutional neural network (CNN) to assess a patient's suitability for disconnection from a mechanical ventilator after a spontaneous breathing test (SBT). During SBT, respiratory flow and electrocardiographic activity were recorded and after processed using time-frequency analysis (TFA) techniques. Two CNN architectures were evaluated in this study: one based on ResNet50, with parameters tuned using a Bayesian optimization algorithm, and another CNN designed from scratch, with its structure also adapted using a Bayesian optimization algorithm. The WEANDB database was used to train and evaluate both models. The results showed remarkable performance, with an average accuracy 98 +/- 1.8% when using CNN from scratch. This model has significant implications for the ICU because it provides a reliable tool to enhance patient care by assisting clinicians in making timely and accurate decisions regarding weaning. This can potentially reduce the adverse outcomes associated with failed weaning events.

JTD Keywords: Bayesian optimization algorithm (boa, Continuous wavelet transform (cwt), Convolutional, Extubation, Failur, Intensive-care-unit, Neural network (cnn) from scratch, Respiratory-distress-syndrome, Time-frequency analysis (tfa), Weaning


Ortega, J Alberto, Soares de Aguiar, Gisele P, Chandravanshi, Palash, Levy, Natacha, Engel, Elisabeth, Alvarez, Zaida, (2024). Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1962

The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants

JTD Keywords: Amyotrophic-lateral-sclerosis, Biologic scaffold, Central nervous system, Central-nervous-system, Chondroitin sulfate proteoglycans, Decellularization, Extracellular matrix, Motor-neurons, Neural disorders, Neural regeneratio, Perineuronal nets, Self-healing hydrogel, Spinal-cord-injury, Stem-cell, Vascular basement-membrane


Witzdam, L, Vosberg, B, Grosse-Berkenbusch, K, Stoppelkamp, S, Wendel, HP, Rodriguez-Emmenegger, C, (2024). Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting Macromolecular Bioscience 24, e2300321

Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.

JTD Keywords: adsorption, binding, c1-esterase-inhibitor, coatings, contact activation, factor-xii, fxii activation, hemocompatibility, hemocompatible surface modification, heparin, polymer brushes, system, thrombosis, Adsorption, Anticoagulation, Antifouling agent, Article, Beta-fxiia, Biocompatibility, Blood, Blood clotting, Blood clotting factor 12, Blood clotting factor 12a, Blood clotting factor 12a inhibitor, Blood coagulation, C1-esterase-inhibitor, Cell activation, Chemical activation, Coagulation, Coating (procedure), Complement component c1s inhibitor, Complement system, Controlled study, Dendrimers, Enzyme immobilization, Enzymes, Erythrocyte, Esters, Factor xii, Factor xii activation, Factor xiia, Fibrin deposition, Functional polymers, Fxii activation, Haemocompatibility, Hemocompatibility, Hemocompatible surface modification, Hemostasis, Heparin, Human, Hydrogel, Medical devices, Metabolism, Plasma kallikrein, Plasma protein, Plastic coatings, Platelet count, Polymer, Polymer brushes, Polymerization, Polymers, Property, Root cause, Surface plasmon resonance, Surface property, Surface reactions, Surface-modification, Thrombocyte adhesion, Β-fxiia


Simo, C, Serra-Casablancas, M, Hortelao, AC, Di Carlo, V, Guallar-Garrido, S, Plaza-Garcia, S, Rabanal, RM, Ramos-Cabrer, P, Yaguee, B, Aguado, L, Bardia, L, Tosi, S, Gomez-Vallejo, V, Martin, A, Patino, T, Julian, E, Colombelli, J, Llop, J, Sanchez, S, (2024). Urease-powered nanobots for radionuclide bladder cancer therapy Nature Nanotechnology 19, 554-564

Bladder cancer treatment via intravesical drug administration achieves reasonable survival rates but suffers from low therapeutic efficacy. To address the latter, self-propelled nanoparticles or nanobots have been proposed, taking advantage of their enhanced diffusion and mixing capabilities in urine when compared with conventional drugs or passive nanoparticles. However, the translational capabilities of nanobots in treating bladder cancer are underexplored. Here, we tested radiolabelled mesoporous silica-based urease-powered nanobots in an orthotopic mouse model of bladder cancer. In vivo and ex vivo results demonstrated enhanced nanobot accumulation at the tumour site, with an eightfold increase revealed by positron emission tomography in vivo. Label-free optical contrast based on polarization-dependent scattered light-sheet microscopy of cleared bladders confirmed tumour penetration by nanobots ex vivo. Treating tumour-bearing mice with intravesically administered radio-iodinated nanobots for radionuclide therapy resulted in a tumour size reduction of about 90%, positioning nanobots as efficient delivery nanosystems for bladder cancer therapy.© 2024. The Author(s).

JTD Keywords: cell, drug-delivery, nanomotors, tissue, Bladder cancers, Cancer therapy, Diseases, Drug administration, Drug delivery, Enhanced diffusion, Enhanced mixing, Ex-vivo, In-vivo, Mammals, Nanobots, Nanoparticles, Nanosystems, Oncology, Positron emission tomography, Radioisotopes, Silica, Survival rate, Therapeutic efficacy, Tumor penetration, Tumors


Wagner, AM, Kostina, NY, Xiao, Q, Klein, ML, Percec, V, Rodriguez-Emmenegger, C, (2024). Glycan-Driven Formation of Raft-Like Domains with Hierarchical Periodic Nanoarrays on Dendrimersome Synthetic Cells Biomacromolecules 25, 366-378

The accurate spatial segregation into distinct phases within cell membranes coordinates vital biochemical processes and functionalities in living organisms. One of nature's strategies to localize reactivity is the formation of dynamic raft domains. Most raft models rely on liquid-ordered L-0 phases in a liquid-disordered L-d phase lacking correlation and remaining static, often necessitating external agents for phase separation. Here, we introduce a synthetic system of bicomponent glycodendrimersomes coassembled from Janus dendrimers and Janus glycodendrimers (JGDs), where lactose-lactose interactions exclusively drive lateral organization. This mechanism results in modulated phases across two length scales, yielding raft-like microdomains featuring nanoarrays at the nanoscale. By varying the density of lactose and molecular architecture of JGDs, the nanoarray type and size, shape, and spacing of the domains were controlled. Our findings offer insight into the potential primordial origins of rudimentary raft domains and highlight the crucial role of glycans within the glycocalyx.

JTD Keywords: Article, Artificial cells, Atomic force microscopy, Bicomponents, Bilayer, Bilayer membrane, Biochemical functionality, Biochemical process, Biological-membranes, Cell component, Cell membrane, Cellular parameters, Chemical interaction, Chemical structure, Chemistry, Cytology, Defined janus glycodendrimers, Dehydration, Dendrimer, Dendrimers, Dilution, Dimer, External agents, Fourier transform, Giant vesicles, Glycan, Glycans, Glycocalyx, Glycodendrimers, Janus dendrimer, Janus glycodendrimer, Lactose, Lateral organization, Lectin, Lipid rafts, Living organisms, Membrane damage, Membrane microdomain, Membrane microdomains, Membrane structure, Metabolism, Modulated phases, Molecule, Monomer, Nanoarrays, Oligosaccharide, Organization, Periodicity, Phase separation, Phase-separation, Phospholipids, Polysaccharide, Polysaccharides, Raft like domain, Relative humidity, Spatial segregation, Structure analysis, Sugars, Synthetic systems, Tetramer, Unclassified drug, Unilamellar vesicles, Water


Jonkman, AH, Warnaar, RSP, Baccinelli, W, Carbon, NM, D'Cruz, RF, Doorduin, J, van Doorn, JLM, Elshof, J, Estrada-Petrocelli, L, Grasshoff, J, Heunks, LMA, Koopman, AA, Langer, D, Moore, CM, Silveira, JMN, Petersen, E, Poddighe, D, Ramsay, M, Rodrigues, A, Roesthuis, LH, Rossel, A, Torres, A, Duiverman, ML, Oppersma, E, (2024). Analysis and applications of respiratory surface EMG: report of a round table meeting Critical Care 28, 2

Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.

JTD Keywords: Acute respiratory failure, Artificial ventilation, Asthmatic-children, Breathing muscle, Clinical monitoring, Clinical practice, Clinical research, Consensus development, Data interpretation, Disease exacerbation, Drive, Electrode positioning, Electrode removal, Electromyography, Force, Home care, Human, Human diaphragm, Humans, Information processing, Inspiratory muscle training, Inspiratory muscles, Intensive care unit, Knowledge gap, Long term care, Mechanical ventilation, Medical procedures, Muscle contraction, Muscle fatigue, Muscle function, Muscle training, Muscle, skeletal, Muscle-activity, Noninvasive ventilation, Patient monitoring, Patient-ventilator asynchrony, Physiology, Prognosis, Quality of life, Reporting and data system, Respiratory failure, Respiratory muscles, Review, Severe exacerbations, Signal processing, Skeletal muscle, Standardization, Surface electromyography, Time factor


Englert, J, Witzdam, L, Söder, D, Garay-Sarmiento, M, Joseph, A, Wagner, AM, Rodriguez-Emmenegger, C, (2023). Synthetic Evolution of a Supramolecular Harpooning Mechanism to Immobilize Vesicles at Antifouling Interfaces Macromolecular Chemistry And Physics 224, 2300306

The immobilization of vesicles has been conceptualized as a method to functionalize biointerfaces. However, the preservation of their integrity post immobilization remains a considerable challenge. Interfacial interactions can cause vesicle rupture upon close surface contact and non-specific protein adsorption impairing surface functions. To date, immobilization of vesicles has relied solely on either entrapment or prior modification of vesicles, both of which require laborious preparation and limit their applications. This work develops a bioinspired strategy to pin vesicles without prior modification while preserving their intact shape. This work introduces antifouling diblock copolymers and ultrathin surface-attached hydrogels containing a brush-like interface consisting of a bottle brush copolymer of N-(2-hydroxypropyl) methacrylamide (HPMA) and N-(3-methacrylamidopropyl)-N,N-dimethyldodecan-1-aminiumiodide (C12+). The presence of positive charges generates an attractive force that pulls vesicles toward the surface. At the surface, the amphiphilic properties of the combs facilitate their insertion into the membrane, mimicking the harpooning mechanism observed in antimicrobial peptides. Importantly, the antifouling poly(HPMA) backdrop serves to safeguard the vesicles by preventing deformation and breakage. Using a combination of thermodynamic analysis, surface plasmon resonance, and confocal laser scanning microscopy, this work demonstrates the efficiency of this biomimetic system to capture vesicles while maintaining an antifouling interface necessary for bioapplications. This work presents a novel supramolecular approach that combines three key elements: long-range attraction, vesicle pinning, and short-range repulsion to attract and harpoon vesicles, while protecting them at the surface. This work envisions these coatings as universal and biocompatible platforms that can be used not only to study vesicle interactions, but also as tools for biomedical applications.image

JTD Keywords: Antifouling coatings, Coatings, Delivery, Extracellular vesicles, Fabrication, Hydrogel, Janus dendrimers, Lipid vesicles, Liposomes, Membrane insertion, Polymer brushes, Proteins, Surface-energy components, Ultrathin surface-attached hydrogels, Vesicle pinning


Costa, Rui R, Caballero, David, Soares da Costa, Diana, Rodriguez-Trujillo, Romen, Kundu, Subhas C, Reis, Rui L, Pashkuleva, Iva, (2023). Microfluidic-Assisted Interfacial Complexation of Extracellular Matrix Components to Mimic the Properties of Neural Tissues Advanced Materials Technologies 8, 2300983

Anisotropy is an important cue for neural organization during morphogenesis and healing, contributing to the mechanical and functional properties of neural tissues. The ability to replicate such anisotropy in vitro holds great promise for the development of effective regeneration strategies. In this work, interfacial polyelectrolyte complexation (IPC) is applied to fabricate microfibers from charged ECM components without any chemical modification. Using flow-focusing microfluidics, collagen (Col) and glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) or heparin (Hep), form Col/CS and Col/Hep interfacial complexes that coalesce as IPC microfibers. These fibers are flexible and absorb large amounts of water but remain stable under physiological conditions. At these conditions, the tensile strength of the assembled Col/GAG microfibers is similar to the strength of the neural tissue. The fibers are biocompatible and biofunctional; PC12 neural cells adhere and orient longitudinally to the fibers. Moreover, Col/CS microfibers promote the formation of neural processes. The results demonstrate that the microfluidic-assisted IPC complexation enables the assembly of ECM mimics by synergetic integration of anisotropic, chemical, and mechanical cues that boost the development of neural cells.

JTD Keywords: Cells, Chondroitin sulfate, Collagen, Fibers, Glycosaminoglycans, Heparin, Microfibers


Farré, R, Navajas, D, (2023). Ventilation Mechanics Seminars In Respiratory And Critical Care Medicine 44, 511-525

A fundamental task of the respiratory system is to operate as a mechanical gas pump ensuring that fresh air gets in close contact with the blood circulating through the lung capillaries to achieve O2 and CO2 exchange. To ventilate the lungs, the respiratory muscles provide the pressure required to overcome the viscoelastic mechanical load of the respiratory system. From a mechanical viewpoint, the most relevant respiratory system properties are the resistance of the airways (R aw), and the compliance of the lung tissue (C L) and chest wall (C CW). Both airflow and lung volume changes in spontaneous breathing and mechanical ventilation are determined by applying the fundamental mechanical laws to the relationships between the pressures inside the respiratory system (at the airway opening, alveolar, pleural, and muscular) and R aw, C L, and C CW. These relationships also are the basis of the different methods available to measure respiratory mechanics during spontaneous and artificial ventilation. Whereas a simple mechanical model (R aw, C L, and C CW) describes the basic understanding of ventilation mechanics, more complex concepts (nonlinearity, inhomogeneous ventilation, or viscoelasticity) should be employed to better describe and measure ventilation mechanics in patients.Thieme. All rights reserved.

JTD Keywords: airway-resistance, alveolar, compliance, dilution, elastance, flow, inhomogeneous ventilation, input impedance, lung-volume, mechanical ventilation, monitoring, pendelluft, pleural pressure, respiratory-distress-syndrome, viscoelasticity, Chest-wall mechanics, Resistance


del Moral, M, Loeck, M, Muntimadugu, E, Vives, G, Pham, V, Pfeifer, P, Battaglia, G, Muro, S, Andrianov, AK, (2023). Role of the Lactide:Glycolide Ratio in PLGA Nanoparticle Stability and Release under Lysosomal Conditions for Enzyme Replacement Therapy of Lysosomal Storage Disorders J Funct Biomater 14, 440

Prior studies demonstrated that encapsulation in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) enhanced the delivery of enzymes used for replacement therapy (ERT) of lysosomal storage disorders (LSDs). This study examined how the copolymer lactide:glycolide ratio impacts encapsulation, physicochemical characteristics, stability, and release under lysosomal conditions. Hyaluronidase, deficient in mucopolysaccharidosis IX, was encapsulated in NPs synthesized using 50:50, 60:40, or 75:25 lactide:glycolide copolymers. All NPs had diameters compatible with cellular transport (≤168 nm) and polydispersity indexes (≤0.16) and ζ-potentials (≤-35 mV) compatible with colloidal stability. Yet, their encapsulation efficiency varied, with 75:25 NPs and 60:40 NPs having the lowest and highest EE, respectively (15% vs. 28%). Under lysosomal conditions, the 50:50 copolymer degraded fastest (41% in 1 week), as expected, and the presence of a targeting antibody coat did not alter this result. Additionally, 60:40 NPs destabilized fastest (<1 week) because of their smaller diameter, and 75:25 NPs did not destabilize in 4 weeks. All formulations presented burst release under lysosomal conditions (56-78% of the original load within 30 min), with 50:50 and 60:40 NPs releasing an additional small fraction after week 1. This provided 4 weeks of sustained catalytic activity, sufficient to fully degrade a substrate. Altogether, the 60:40 NP formulation is preferred given its higher EE, and 50:50 NPs represent a valid alternative, while the highest stability of 75:25 NPs may impair lysosomes. These results can guide future studies aiming to translate PLGA NP-based ERT for this and other LSDs.

JTD Keywords: biodegradation, copolymer ratio, degradation, drug-delivery, emulsification, enzyme release, enzyme replacement therapy, hyaluronidase, mechanisms, microspheres, nanoparticle stability, poly(lactide-co-glycolide) nanoparticles, size, sphingomyelinase, transport, Central-nervous-system, Copolymer ratio, Enzyme release, Enzyme replacement therapy, Hyaluronidase, Lysosomal storage disorder, Nanoparticle stability, Poly(lactide-co-glycolide) nanoparticles


Gregori-Pla, C, Zirak, P, Cotta, G, Bramon, P, Blanco, I, Serra, I, Mola, A, Fortuna, A, Solà-Soler, J, Giraldo, BFG, Durduran, T, Mayos, M, (2023). How does obstructive sleep apnea alter cerebral hemodynamics? Sleep 46, zsad122

We aimed to characterize the cerebral hemodynamic response to obstructive sleep apnea/hypopnea events, and evaluate their association to polysomnographic parameters. The characterization of the cerebral hemodynamics in obstructive sleep apnea (OSA) may add complementary information to further the understanding of the severity of the syndrome beyond the conventional polysomnography.Severe OSA patients were studied during night sleep while monitored by polysomnography. Transcranial, bed-side diffuse correlation spectroscopy (DCS) and frequency-domain near-infrared diffuse correlation spectroscopy (NIRS-DOS) were used to follow microvascular cerebral hemodynamics in the frontal lobes of the cerebral cortex. Changes in cerebral blood flow (CBF), total hemoglobin concentration (THC), and cerebral blood oxygen saturation (StO2) were analyzed.We considered 3283 obstructive apnea/hypopnea events from sixteen OSA patients (Age (median, interquartile range) 57 (52-64.5); females 25%; AHI (apnea-hypopnea index) 84.4 (76.1-93.7)). A biphasic response (maximum/minimum followed by a minimum/maximum) was observed for each cerebral hemodynamic variable (CBF, THC, StO2), heart rate and peripheral arterial oxygen saturation (SpO2). Changes of the StO2 followed the dynamics of the SpO2, and were out of phase from the THC and CBF. Longer events were associated with larger CBF changes, faster responses and slower recoveries. Moreover, the extrema of the response to obstructive hypopneas were lower compared to apneas (p < .001).Obstructive apneas/hypopneas cause profound, periodic changes in cerebral hemodynamics, including periods of hyper- and hypo-perfusion and intermittent cerebral hypoxia. The duration of the events is a strong determinant of the cerebral hemodynamic response, which is more pronounced in apnea than hypopnea events.© The Author(s) 2023. Published by Oxford University Press on behalf of Sleep Research Society.

JTD Keywords: cerebral hemodynamics, desaturation, diffuse correlation spectroscopy, duration, hypopnea, hypoxemia, near-infrared spectroscopy, optical pathlength, oxygenation, severity, sleep disorder, spectroscopy, tissue, Adult, Airway obstruction, Apnea hypopnea index, Arterial oxygen saturation, Article, Blood oxygen tension, Blood-flow, Brain blood flow, Brain cortex, Cerebral hemodynamics, Controlled study, Diffuse correlation spectroscopy, Disease severity, Female, Frequency, Frontal lobe, Heart rate, Hemodynamics, Hemoglobin, Hemoglobin determination, Human, Humans, Major clinical study, Male, Near infrared spectroscopy, Near-infrared spectroscopy, Obstructive sleep apnea, Oxygen, Periodicity, Polysomnography, Sleep apnea syndromes, Sleep apnea, obstructive, Sleep disorder, Spectroscopy, near-infrared


Qi, C, Gutierrez, SS, Lavriha, P, Othman, A, Lopez-Pigozzi, D, Bayraktar, E, Schuster, D, Picotti, P, Zamboni, N, Bortolozzi, M, Gervasio, FL, Korkhov, VM, (2023). Structure of the connexin-43 gap junction channel in a putative closed state Elife 12, RP87616

Gap junction channels (GJCs) mediate intercellular communication by connecting two neighbouring cells and enabling direct exchange of ions and small molecules. Cell coupling via connexin-43 (Cx43) GJCs is important in a wide range of cellular processes in health and disease (Churko and Laird, 2013; Liang et al., 2020; Poelzing and Rosenbaum, 2004), yet the structural basis of Cx43 function and regulation has not been determined until now. Here, we describe the structure of a human Cx43 GJC solved by cryo-EM and single particle analysis at 2.26 Å resolution. The pore region of Cx43 GJC features several lipid-like densities per Cx43 monomer, located close to a putative lateral access site at the monomer boundary. We found a previously undescribed conformation on the cytosolic side of the pore, formed by the N-terminal domain and the transmembrane helix 2 of Cx43 and stabilized by a small molecule. Structures of the Cx43 GJC and hemichannels (HCs) in nanodiscs reveal a similar gate arrangement. The features of the Cx43 GJC and HC cryo-EM maps and the channel properties revealed by molecular dynamics simulations suggest that the captured states of Cx43 are consistent with a closed state.© 2023, Qi, Acosta Gutierrez et al.

JTD Keywords: cryo-em, dehydroepiandrosterone dhea, expression, gap junction channel, gene, gja1 mutations, hemichannel, membrane protein, phenotype, protein, structure, system, visualization, Biochemistry, Chemical biology, Connexin-43, Cryo-em, Gap junction channel, Hemichannel, Human, Membrane protein, Molecular biophysics, Oculodentodigital dysplasia, Structural biology, Structure


Colom-Cadena, M, Davies, C, Sirisi, S, Lee, JE, Simzer, EM, Tzioras, M, Querol-Vilaseca, M, Sánchez-Aced, E, Chang, YY, Holt, K, McGeachan, RI, Rose, J, Tulloch, J, Wilkins, L, Smith, C, Andrian, T, Belbin, O, Pujals, S, Horrocks, MH, Lleó, A, Spires-Jones, TL, (2023). Synaptic oligomeric tau in Alzheimer's disease - A potential culprit in the spread of tau pathology through the brain Neuron 111, 2170-+

In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

JTD Keywords: accumulation, alpha-synuclein, array tomography, cognitive impairment, dendritic spines, mouse model, neurodegeneration, neurons, synapses, Alzheimer, Amyloid-beta, Synapse, Tau


Nong, J, Glassman, PM, Myerson, JW, Zuluaga-Ramirez, V, Rodriguez-Garcia, A, Mukalel, A, Omo-Lamai, S, Walsh, LR, Zamora, ME, Gong, XJ, Wang, ZC, Bhamidipati, K, Kiseleva, RY, Villa, CH, Greineder, CF, Kasner, SE, Weissman, D, Mitchell, MJ, Muro, S, Persidsky, Y, Brenner, JS, Muzykantov, VR, Marcos-Contreras, OA, (2023). Targeted Nanocarriers Co-Opting Pulmonary Intravascular Leukocytes for Drug Delivery to the Injured Brain Acs Nano 17, 13121-13136

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.

JTD Keywords: drug delivery, icam-1, inflammation, lung injury, messenger-rna, migration, model, nanoparticles, neutrophils, pharmacokinetics, t-cells, white bloodcells, Adhesion molecules, Brain, Drug delivery, Inflammation, Nanoparticles, Pharmacokinetics, White blood cells


Andrés-Benito, P, Iñigo-Marco, I, Brullas, M, Carmona, M, del Rio, JA, Fernández-Irigoyen, J, Santamaría, E, Povedano, M, Ferrer, I, (2023). Proteostatic modulation in brain aging without associated Alzheimer's disease-and age-related neuropathological changes Aging-Us 15, 3295-3330

(Phospho)proteomics of old-aged subjects without cognitive or behavioral symptoms, and without AD-neuropathological changes and lacking any other neurodegenerative alteration will increase understanding about the physiological state of human brain aging without associate neurological deficits and neuropathological lesions.(Phospho)proteomics using conventional label-free- and SWATH-MS (Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) has been assessed in the frontal cortex (FC) of individuals without NFTs, senile plaques (SPs) and age-related co-morbidities classified by age (years) in four groups; group 1 (young, 30-44); group 2 (middle-aged: MA, 45-52); group 3 (early-elderly, 64-70); and group 4 (late-elderly, 75-85).Protein levels and deregulated protein phosphorylation linked to similar biological terms/functions, but involving different individual proteins, are found in FC with age. The modified expression occurs in cytoskeleton proteins, membranes, synapses, vesicles, myelin, membrane transport and ion channels, DNA and RNA metabolism, ubiquitin-proteasome-system (UPS), kinases and phosphatases, fatty acid metabolism, and mitochondria. Dysregulated phosphoproteins are associated with the cytoskeleton, including microfilaments, actin-binding proteins, intermediate filaments of neurons and glial cells, and microtubules; membrane proteins, synapses, and dense core vesicles; kinases and phosphatases; proteins linked to DNA and RNA; members of the UPS; GTPase regulation; inflammation; and lipid metabolism. Noteworthy, protein levels of large clusters of hierarchically-related protein expression levels are stable until 70. However, protein levels of components of cell membranes, vesicles and synapses, RNA modulation, and cellular structures (including tau and tubulin filaments) are markedly altered from the age of 75. Similarly, marked modifications occur in the larger phosphoprotein clusters involving cytoskeleton and neuronal structures, membrane stabilization, and kinase regulation in the late elderly.Present findings may increase understanding of human brain proteostasis modifications in the elderly in the subpopulation of individuals not having AD neuropathological change and any other neurodegenerative change in any telencephalon region.

JTD Keywords: (phospho)proteomics, cortex, cytoskeleton, hippocampus, kinases, membranes, mitochondria, mitochondrial-function, pathological process, phosphoproteome analysis, phosphorylation, proteome, quantitative proteomics, synapsis, tau-protein, therapeutic target, (phospho)proteomics, Brain aging, Cytoskeleton, Kinases, Membranes, Mitochondria, Neurodegenerative diseases, Proteome, Synapsis


Roman-Alamo, L, Allaw, M, Avalos-Padilla, Y, Manca, ML, Manconi, M, Fulgheri, F, Fernandez-Lajo, J, Rivas, L, Vazquez, JA, Peris, JE, Roca-Gerones, X, Poonlaphdecha, S, Alcover, MM, Fisa, R, Riera, C, Fernandez-Busquets, X, (2023). In Vitro Evaluation of Aerosol Therapy with Pentamidine-Loaded Liposomes Coated with Chondroitin Sulfate or Heparin for the Treatment of Leishmaniasis Pharmaceutics 15, 1163

The second-line antileishmanial compound pentamidine is administered intramuscularly or, preferably, by intravenous infusion, with its use limited by severe adverse effects, including diabetes, severe hypoglycemia, myocarditis and renal toxicity. We sought to test the potential of phospholipid vesicles to improve the patient compliance and efficacy of this drug for the treatment of leishmaniasis by means of aerosol therapy. The targeting to macrophages of pentamidine-loaded liposomes coated with chondroitin sulfate or heparin increased about twofold (up to ca. 90%) relative to noncoated liposomes. The encapsulation of pentamidine in liposomes ameliorated its activity on the amastigote and promastigote forms of Leishmania infantum and Leishmania pifanoi, and it significantly reduced cytotoxicity on human umbilical endothelial cells, for which the concentration inhibiting 50% of cell viability was 144.2 ± 12.7 µM for pentamidine-containing heparin-coated liposomes vs. 59.3 ± 4.9 µM for free pentamidine. The deposition of liposome dispersions after nebulization was evaluated with the Next Generation Impactor, which mimics human airways. Approximately 53% of total initial pentamidine in solution reached the deeper stages of the impactor, with a median aerodynamic diameter of ~2.8 µm, supporting a partial deposition on the lung alveoli. Upon loading pentamidine in phospholipid vesicles, its deposition in the deeper stages significantly increased up to ~68%, and the median aerodynamic diameter decreased to a range between 1.4 and 1.8 µm, suggesting a better aptitude to reach the deeper lung airways in higher amounts. In all, nebulization of liposome-encapsulated pentamidine improved the bioavailability of this neglected drug by a patient-friendly delivery route amenable to self-administration, paving the way for the treatment of leishmaniasis and other infections where pentamidine is active.

JTD Keywords: aerosol therapy, delivery-systems, drug encapsulation, drugs, ex-vivo models, formulation, leishmania infantum, leishmania pifanoi, leishmaniasis, liposomes, macrophages, miltefosine, pentamidine, pharmacology, pulmonary absorption, visceral leishmaniasis, Aerosol therapy, Amphotericin-b treatment, Drug encapsulation, Leishmania infantum, Leishmania pifanoi, Leishmaniasis, Liposomes, Pentamidine


Romero, D, Jané, R, (2023). Dynamic Bayesian Model for Detecting Obstructive Respiratory Events by Using an Experimental Model Sensors 23, 3371-3371

In this study, we propose a model-based tool for the detection of obstructive apnea episodes by using ECG features from a single lead channel. Several sequences of recurrent apnea were provoked in separate 15-min periods in anesthetized rats during an experimental model of obstructive sleep apnea (OSA). Morphology-based ECG markers and the beat-to-beat interval (RR) were assessed in each sequence. These markers were used to train dynamic Bayesian networks (DBN) with different orders and feature combinations to find a good tradeoff between network complexity and apnea-detection performance. By using a filtering approach, the resulting DBNs were used to infer the apnea probability signal for subsequent episodes in the same rat. These signals were then processed using by 15-s epochs to determine whether epochs were classified as apneic or nonapneic. Our results showed that fifth-order models provided suitable RMSE values, since higher order models become significantly more complex and present worse generalization. A global threshold of 0.2 gave the best overall performance for all combinations tested, with Acc = 81.3%, Se = 69.8% and Sp = 81.5%, using only two parameters including the RR and Ds (R-wave downslope) markers. We concluded that multivariate models using DBNs represent a powerful tool for detecting obstructive apnea episodes in short segments, which may also serve to estimate the number of total events in a given time period.

JTD Keywords: chronic respiratory diseases, obstructive sleep apnea, probabilistic models, Obstructive sleep apnea,probabilistic models,respiratory events,chronic respiratory disease, Respiratory events, Sleep-apnea syndrome,automated detection,oxygen-saturation,classification,recordings,signal


Tonelli, M, Catto, M, Sabaté, R, Francesconi, V, Laurini, E, Pricl, S, Pisani, L, Miniero, DV, Liuzzi, GM, Gatta, E, Relini, A, Gavín, R, Del Rio, JA, Sparatore, F, Carotti, A, (2023). Thioxanthenone-based derivatives as multitarget therapeutic leads for Alzheimer's disease European Journal Of Medicinal Chemistry 250, 115169

A set of twenty-five thioxanthene-9-one and xanthene-9-one derivatives, that were previously shown to inhibit cholinesterases (ChEs) and amyloid β (Aβ40) aggregation, were evaluated for the inhibition of tau protein aggregation. All compounds exhibited a good activity, and eight of them (5-8, 10, 14, 15 and 20) shared comparable low micromolar inhibitory potency versus Aβ40 aggregation and human acetylcholinesterase (AChE), while inhibiting human butyrylcholinesterase (BChE) even at submicromolar concentration. Compound 20 showed outstanding biological data, inhibiting tau protein and Aβ40 aggregation with IC50 = 1.8 and 1.3 μM, respectively. Moreover, at 0.1-10 μM it also exhibited neuroprotective activity against tau toxicity induced by okadoic acid in human neuroblastoma SH-SY5Y cells, that was comparable to that of estradiol and PD38. In preliminary toxicity studies, these interesting results for compound 20 are somewhat conflicting with a narrow safety window. However, compound 10, although endowed with a little lower potency for tau and Aβ aggregation inhibition additionally demonstrated good inhibition of ChEs and rather low cytotoxicity. Compound 4 is also worth of note for its high potency as hBChE inhibitor (IC50 = 7 nM) and for the three order of magnitude selectivity versus hAChE. Molecular modelling studies were performed to explain the different behavior of compounds 4 and 20 towards hBChE. The observed balance of the inhibitory potencies versus the relevant targets indicates the thioxanthene-9-one derivatives as potential MTDLs for AD therapy, provided that the safety window will be improved by further structural variations, currently under investigation.Copyright © 2023 Elsevier Masson SAS. All rights reserved.

JTD Keywords: a? and tau aggregation inhibition, ache and bche inhibition, aggregation, alzheimer?s disease, butyrylcholinesterase, design, drugs, dual inhibitors, fibrillization, multitarget-directed ligands (mtdls), peptide, polyphenols, potent, rivatives, Ache and bche inhibition, Alzheimer's disease, Amyloid-beta, Aβ and tau aggregation inhibition, Multitarget-directed ligands (mtdls), Thioxanthene-9-one and xanthen-9-one de, Thioxanthene-9-one and xanthen-9-one derivatives


Anselmo, MS, Lantero, E, Avalos-Padilla, Y, Bouzón-Arnáiz, I, Ramírez, M, Postigo, A, Serrano, JL, Sierra, T, Hernández-Ainsa, S, Fernández-Busquets, X, (2023). Heparin-Coated Dendronized Hyperbranched Polymers for Antimalarial Targeted Delivery Acs Applied Polymer Materials 5, 381-390

The rampant evolution of resistance in Plasmodium to all existing antimalarial drugs calls for the development of improved therapeutic compounds and of adequate targeted delivery strategies for them. Loading antimalarials in nanocarriers specifically targeted to the parasite will contribute to the administration of lower overall doses, with reduced side effects for the patient, and of higher local amounts to parasitized cells for an increased lethality toward the pathogen. Here, we report the development of dendronized hyperbranched polymers (DHPs), with capacity for antimalarial loading, that are coated with heparin for their specific targeting to red blood cells parasitized by Plasmodium falciparum. The resulting DHP-heparin complexes exhibit the intrinsic antimalarial activity of heparin, with an IC50 of ca. 400 nM, added to its specific targeting to P. falciparum-infected (vs noninfected) erythrocytes. DHP-heparin nanocarriers represent a potentially interesting contribution to the limited family of structures described so far for the loading and targeted delivery of current and future antimalarial compounds.© 2022 The Authors. Published by American Chemical Society.

JTD Keywords: carriers, drug-delivery, efficacy, heparin, malaria, mosquito, nanocarriers, parasite, plasmodium, targeted drug delivery, Dendritic polymers, Red-blood-cells


Cao, HZ, Zhong, SQ, Shen, Y, Lv, MQ, Zhu, YH, Tian, YP, Luo, K, Huang, W, Battaglia, G, Gong, QY, Tian, XH, (2022). MtDNA specific fluorescent probe uncovering mitochondrial nucleoids dynamics during programmed cell death under super-resolution nanoscopy Chemical Engineering Journal 449, 137763

Mitochondrial nucleoids or mitochondrial DNA (mtDNA) encodes for a variety of enzymes and proteins that are essential for oxidative phosphorylation, mitochondrial fussion/fission and apoptotic processes. However, visulization of mtDNA dynamics in response to external stumili has not yet been achieved. Herein, we developed a fluorescent probe, named BDP, that is capable of specifically bind to mtDNA in vitro and in living cells, without interfering mitochondrial functions. Its large Stokes-Shift and red-emission tail render its suitability for stimulated emission depletion (STED) visulization of mtDNA dynamics in living cells. We sucessfully demonstrated for the first time how apoptotic induced anti-cancer drug could impact on mitochondrial nucleoids, and the morphology evolution of mtDNA from segmentation to dispersion was recorded, in a single mitochondria at nanoscale.

JTD Keywords: Dna, Mitochondrial dna (mtdna), Pyridine salt derivatives, Stimulated emission depletion (sted), Tumor


Joseph, A, Wagner, AM, Garay-Sarmiento, M, Aleksanyan, M, Haraszti, T, Söder, D, Georgiev, VN, Dimova, R, Percec, V, Rodriguez-Emmenegger, C, (2022). Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes Advanced Materials 34, e2206288

Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, we introduce a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC ) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.

JTD Keywords: biological-membranes, bottom-up synthetic biology, chain, hybrid vesicles, hydroethidine, organization, polymersome, proteins, stability, synthetic cells, thickness, vesicle fusion, vesicle motility, vesicles, zwitterionic dendrimersomes, Biosensor, Biosensors, Bottom-up synthetic biology, Hybrid vesicles, Lipid-bilayers, Synthetic cells, Vesicle fusion, Vesicle motility, Zwitterionic dendrimersomes


Casanellas, Ignasi, Jiang, Hongkai, David, Carolyn M, Vida, Yolanda, Perez-Inestrosa, Ezequiel, Samitier, Josep, Lagunas, Anna, (2022). Substrate adhesion determines migration during mesenchymal cell condensation in chondrogenesis Journal Of Cell Science 135, 260241

Mesenchymal condensation is a prevalent morphogenetic transition that is essential in chondrogenesis. However, the current understanding of condensation mechanisms is limited. In vivo, progenitor cells directionally migrate from the surrounding loose mesenchyme towards regions of increasing matrix adherence (the condensation centers), which is accompanied by the upregulation of fibronectin. Here, we focused on the mechanisms of cell migration during mesenchymal cell condensation and the effects of matrix adherence. Dendrimer-based nanopatterns of the cell-adhesive peptide arginine-glycine-aspartic acid (RGD), which is present in fibronectin, were used to regulate substrate adhesion. We recorded collective and single-cell migration of mesenchymal stem cells, under chondrogenic induction, using live-cell imaging. Our results show that the cell migration mode of single cells depends on substrate adhesiveness, and that cell directionality controls cell condensation and the fusion of condensates. Inhibition experiments revealed that cell-cell interactions mediated by N-cadherin (also known as CDH2) are also pivotal for directional migration of cell condensates by maintaining cell-cell cohesion, thus suggesting a fine interplay between cell-matrix and cell-cell adhesions. Our results shed light on the role of cell interactions with a fibronectin-depositing matrix during chondrogenesis in vitro, with possible applications in regenerative medicine. This article has an associated First Person interview with the first author of the paper.© 2022. Published by The Company of Biologists Ltd.

JTD Keywords: alpha-v-beta-3, arginine-glycine-aspartic acid, chondrogenesis, dynamics, expression, fibronectin, gastrulation, involvement, mechanisms, mesenchymal condensation, model, nanopatterned substrates, rgd, Arginine-glycine-aspartic acid, Cell migration, Chondrogenesis, Mesenchymal condensation, N-cadherin, Nanopatterned substrates, Rgd


Ulldemolins, A, Jurado, A, Herranz-Diez, C, Gavara, N, Otero, J, Farré, R, Almendros, I, (2022). Lung Extracellular Matrix Hydrogels-Derived Vesicles Contribute to Epithelial Lung Repair Polymers 14, 4907

The use of physiomimetic decellularized extracellular matrix-derived hydrogels is attracting interest since they can modulate the therapeutic capacity of numerous cell types, including mesenchymal stromal cells (MSCs). Remarkably, extracellular vesicles (EVs) derived from MSCs display similar functions as their parental cells, mitigating tissue damage in lung diseases. However, recent data have shown that ECM-derived hydrogels could release other resident vesicles similar to EVs. Here, we aim to better understand the contribution of EVs and ECM-vesicles released from MSCs and/or lung-derived hydrogel (L-HG) in lung repair by using an in vitro lung injury model. L-HG derived-vesicles and MSCs EVs cultured either in L-HG or conventional plates were isolated and characterized. The therapeutic capacity of vesicles obtained from each experimental condition was tested by using an alveolar epithelial wound-healing assay. The number of ECM-vesicles released from acellular L-HG was 10-fold greater than EVs from conventional MSCs cell culture revealing that L-HG is an important source of bioactive vesicles. MSCs-derived EVs and L-HG vesicles have similar therapeutic capacity in lung repair. However, when wound closure rate was normalized by total proteins, the MSCs-derived EVs shows higher therapeutic potential to those released by L-HG. The EVs released from L-HG must be considered when HG is used as substrate for cell culture and EVs isolation.

JTD Keywords: cell, extracellular vesicles, hydrogel, lung epithelial cells, lung repair, mesenchymal stem cells, Extracellular matrix, Extracellular vesicles, Hydrogel, Lung epithelial cells, Lung repair, Mesenchymal stem cells, Respiratory-distress-syndrome


Vukomanovic, M, Gazvoda, L, Kurtjak, M, Hrescak, J, Jaklic, B, Moya-Anderico, L, Cendra, MD, Torrents, E, (2022). Development of a ternary cyclodextrin-arginine-ciprofloxacin antimicrobial complex with enhanced stability Commun Biol 5, 1234

Designing useful functionalities in clinically validated, old antibiotics holds promise to provide the most economical solution for the global lack of effective antibiotics, as undoubtedly a serious health threat. Here we show that using the surface chemistry of the cyclodextrin (beta CD) cycle and arginine (arg) as a linker, provides more stable ternary antibiotic complex (beta CD-arg-cpx). In contrast to classical less stable inclusion complexes, which only modify antibiotic solubility, here-presented ternary complex is more stable and controls drug release. The components of the complex intensify interactions with bacterial membranes and increase the drug's availability inside bacterial cells, thereby improving its antimicrobial efficacy and safety profile. Multifunctional antibiotics, formulated as drug delivery systems per se, that take the drug to the site of action, maximize its efficacy, and provide optical detectability are envisaged as the future in fighting against infections. Their role as a tool against multiresistant strains remains as interesting challenge open for further research.; Ternary cyclodextrin- arginine- ciprofloxacin complexes show improved stability and increased efficacy against P. aeruginosa in Galleria mellonella worms.

JTD Keywords: Antibiotic-resistance, Beta-cyclodextrin, Dissolution, Drugs, Salts


Andrade, F, Roca-Melendres, MM, Llaguno, M, Hide, D, Raurell, I, Martell, M, Vijayakumar, S, Oliva, M, Schwartz, S, Duran-Lara, EF, Rafael, D, Abasolo, I, (2022). Smart and eco-friendly N-isopropylacrylamide and cellulose hydrogels as a safe dual-drug local cancer therapy approach Carbohydrate Polymers 295, 119859

Local cancer treatment by in situ injections of thermo-responsive hydrogels (HG) offers several advantages over conventional systemic anti-cancer treatments. In this work, a biodegradable and multicompartmental HG composed of N-isopropylacrylamide, cellulose, citric acid, and ceric ammonium nitrate was developed for the controlled release of hydrophilic (doxorubicin) and hydrophobic (niclosamide) drugs. The formulation presented ideal properties regarding thermo-responsiveness, rheological behavior, drug release profile, biocompatibility, and biological activity in colon and ovarian cancer cells. Cellulose was found to retard drugs release rate, being only 4 % of doxorubicin and 30 % of niclosamide released after 1 week. This low release was sufficient to cause cell death in both cell lines. Moreover, HG demonstrated a proper injectability, in situ prevalence, and safety profile in vivo. Overall, the HG properties, together with its natural and eco-friendly composition, create a safe and efficient platform for the local treatment of non-resectable tumors or tumors requiring pre-surgical adjuvant therapy.

JTD Keywords: biodegradable, cellulose, controlled-release formulation, drug delivery systems, hydrogel, thermo-responsiveness, Ammonium-nitrate, Biodegradable, Cancer treatment, Cellulose, Controlled-release formulation, Delivery, Drug delivery systems, Hydrogel, Reduce, Thermo-responsiveness


Middelhoek, KINA, Magdanz, V, Abelmann, L, Khalil, ISM, (2022). Drug-Loaded IRONSperm clusters: modeling, wireless actuation, and ultrasound imaging Biomedical Materials 17, 65001

Individual biohybrid microrobots have the potential to perform biomedical in vivo tasks such as remote-controlled drug and cell delivery and minimally invasive surgery. This work demonstrates the formation of biohybrid sperm-templated clusters under the influence of an external magnetic field and essential functionalities for wireless actuation and drug delivery. Ferromagnetic nanoparticles are electrostatically assembled around dead sperm cells, and the resulting nanoparticle-coated cells are magnetically assembled into three-dimensional biohybrid clusters. The aim of this clustering is threefold: First, to enable rolling locomotion on a nearby solid boundary using a rotating magnetic field; second, to allow for noninvasive localization; third, to load the cells inside the cluster with drugs for targeted therapy. A magneto-hydrodynamic model captures the rotational response of the clusters in a viscous fluid, and predicts an upper bound for their step-out frequency, which is independent of their volume or aspect ratio. Below the step-out frequency, the rolling velocity of the clusters increases nonlinearly with their perimeter and actuation frequency. During rolling locomotion, the clusters are localized using ultrasound images at a relatively large distance, which makes these biohybrid clusters promising for deep-tissue applications. Finally, we show that the estimated drug load scales with the number of cells in the cluster and can be retained for more than 10 h. The aggregation of microrobots enables them to collectively roll in a predictable way in response to an external rotating magnetic field, and enhances ultrasound detectability and drug loading capacity compared to the individual microrobots. The favorable features of biohybrid microrobot clusters place emphasis on the importance of the investigation and development of collective microrobots and their potential for in vivo applications.

JTD Keywords: drug delivery, magnetic actuation, microrobot aggregation, sperm, Driven, Drug delivery, Magnetic actuation, Magnetotactic bacteria, Microrobot aggregation, Microrobots, Motion, Movement, Propulsion, Sperm, Sphere, Ultrasound, Wall


Romero, D, Calvo, M, Le Rolle, V, Behar, N, Mabo, P, Hernandez, A, (2022). Multivariate ensemble classification for the prediction of symptoms in patients with Brugada syndrome Medical & Biological Engineering & Computing 60, 81-94

Identification of asymptomatic patients at higher risk for suffering cardiac events remains controversial and challenging in Brugada syndrome (BS). In this work, we proposed an ECG-based classifier to predict BS-related symptoms, by merging the most predictive electrophysiological features derived from the ventricular depolarization and repolarization periods, along with autonomic-related markers. The initial feature space included local and dynamic ECG markers, assessed during a physical exercise test performed in 110 BS patients (25 symptomatic). Morphological, temporal and spatial properties quantifying the ECG dynamic response to exercise and recovery were considered. Our model was obtained by proposing a two-stage feature selection process that combined a resampled-based regularization approach with a wrapper model assessment for balancing, simplicity and performance. For the classification step, an ensemble was constructed by several logistic regression base classifiers, whose outputs were fused using a performance-based weighted average. The most relevant predictors corresponded to the repolarization interval, followed by two autonomic markers and two other makers of depolarization dynamics. Our classifier allowed for the identification of novel symptom-related markers from autonomic and dynamic ECG responses during exercise testing, suggesting the need for multifactorial risk stratification approaches in order to predict future cardiac events in asymptomatic BS patients.

JTD Keywords: brugada syndrome, depolarization disorders, ensemble classifier, heart-rate recovery, Acute myocardial-ischemia, Autonomics, Brugada syndrome, Brugadum syndrome, Cardiac death, Depolarization, Depolarization disorder, Depolarization disorders, Dynamic ecg, Electrocardiography, Electrophysiology, Ensemble classifier, Ensemble-classifier, Events, Exercise, Forecasting, Heart, Heart-rate, Heart-rate recovery, Prognosis, Qrs, Quantification, Recovery, Repolarization, Sudden cardiac death


Morla-Folch, J, Vargas-Nadal, G, Fuentes, E, Illa-Tuset, S, Koeber, M, Sissa, C, Pujals, S, Painelli, A, Veciana, J, Faraudo, J, Belfield, KD, Albertazzi, L, Ventosa, N, (2022). Ultrabright Foster Resonance Energy Transfer Nanovesicles: The Role of Dye Diffusion Chemistry Of Materials 34, 8517-8527

The development of contrast agents based on fluorescent nanoparticles with high brightness and stability is a key factor to improve the resolution and signal-to-noise ratio of current fluorescence imaging techniques. However, the design of bright fluorescent nanoparticles remains challenging due to fluorescence self-quenching at high concentrations. Developing bright nanoparticles showing FRET emission adds several advantages to the system, including an amplified Stokes shift, the possibility of ratiometric measurements, and of verifying the nanoparticle stability. Herein, we have developed Forster resonance energy transfer (FRET)-based nanovesicles at different dye loadings and investigated them through complementary experimental techniques, including conventional fluorescence spectroscopy and super-resolution microscopy supported by molecular dynamics calculations. We show that the optical properties can be modulated by dye loading at the nanoscopic level due to the dye's molecular diffusion in fluid-like membranes. This work shows the first proof of a FRET pair dye's dynamism in liquid-like membranes, resulting in optimized nanoprobes that are 120-fold brighter than QDot 605 and exhibit >80% FRET efficiency with vesicle-to-vesicle variations that are mostly below 10%.

JTD Keywords: Bright, Dendrimers, Fluorescent, In-vivo, Nanoparticles, Nir, Particles


Wauters, AC, Scheerstra, JF, Vermeijlen, IG, Hammink, R, Schluck, M, Woythe, L, Wu, HL, Albertazzi, L, Figdor, CG, Tel, J, Abdelmohsen, LKEA, van Hest, JCM, (2022). Artificial Antigen-Presenting Cell Topology Dictates T Cell Activation Acs Nano 16, 15072-15085

Nanosized artificial antigen-presenting cells (aAPCs), synthetic immune cell mimics that aim to activate T cells ex or in vivo, offer an effective alternative to cellular immunotherapies. However, comprehensive studies that delineate the effect of nano-aAPC topology, including nanoparticle morphology and ligand density, are lacking. Here, we systematically studied the topological effects of polymersome-based aAPCs on T cell activation. We employed an aAPC library created from biodegradable poly(ethylene glycol)-block-poly(d,l-lactide) (PEG-PDLLA) polymersomes with spherical or tubular shape and variable sizes, which were functionalized with αCD3 and αCD28 antibodies at controlled densities. Our results indicate that high ligand density leads to enhancement in T cell activation, which can be further augmented by employing polymersomes with larger size. At low ligand density, the effect of both polymersome shape and size was more pronounced, showing that large elongated polymersomes better activate T cells compared to their spherical or smaller counterparts. This study demonstrates the capacity of polymersomes as aAPCs and highlights the role of topology for their rational design.

JTD Keywords: antibody density, artificial antigen-presenting cells, biodegradable polymersomes, design, expansion, immunotherapy, nano-immunotherapy, nanoparticle morphology, t cell activation, Biodegradable polymersomes, Nanoparticle morphology, Synthetic dendritic cells


Roki, N, Solomon, M, Bowers, J, Getts, L, Getts, RC, Muro, S, (2022). Tuning Design Parameters of ICAM-1-Targeted 3DNA Nanocarriers to Optimize Pulmonary Targeting Depending on Drug Type Pharmaceutics 14, 1496

3DNA holds promise as a carrier for drugs that can be intercalated into its core or linked to surface arms. Coupling 3DNA to an antibody targeting intercellular adhesion molecule 1 (ICAM-1) results in high lung-specific biodistributions in vivo. While the role of individual parameters on ICAM-1 targeting has been studied for other nanocarriers, it has never been examined for 3DNA or in a manner capable of revealing the hierarchic interplay among said parameters. In this study, we used 2-layer vs. 4-layer anti-ICAM 3DNA and radiotracing to examine biodistribution in mice. We found that, below saturating conditions and within the ranges tested, the density of targeting antibodies on 3DNA is the most relevant parameter driving lung targeting over liver clearance, compared to the number of antibodies per carrier, total antibody dose, 3DNA dose, 3DNA size, or the administered concentration, which influenced the dose in organs but not the lung specific-over-liver clearance ratio. Data predicts that lung-specific delivery of intercalating (core loaded) drugs can be tuned using this biodistribution pattern, while that of arm-linked (surface loaded) drugs requires a careful parametric balance because increasing anti-ICAM density reduces the number of 3DNA arms available for drug loading.

JTD Keywords: 3dna nanocarrier, acid sphingomyelinase, antibody, carrier design parameters, carriers, dna nanostructures, doxorubicin, drug type, icam-1, inflammation, lung targeting, multiparametric hierarchy, nanoparticles, size, 3dna nanocarrier, Intracellular delivery, Multiparametric hierarchy


Wagner, AM, Eto, H, Joseph, A, Kohyama, S, Haraszti, T, Zamora, RA, Vorobii, M, Giannotti, MI, Schwille, P, Rodriguez-Emmenegger, C, (2022). Dendrimersome Synthetic Cells Harbor Cell Division Machinery of Bacteria Advanced Materials 34, 2202364

The integration of active cell machinery with synthetic building blocks is the bridge toward developing synthetic cells with biological functions and beyond. Self-replication is one of the most important tasks of living systems, and various complex machineries exist to execute it. In Escherichia coli, a contractile division ring is positioned to mid-cell by concentration oscillations of self-organizing proteins (MinCDE), where it severs membrane and cell wall. So far, the reconstitution of any cell division machinery has exclusively been tied to liposomes. Here, the reconstitution of a rudimentary bacterial divisome in fully synthetic bicomponent dendrimersomes is shown. By tuning the membrane composition, the interaction of biological machinery with synthetic membranes can be tailored to reproduce its dynamic behavior. This constitutes an important breakthrough in the assembly of synthetic cells with biological elements, as tuning of membrane-divisome interactions is the key to engineering emergent biological behavior from the bottom-up.

JTD Keywords: bacterial cell division, bottom-up synthetic biology, dendrimersomes, dynamic min patterns, ftsz assembly, Bacterial cell division, Bottom-up synthetic biology, Dendrimersomes, Dynamic min patterns, Dynamics, Ftsz assembly, Ftsz filaments, Mind, Organization, Pole oscillation, Polymersome membranes, Proteins, Rapid pole, Synthetic cells, Vesicles


Marti, D, Martin-Martinez, E, Torras, J, Betran, O, Turon, P, Aleman, C, (2022). In silico study of substrate chemistry effect on the tethering of engineered antibodies for SARS-CoV-2 detection: Amorphous silica vs gold Colloids And Surfaces B-Biointerfaces 213, 112400

The influence of the properties of different solid substrates on the tethering of two antibodies, IgG1-CR3022 and IgG1-S309, which were specifically engineered for the detection of SARS-CoV-2, has been examined at the molecular level using conventional and accelerated Molecular Dynamics (cMD and aMD, respectively). Two surfaces with very different properties and widely used in immunosensors for diagnosis, amorphous silica and the most stable facet of the face-centered cubic gold structure, have been considered. The effects of such surfaces on the structure and orientation of the immobilized antibodies have been determined by quantifying the tilt and hinge angles that describe the orientation and shape of the antibody, respectively, and the dihedrals that measure the relative position of the antibody arms with respect to the surface. Results show that the interactions with amorphous silica, which are mainly electrostatic due to the charged nature of the surface, help to preserve the orientation and structure of the antibodies, especially of the IgG1-CR3022, indicating that the primary sequence of those antibodies also plays some role. Instead, short-range van der Waals interactions with the inert gold surface cause a higher degree tilting and fraying of the antibodies with respect to amorphous silica. The interactions between the antibodies and the surface also affect the correlation among the different angles and dihedrals, which increases with their strength. Overall, results explain why amorphous silica substrates are frequently used to immobilize antibodies in immunosensors. © 2022 The Authors

JTD Keywords: amorphous silica, antibody immobilization, enzyme, gol d, gold, immobilization, immunosensor, molecu l a r dynamics, molecular dynamics, protein adsorption, sars-cov-2 immunosensor, simulations, spike protein, surface interactions, target, vaccine, Amorphous silica, Antibodies, Antibody engineering, Antibody immobilization, Antibody structure, Article, Chemical detection, Computer model, Controlled study, Dihedral angle, Gold, In-silico, Molecular dynamics, Molecular levels, Molecular-dynamics, Nonhuman, Property, Sars, Sars-cov-2 immunosensor, Severe acute respiratory syndrome coronavirus 2, Silica, Silico studies, Silicon dioxide, Solid substrates, Structure analysis, Substrate chemistry, Substrates, Van der waals forces, Virus detection


Casanellas, I, Lagunas, A, Vida, Y, Perez-Inestrosa, E, Rodriguez-Pereira, C, Magalhaes, J, Andrades, JA, Becerra, J, Samitier, J, (2022). Nanoscale ligand density modulates gap junction intercellular communication of cell condensates during chondrogenesis Nanomedicine 17, 775-791

Aim: To unveil the influence of cell-matrix adhesions in the establishment of gap junction intercellular communication (GJIC) during cell condensation in chondrogenesis. Materials & methods: Previously developed nanopatterns of the cell adhesive ligand arginine-glycine-aspartic acid were used as cell culture substrates to control cell adhesion at the nanoscale. In vitro chondrogenesis of mesenchymal stem cells was conducted on the nanopatterns. Cohesion and GJIC were evaluated in cell condensates. Results: Mechanical stability and GJIC are enhanced by a nanopattern configuration in which 90% of the surface area presents adhesion sites separated less than 70 nm, thus providing an onset for cell signaling. Conclusion: Cell-matrix adhesions regulate GJIC of mesenchymal cell condensates during in vitro chondrogenesis from a threshold configuration at the nanoscale.

JTD Keywords: arginine-glycine-aspartic acid, arginine–glycine–aspartic acid, cell adhesion, condensation, dendrimer-based nanopatterning, gap junction intercellular communication, Actin, Adhesion, Arginine-glycine-aspartic acid, Cell adhesion, Collagen, Condensation, Connexin-43, Dendrimer-based nanopatterning, Dynamics, Extracellular-matrix, Fibronectin, Gap junction intercellular communication, Mesenchymal stem cells, Permeability, Phenotype, Vinculin


Trebicka, J, (2022). Role of albumin in the treatment of decompensated liver cirrhosis Current Opinion In Gastroenterology 38, 200-205

Albumin has been used primarily as a plasma expander, since it leads to an increase in the circulating blood volume. Current generally recommended indications for albumin therapy in cirrhotic patients are the prevention of circulatory dysfunction after large-volume paracentesis, the prevention of hepatorenal syndrome (HRS) in patients with spontaneous bacterial peritonitis (SBP), and the management of HRS in combination with vasoconstrictors. Yet, new indications for albumin have been tested in the recent years and are outlined in this short review.New data show that albumin both supports the circulation and reduces systemic inflammation. In addition, to its oncotic function, it acts as an antioxidant, radical scavenger, and immune modulator. These nononcotic properties explain why long-term albumin administration in patients with decompensated cirrhosis may be useful in the prevention of associated complications (acute-on-chronic liver failure, infections). New data show that long-term albumin therapy in patients with cirrhosis and ascites improves survival, prevents complications, simplifies ascites management, and lowers hospitalization rates. The so-called disease-modifying effects of long-term albumin therapy may have a favorable effect on the course of the disease. Nevertheless, the optimal dosage and administration intervals have not yet been finally defined.Albumin therapy is effective in the indications already recommended by the guidelines. A possible extension of the indication for albumin administration in non-SBP infections and as long-term therapy is promising, but should be confirmed by further studies.Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.

JTD Keywords: ascites, failure, hepatorenal syndrome, hospitalized-patients, hypothesis, infections, portal hypertension, spontaneous bacterial peritonitis, systemic inflammation, Acute-on-chronic liver failure, Human serum-albumin


Karkali, K, Tiwari, P, Singh, A, Tlili, S, Jorba, I, Navajas, D, Munoz, JJ, Saunders, TE, Martin-Blanco, E, (2022). Condensation of the Drosophila nerve cord is oscillatory and depends on coordinated mechanical interactions Developmental Cell 57, 867-+

During development, organs reach precise shapes and sizes. Organ morphology is not always obtained through growth; a classic counterexample is the condensation of the nervous system during Drosophila embryogenesis. The mechanics underlying such condensation remain poorly understood. Here, we characterize the condensation of the embryonic ventral nerve cord (VNC) at both subcellular and tissue scales. This analysis reveals that condensation is not a unidirectional continuous process but instead occurs through oscillatory contractions. The VNC mechanical properties spatially and temporally vary, and forces along its longitudinal axis are spatially heterogeneous. We demonstrate that the process of VNC condensation is dependent on the coordinated mechanical activities of neurons and glia. These outcomes are consistent with a viscoelastic model of condensation, which incorporates time delays and effective frictional interactions. In summary, we have defined the progressive mechanics driving VNC condensation, providing insights into how a highly viscous tissue can autonomously change shape and size.

JTD Keywords: actomyosin, central nervous system, drosophila, glia, mechanics, morphogenesis, neuron, ventral nerve cord, Actomyosin, Animals, Central nervous system, Collagen-iv, Contraction, Drosophila, Embryonic development, Forces, Gene, Glia, Glial-cells, Mechanics, Migration, Morphogenesis, Neuroglia, Neuron, Neurons, Quantification, System, Tissue, Ventral nerve cord, Viscolelastic model


Kadkhodaie-Elyaderani, A, de Lama-Odría, MD, Rivas, M, Martínez-Rovira, I, Yousef, I, Puiggalí, J, del Valle, LJ, (2022). Medicated Scaffolds Prepared with Hydroxyapatite/Streptomycin Nanoparticles Encapsulated into Polylactide Microfibers International Journal Of Molecular Sciences 23, 1282

The preparation, characterization, and controlled release of hydroxyapatite (HAp) nanopar-ticles loaded with streptomycin (STR) was studied. These nanoparticles are highly appropriate for the treatment of bacterial infections and are also promising for the treatment of cancer cells. The analyses involved scanning electron microscopy, dynamic light scattering (DLS) and Z-potential measurements, as well as infrared spectroscopy and X-ray diffraction. Both amorphous (ACP) and crystalline (cHAp) hydroxyapatite nanoparticles were considered since they differ in their release behavior (faster and slower for amorphous and crystalline particles, respectively). The encapsulated nanoparticles were finally incorporated into biodegradable and biocompatible polylactide (PLA) scaf-folds. The STR load was carried out following different pathways during the synthesis/precipitation of the nanoparticles (i.e., nucleation steps) and also by simple adsorption once the nanoparticles were formed. The loaded nanoparticles were biocompatible according to the study of the cytotoxicity of extracts using different cell lines. FTIR microspectroscopy was also employed to evaluate the cytotoxic effect on cancer cell lines of nanoparticles internalized by endocytosis. The results were promising when amorphous nanoparticles were employed. The nanoparticles loaded with STR increased their size and changed their superficial negative charge to positive. The nanoparticles’ crystallinity decreased, with the consequence that their crystal sizes reduced, when STR was incorporated into their structure. STR maintained its antibacterial activity, although it was reduced during the adsorption into the nanoparticles formed. The STR release was faster from the amorphous ACP nanoparticles and slower from the crystalline cHAp nanoparticles. However, in both cases, the STR release was slower when incorporated in calcium and phosphate during the synthesis. The biocompatibility of these nanoparticles was assayed by two approximations. When extracts from the nanoparticles were evaluated in cultures of cell lines, no cytotoxic damage was observed at concen-trations of less than 10 mg/mL. This demonstrated their biocompatibility. Another experiment using FTIR microspectroscopy evaluated the cytotoxic effect of nanoparticles internalized by endocytosis in cancer cells. The results demonstrated slight damage to the biomacromolecules when the cells were treated with ACP nanoparticles. Both ACP and cHAp nanoparticles were efficiently encapsulated in PLA electrospun matrices, providing functionality and bioactive properties. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: antibiotics, antimicrobial activity, behavior, cytotoxicity, delivery, drug, drug delivery, hydroxyapatite nanoparticles, in-vitro, mechanisms, mitochondria, polylactide, release, streptomycin, Antimicrobial activity, Cancer stem-cells, Cytotoxicity, Drug delivery, Hydroxyapatite nanoparticles, Polylactide, Streptomycin


Gawish, R, Starkl, P, Pimenov, L, Hladik, A, Lakovits, K, Oberndorfer, F, Cronin, SJF, Ohradanova-Repic, A, Wirnsberger, G, Agerer, B, Endler, L, Capraz, T, Perthold, JW, Cikes, D, Koglgruber, R, Hagelkruys, A, Montserrat, N, Mirazimi, A, Boon, L, Stockinger, H, Bergthaler, A, Oostenbrink, C, Penninger, JM, Knapp, S, (2022). ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF-and IFNy-driven immunopathology Elife 11, e74623

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cyto-kines IFN? and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo. © Gawish et al.

JTD Keywords: covid-19 mouse model, covid-19 therapy, cytokine storm, immunology, inflammation, mavie16, mouse, mouse-adapted sars-cov-2, program, recombinant soluble ace2, tmprss2, Adaptive immunity, Angiotensin converting enzyme 2, Angiotensin-converting enzyme 2, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Apoptosis, Article, Bagg albino mouse, Breathing rate, Bronchoalveolar lavage fluid, C57bl mouse, Cell composition, Cell infiltration, Controlled study, Coronavirus disease 2019, Coronavirus spike glycoprotein, Covid-19, Cytokeratin 18, Cytokine production, Dipeptidyl carboxypeptidase, Disease model, Disease models, animal, Disease severity, Drosophila-melanogaster, Enzyme linked immunosorbent assay, Expression vector, Flow cytometry, Gamma interferon, Gene editing, Gene expression, Gene mutation, Genetic engineering, Genetics, Glycosylation, High mobility group b1 protein, Histology, Histopathology, Immune response, Immunocompetent cell, Immunology, Immunopathology, Interferon-gamma, Interleukin 2, Metabolism, Mice, inbred balb c, Mice, inbred c57bl, Mouse-adapted sars-cov-2, Myeloperoxidase, Neuropilin 1, Nonhuman, Nucleocapsid protein, Pathogenicity, Peptidyl-dipeptidase a, Pyroptosis, Recombinant soluble ace2, Renin angiotensin aldosterone system, Rna extraction, Rna isolation, Sars-cov-2, Severe acute respiratory syndrome coronavirus 2, Spike glycoprotein, coronavirus, T lymphocyte activation, Trabecular meshwork, Tumor necrosis factor, Virology, Virus load, Virus replication, Virus transmission, Virus virulence


Macedo, MH, Barros, AS, Martinez, E, Barrias, CC, Sarmento, B, (2022). All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes Journal Of Controlled Release 341, 414-430

Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.

JTD Keywords: 3d intestinal model, drug absorption, drug development, endothelium, hydrogel, 3d intestinal model, 3d modeling, 3d models, 3d-modeling, Alkaline-phosphatase, Animal experiments, Biopharmaceutics classification, Caco-2 cells, Cell culture, Collagen, Collagen gel, Drug absorption, Drug development, Endothelium, Fibroblasts, Glycoproteins, Hydrogel, In-vitro, Matrix metalloproteinases, Membrane-permeability, Paracellular transport, Permeability, Single-pass vs., Speed up


Ferrer-Lluis, I, Castillo-Escario, Y, Glos, M, Fietze, I, Penzel, T, Jane, R, (2021). Sleep Apnea & Chronic Obstructive Pulmonary Disease: Overlap Syndrome Dynamics in Patients from an Epidemiological Study Conference Proceedings : ... Annual International Conference Of The Ieee Engineering In Medicine And Biology Society. Ieee Engineering In Medicine And Biology Society. Conference 2021, 5574-5577

Obstructive sleep apnea (OSA) is a sleep disorder in which repetitive upper airway obstructive events occur during sleep. These events can induce hypoxia, which is a risk factor for multiple cardiovascular and cerebrovascular diseases. Chronic obstructive pulmonary disease (COPD) is a disorder which induces a persistent inflammation of the lungs. This condition produces hypoventilation, affecting the blood oxygenation, and leads to an increased risk of developing lung cancer and heart disease. In this study, we evaluated how COPD affects the severity and characteristics of OSA in a multivariate demographic database including polysomnographic signals. Results showed SpO2 subtle variations, such as more non-recovered desaturations and increased time below a 90% SpO2 level, which, in the long term, could worsen the risk to suffer cardiovascular and cerebrovascular diseases.Clinical Relevance - COPD increases the OSA risk due to hypoventilation and altered SpO2 behavior. © 2021 IEEE.

JTD Keywords: Chronic obstructive lung disease, Complication, Epidemiologic studies, Epidemiology, Human, Humans, Oxygen saturation, Pulmonary disease, chronic obstructive, Sleep apnea, obstructive, Sleep disordered breathing, Syndrome


Villacampa, EG, Larsson, L, Mirzazadeh, R, Kvastad, L, Andersson, A, Mollbrink, A, Kokaraki, G, Monteil, V, Schultz, N, Appelberg, KS, Montserrat, N, Zhang, HB, Penninger, JM, Miesbach, W, Mirazimi, A, Carlson, J, Lundeberg, J, (2021). Genome-wide spatial expression profiling in formalin-fixed tissues Cell Genom 1, 100065

Formalin-fixed paraffin embedding (FFPE) is the most widespread long-term tissue preservation approach. Here, we report a procedure to perform genome-wide spatial analysis of mRNA in FFPE-fixed tissue sections, using well-established, commercially available methods for imaging and spatial barcoding using slides spotted with barcoded oligo(dT) probes to capture the 3' end of mRNA molecules in tissue sections. We applied this method for expression profiling and cell type mapping in coronal sections from the mouse brain to demonstrate the method's capability to delineate anatomical regions from a molecular perspective. We also profiled the spatial composition of transcriptomic signatures in two ovarian carcinosarcoma samples, exemplifying the method's potential to elucidate molecular mechanisms in heterogeneous clinical samples. Finally, we demonstrate the applicability of the assay to characterize human lung and kidney organoids and a human lung biopsy specimen infected with SARS-CoV-2. We anticipate that genome-wide spatial gene expression profiling in FFPE biospecimens will be used for retrospective analysis of biobank samples, which will facilitate longitudinal studies of biological processes and biomarker discovery.© 2021 The Authors.

JTD Keywords: colonic transit, gut, intestinal motility, ld score regression, metaanalysis, nervous-system, neurotrophic factor, population, severity, Covid-19, Ffpe, Genome-wide, Irritable-bowel-syndrome, Mouse brain, Organoids, Ovarian carcinosarcoma, Pfa, Sars-cov-2, Spatial transcriptomics, Visium


Castillo-Escario, Y, Kumru, H, Ferrer-Lluis, I, Vidal, J, Jané, R, (2021). Detection of Sleep-Disordered Breathing in Patients with Spinal Cord Injury Using a Smartphone Sensors 21, 7182

Patients with spinal cord injury (SCI) have an increased risk of sleep-disordered breathing (SDB), which can lead to serious comorbidities and impact patients’ recovery and quality of life. However, sleep tests are rarely performed on SCI patients, given their multiple health needs and the cost and complexity of diagnostic equipment. The objective of this study was to use a novel smartphone system as a simple non-invasive tool to monitor SDB in SCI patients. We recorded pulse oximetry, acoustic, and accelerometer data using a smartphone during overnight tests in 19 SCI patients and 19 able-bodied controls. Then, we analyzed these signals with automatic algorithms to detect desaturation, apnea, and hypopnea events and monitor sleep position. The apnea–hypopnea index (AHI) was significantly higher in SCI patients than controls (25 ± 15 vs. 9 ± 7, p < 0.001). We found that 63% of SCI patients had moderate-to-severe SDB (AHI ? 15) in contrast to 21% of control subjects. Most SCI patients slept predominantly in supine position, but an increased occurrence of events in supine position was only observed for eight patients. This study highlights the problem of SDB in SCI and provides simple cost-effective sleep monitoring tools to facilitate the detection, understanding, and management of SDB in SCI patients.

JTD Keywords: apnea syndrome, biomedical signal processing, individuals, mhealth, monitoring, nasal resistance, people, position, prevalence, questionnaire, sample, sleep apnea, sleep position, sleep-disordered breathing, smartphone, time, Apnea-hypopnea indices, Biomedical signal processing, Biomedical signals processing, Cost effectiveness, Diagnosis, Mhealth, Monitoring, Noninvasive medical procedures, Oximeters, Oxygen-saturation, Patient rehabilitation, Simple++, Sleep apnea, Sleep position, Sleep research, Sleep-disordered breathing, Smart phones, Smartphone, Smartphones, Spinal cord injury, Spinal cord injury patients


Pérez-Rafael, S, Ivanova, K, Stefanov, I, Puiggalí, J, del Valle, LJ, Todorova, K, Dimitrov, P, Hinojosa-Caballero, D, Tzanov, T, (2021). Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment Acta Biomaterialia 134, 131-143

Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management. Statement of significance: Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load.

JTD Keywords: catechol, chronic wounds, dressing materials, inhibition, mechanism, nano-enabled hydrogels, polyphenols, promogran, self-assembling, silver-lignin nanoparticles, systems, tannins, Chronic wounds, Degradation, Dressing materials, Nano-enabled hydrogels, Self-assembling, Silver-lignin nanoparticles, Thiolated hyaluronic acid


Nyga, A, Munoz, JJ, Dercksen, S, Fornabaio, G, Uroz, M, Trepat, X, Baum, B, Matthews, HK, Conte, V, (2021). Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics Science Advances 7, eabg6467

Morgado, A, Najera, F, Lagunas, A, Samitier, J, Vida, Y, Perez-Inestrosa, E, (2021). Slightly congested amino terminal dendrimers. The synthesis of amide-based stable structures on a large scale Polymer Chemistry 12, 5168-5177

Nowadays, amino terminal dendrimers are appealing materials for biological applications due to their multivalence and the versatile conjugation of the amino groups. However, the high reactivity of these terminal groups can be decreased by steric hindrance, limiting their possible bioapplications. Herein, we report the divergent synthesis of slightly sterically hindered amino terminal polyamide dendrimers. A simple and unique AB(2) scaffold has been chosen to build the dendritic structures, where only amide bonds have been used as the connecting unit. The 1-7 relative positions of the amino groups in the AB(2) monomers avoid the steric congestion of the macromolecules, allowing the construction of robust dendrimers up to the fifth generation. The construction of the dendrimers is based on two well-established reactions, using simple and cheap reactants, with yields above 90% on a gram scale and easy purification procedures. This synthetic methodology constitutes an easy and efficient way for the preparation of stable and aqueous soluble dendrimers on a gram scale, representing a substantial improvement over the synthesis of this kind of aliphatic polyamide amino terminal dendrimer. The prepared structures were completely characterized and evaluated by size exclusion chromatography, diffusion ordered spectroscopy and atomic force microscopy to determine their size. Molecular dynamics simulations were also carried out and the values obtained were consistent with the experimentally determined values.

JTD Keywords: Density, Discovery, Pamam dendrimers, Polymers


Ferrer-Lluis, I, Castillo-Escario, Y, Montserrat, JM, Jané, R, (2021). SleepPos app: An automated smartphone application for angle based high resolution sleep position monitoring and treatment Sensors 21, 4531

Poor sleep quality or disturbed sleep is associated with multiple health conditions. Sleep position affects the severity and occurrence of these complications, and positional therapy is one of the less invasive treatments to deal with them. Sleep positions can be self-reported, which is unreliable, or determined by using specific devices, such as polysomnography, polygraphy or cameras, that can be expensive and difficult to employ at home. The aim of this study is to determine how smartphones could be used to monitor and treat sleep position at home. We divided our research into three tasks: (1) develop an Android smartphone application (‘SleepPos’ app) which monitors angle-based high-resolution sleep position and allows to simultaneously apply positional treatment; (2) test the smartphone application at home coupled with a pulse oximeter; and (3) explore the potential of this tool to detect the positional occurrence of desaturation events. The results show how the ‘SleepPos’ app successfully determined the sleep position and revealed positional patterns of occurrence of desaturation events. The ‘SleepPos’ app also succeeded in applying positional therapy and preventing the subjects from sleeping in the supine sleep position. This study demonstrates how smartphones are capable of reliably monitoring high-resolution sleep position and provide useful clinical information about the positional occurrence of desaturation events.

JTD Keywords: accelerometry, android, apnea patients, app, association, biomedical signal processing, management, mhealth, monitoring, pathophysiology, pilot mhealth, questionnaire, sleep position, smartphone, supine position, time, Accelerometry, Android, App, Biomedical signal processing, Mhealth, Monitoring, Sleep position, Smart-phone, Smartphone, Tennis ball technique


De Matteis, V, Rizzello, L, Ingrosso, C, Rinaldi, R, (2021). Purification of olive mill wastewater through noble metal nanoparticle synthesis: waste safe disposal and nanomaterial impact on healthy hepatic cell mitochondria Environmental Science And Pollution Research 28, 26154-26171

The exponential increase of waste derived from different human activities points out the importance of their reuse in order to create materials with specific properties that can be used for different applications. In this work, it was showed how the typical Mediterranean organic liquid waste, namely olive mill wastewater (OMWW), obtained during olive oil production, can be turned into an efficient reactive agent for the production of noble metals gold (Au) and silver nanoparticles (Ag NPs) with very well-defined physico-chemical properties. More than that, it was demonstrated that this synthetic procedure also leads to a drastic decrease of the organic pollution load of the OMWW, making it safer for environmental disposal and plants irrigation. Then, using healthy hepatic cell line mitochondria, the biological effects induced by these green metal NPs surrounded by a polyphenols shell, with the same NPs synthetized through a standard chemical colloidal reduction process, were compared, finding out that the green NPs are much safer.

JTD Keywords: antioxidants perturbation, green synthesis, gtpase dynamin-related protein 1 expression, mitochondria assessment, physico-chemical properties, Antioxidants perturbation, Green synthesis, Gtpase dynamin-related protein 1 expression, Mitochondria assessment, Physico-chemical properties, Reusability of waste


Roki, N, Solomon, M, Casta, L, Bowers, J, Getts, RC, Muro, S, (2021). A method to improve quantitative radiotracing-based analysis of the in vivo biodistribution of drug carriers Bioeng Transl Med 6, e210208

© 2020 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of The American Institute of Chemical Engineers. Biodistribution studies are essential in drug carrier design and translation, and radiotracing provides a sensitive quantitation for this purpose. Yet, for biodegradable formulations, small amounts of free-label signal may arise prior to or immediately after injection in animal models, causing potentially confounding biodistribution results. In this study, we refined a method to overcome this obstacle. First, we verified free signal generation in animal samples and then, mimicking it in a controllable setting, we injected mice intravenously with a radiolabeled drug carrier formulation (125I-antibody/3DNA) containing a known amount of free radiolabel (125I), or free 125I alone as a control. Corrected biodistribution data were obtained by separating the free radiolabel from blood and organs postmortem, using trichloroacetic acid precipitation, and subtracting the confounding signal from each tissue measurement. Control free 125I-radiolabel was detected at ≥85% accuracy in blood and tissues, validating the method. It biodistributed very heterogeneously among organs (0.6–39 %ID/g), indicating that any free 125I generated in the body or present in an injected formulation cannot be simply corrected to the free-label fraction in the original preparation, but the free label must be empirically measured in each organ. Application of this method to the biodistribution of 125I-antibody/3DNA, including formulations directed to endothelial target ICAM-1, showed accurate classification of free 125I species in blood and tissues. In addition, this technique rendered data on the in vivo degradation of the traced agents over time. Thus, this is a valuable technique to obtain accurate measurements of biodistribution using 125I and possibly other radiotracers.

JTD Keywords: biodistribution data correction, degradation, drug delivery carriers, free label, in vivo biodistribution, radiotracing, trichloroacetic acid precipitation, Biodistribution data correction, Degradation, Drug delivery carriers, Free label, In vivo biodistribution, Radiotracing, Trichloroacetic acid precipitation


Burgués, J, Esclapez, MD, Doñate, S, Pastor, L, Marco, S, (2021). Aerial mapping of odorous gases in a wastewater treatment plant using a small drone Remote Sensing 13, 1757

Wastewater treatment plants (WWTPs) are sources of greenhouse gases, hazardous air pollutants and offensive odors. These emissions can have negative repercussions in and around the plant, degrading the quality of life of surrounding neighborhoods, damaging the environment, and reducing employee’s overall job satisfaction. Current monitoring methodologies based on fixed gas detectors and sporadic olfactometric measurements (human panels) do not allow for an accurate spatial representation of such emissions. In this paper we use a small drone equipped with an array of electrochemical and metal oxide (MOX) sensors for mapping odorous gases in a mid-sized WWTP. An innovative sampling system based on two (10 m long) flexible tubes hanging from the drone allowed near-source sampling from a safe distance with negligible influence from the downwash of the drone’s propellers. The proposed platform is very convenient for monitoring hard-toreach emission sources, such as the plant’s deodorization chimney, which turned out to be responsible for the strongest odor emissions. The geo-localized measurements visualized in the form of a two-dimensional (2D) gas concentration map revealed the main emission hotspots where abatement solutions were needed. A principal component analysis (PCA) of the multivariate sensor signals suggests that the proposed system can also be used to trace which emission source is responsible for a certain measurement.

JTD Keywords: air pollution, environmental monitoring, gas sensors, industrial emissions, mapping, odour, uav, Air pollution, Drone, Environmental monitoring, Gas sensors, Industrial emissions, Mapping, Odour, Sensors, Uav


Biosca, A, Cabanach, P, Abdulkarim, M, Gumbleton, M, Gómez-Canela, C, Ramírez, M, Bouzón-Arnáiz, I, Avalos-Padilla, Y, Borros, S, Fernàndez-Busquets, X, (2021). Zwitterionic self-assembled nanoparticles as carriers for Plasmodium targeting in malaria oral treatment Journal Of Controlled Release 331, 364-375

© 2021 Elsevier B.V. The current decline in antimalarial drug efficacy due to the evolution of resistant Plasmodium strains calls for new strategies capable of improving the bioavailability of antimalarials, especially of those whose lipophilic character imparts them a low solubility in biological fluids. Here we have designed, synthesized and characterized amphiphilic zwitterionic block copolymers forming nanoparticles capable of penetrating the intestinal epithelium that can be used for oral administration. Poly(butyl methacrylate-co-morpholinoethyl sulfobetaine methacrylate) (PBMA-MESBMA)-based nanoparticles exhibited a specific targeting to Plasmodium falciparum-infected vs. parasite-free red blood cells (74.8%/0.8% respectively), which was maintained upon encapsulation of the lipophilic antimalarial drug curcumin (82.6%/0.3%). The in vitro efficacy of curcumin upon encapsulation was maintained relative to the free compound, with an IC50 around 5 μM. In vivo assays indicated a significantly increased curcumin concentration in the blood of mice one hour after being orally fed PBMA-MESBMA-curcumin in comparison to the administration of free drug (18.7 vs. 2.1 ng/ml, respectively). At longer times, however, plasma curcumin concentration equaled between free and encapsulated drug, which was reflected in similar in vivo antimalarial activities in Plasmodium yoelii yoelii-infected mice. Microscopic analysis in blood samples of fluorescently labeled PBMA-MESBMA revealed the presence of the polymer inside P. yoelii yoelii-parasitized erythrocytes one hour after oral administration to infected animals.

JTD Keywords: curcumin, drug delivery, malaria, pbma-mesbma, plasmodium, zwitterionic block copolymers, Curcumin, Drug delivery, Malaria, Pbma-mesbma, Plasmodium, Zwitterionic block copolymers


Seras-Franzoso, J, Diaz-Riascos, ZV, Corchero, JL, González, P, Garcia-Aranda, N, Mandaña, M, Riera, R, Boullosa, A, Mancilla, S, Grayston, A, Moltó-Abad, M, Garcia-Fruitós, E, Mendoza, R, Pintos-Morell, G, Albertazzi, L, Rosell, A, Casas, J, Villaverde, A, Schwartz, S, Abasolo, I, (2021). Extracellular vesicles from recombinant cell factories improve the activity and efficacy of enzymes defective in lysosomal storage disorders Journal Of Extracellular Vesicles 10, e12058

In the present study the use of extracellular vesicles (EVs) as vehicles for therapeutic enzymes in lysosomal storage disorders was explored. EVs were isolated from mammalian cells overexpressing alpha-galactosidase A (GLA) or N-sulfoglucosamine sulfohydrolase (SGSH) enzymes, defective in Fabry and Sanfilippo A diseases, respectively. Direct purification of EVs from cell supernatants was found to be a simple and efficient method to obtain highly active GLA and SGSH proteins, even after EV lyophilization. Likewise, EVs carrying GLA (EV-GLA) were rapidly uptaken and reached the lysosomes in cellular models of Fabry disease, restoring lysosomal functionality much more efficiently than the recombinant enzyme in clinical use. In vivo, EVs were well tolerated and distributed among all main organs, including the brain. DiR-labelled EVs were localized in brain parenchyma 1 h after intra-arterial (internal carotid artery) or intravenous (tail vein) administrations. Moreover, a single intravenous administration of EV-GLA was able to reduce globotriaosylceramide (Gb3) substrate levels in clinically relevant tissues, such kidneys and brain. Overall, our results demonstrate that EVs from cells overexpressing lysosomal enzymes act as natural protein delivery systems, improving the activity and the efficacy of the recombinant proteins and facilitating their access to organs neglected by conventional enzyme replacement therapies.

JTD Keywords: alpha?galactosidase a, alpha‐galactosidase a, drug delivery, enzyme replacement therapy, fabry disease, lysosomal storage disorders, n-sulfoglucosamine sulfohydrolase, n?sulfoglucosamine sulfohydrolase, n‐sulfoglucosamine sulfohydrolase, sanfilippo syndrome, Alpha-galactosidase a, Drug delivery, Enzyme replacement therapy, Fabry disease, Lysosomal storage disorders, N-sulfoglucosamine sulfohydrolase, Sanfilippo syndrome


Watt, AC, Cejas, P, DeCristo, MJ, Metzger, O, Lam, EYN, Qiu, XT, BrinJones, H, Kesten, N, Coulson, R, Font-Tello, A, Lim, K, Vadhi, R, Daniels, VW, Montero, J, Taing, L, Meyer, CA, Gilan, O, Bell, CC, Korthauer, KD, Giambartolomei, C, Pasaniuc, B, Seo, JH, Freedman, ML, Ma, CT, Ellis, MJ, Krop, I, Winer, E, Letai, A, Brown, M, Dawson, MA, Long, HW, Zhao, JJ, Goel, S, (2021). CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity Nature Cancer 2, 34-+

Goel and colleagues show that CDK4/6 inhibition induces global chromatin changes mediated by AP-1 factors, which mediate key biological and clinical effects in breast cancer. Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that are enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several activator protein-1 transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.

JTD Keywords: Abemaciclib, Androgen receptor, Animal experiment, Animal model, Animal tissue, Apoptosis, Article, Breast cancer, C-jun, Cancer cell, Carcinoembryonic antigen related cell adhesion molecule 1, Caspase 3, Cell cycle arrest, Cells, Chromatin, Chromatin immunoprecipitation, Controlled study, Cyclin dependent kinase 4, Cyclin dependent kinase 6, Dna damage, Epidermal growth factor receptor 2, Estrogen receptor, Female, Flow cytometry, Fulvestrant, Hla drb1 antigen, Human, Human cell, Immunoblotting, Immunogenicity, Immunoprecipitation, Interferon, Luciferase assay, Mcf-7 cell line, Mda-mb-231 cell line, Microarray analysis, Morphogenesis, Mouse, Nonhuman, Palbociclib, Protein, Protein expression, Rb, Resistance, Rna polymerase ii, Rna sequence, Selective-inhibition, Senescence, Short tandem repeat, Signal transduction, Tamoxifen, Transcription elongation, Transcription factor, Transcription factor ap 1, Transcriptome, Tumor biopsy, Tumor differentiation, Tumor spheroid, Tumor xenograft, Vinculin, Whole exome sequencing


Olate-Moya, F., Arens, L., Wilhelm, M., Mateos-Timoneda, M. A., Engel, E., Palza, H., (2020). Chondroinductive alginate-based hydrogels having graphene oxide for 3D printed scaffold fabrication ACS Applied Materials and Interfaces 12, (4), 4343-4357

Scaffolds based on bioconjugated hydrogels are attractive for tissue engineering because they can partly mimic human tissue characteristics. For example, they can further increase their bioactivity with cells. However, most of the hydrogels present problems related to their processability, consequently limiting their use in 3D printing to produce tailor-made scaffolds. The goal of this work is to develop bioconjugated hydrogel nanocomposite inks for 3D printed scaffold fabrication through a micro-extrusion process having improved both biocompatibility and processability. The hydrogel is based on a photocrosslinkable alginate bioconjugated with both gelatin and chondroitin sulfate in order to mimic the cartilage extracellular matrix, while the nanofiller is based on graphene oxide to enhance the printability and cell proliferation. Our results show that the incorporation of graphene oxide into the hydrogel inks considerably improved the shape fidelity and resolution of 3D printed scaffolds because of a faster viscosity recovery post extrusion of the ink. Moreover, the nanocomposite inks produce anisotropic threads after the 3D printing process because of the templating of the graphene oxide liquid crystal. The in vitro proliferation assay of human adipose tissue-derived mesenchymal stem cells (hADMSCs) shows that bioconjugated scaffolds present higher cell proliferation than pure alginate, with the nanocomposites presenting the highest values at long times. Live/Dead assay otherwise displays full viability of hADMSCs adhered on the different scaffolds at day 7. Notably, the scaffolds produced with nanocomposite hydrogel inks were able to guide the cell proliferation following the direction of the 3D printed threads. In addition, the bioconjugated alginate hydrogel matrix induced chondrogenic differentiation without exogenous pro-chondrogenesis factors as concluded from immunostaining after 28 days of culture. This high cytocompatibility and chondroinductive effect toward hADMSCs, together with the improved printability and anisotropic structures, makes these nanocomposite hydrogel inks a promising candidate for cartilage tissue engineering based on 3D printing.

JTD Keywords: 3D printing, Chondrogenesis, Graphene oxide, Hydrogels, Liquid crystals


Rubí-Sans, G., Recha-Sancho, L., Pérez-Amodio, S., Mateos-Timoneda, M. Á., Semino, C. E., Engel, E., (2020). Development of a three-dimensional bioengineered platform for articular cartilage regeneration Biomolecules 10, (1), 52

Degenerative cartilage pathologies are nowadays a major problem for the world population. Factors such as age, genetics or obesity can predispose people to suffer from articular cartilage degeneration, which involves severe pain, loss of mobility and consequently, a loss of quality of life. Current strategies in medicine are focused on the partial or total replacement of affected joints, physiotherapy and analgesics that do not address the underlying pathology. In an attempt to find an alternative therapy to restore or repair articular cartilage functions, the use of bioengineered tissues is proposed. In this study we present a three-dimensional (3D) bioengineered platform combining a 3D printed polycaprolactone (PCL) macrostructure with RAD16-I, a soft nanofibrous self-assembling peptide, as a suitable microenvironment for human mesenchymal stem cells’ (hMSC) proliferation and differentiation into chondrocytes. This 3D bioengineered platform allows for long-term hMSC culture resulting in chondrogenic differentiation and has mechanical properties resembling native articular cartilage. These promising results suggest that this approach could be potentially used in articular cartilage repair and regeneration.

JTD Keywords: 3D printing, Chondrogenic differentiation, Polycaprolactone, RAD16-I self-assembling peptide


Ferrer, Isidro, Andrés-Benito, Pol, Zelaya, Maria Victoria, Aguirre, Maria Elena Erro, Carmona, Margarita, Ausín, Karina, Lachén-Montes, Mercedes, Fernández-Irigoyen, Joaquín, Santamaría, Enrique, del Río, José Antonio, (2020). Familial globular glial tauopathy linked to MAPT mutations: molecular neuropathology and seeding capacity of a prototypical mixed neuronal and glial tauopathy Acta Neuropathologica 139, (4), 735-771

Globular glial tauopathy (GGT) is a progressive neurodegenerative disease involving the grey matter and white matter (WM) and characterized by neuronal deposition of hyper-phosphorylated, abnormally conformed, truncated, oligomeric 4Rtau in neurons and in glial cells forming typical globular astrocyte and oligodendrocyte inclusions (GAIs and GOIs, respectively) and coiled bodies. Present studies centre on four genetic GGT cases from two unrelated families bearing the P301T mutation in MAPT and one case of sporadic GGT (sGGT) and one case of GGT linked to MAPT K317M mutation, for comparative purposes. Clinical and neuropathological manifestations and biochemical profiles of phospho-tau are subjected to individual variations in patients carrying the same mutation, even in carriers of the same family, independently of the age of onset, gender, and duration of the disease. Immunohistochemistry, western blotting, transcriptomic, proteomics and phosphoproteomics, and intra-cerebral inoculation of brain homogenates to wild-type (WT) mice were the methods employed. In GGT cases linked to MAPT P301T mutation, astrocyte markers GFAP, ALDH1L1, YKL40 mRNA and protein, GJA1 mRNA, and AQ4 protein are significantly increased; glutamate transporter GLT1 (EAAT2) and glucose transporter (SLC2A1) decreased; mitochondrial pyruvate carrier 1 (MPC1) increased, and mitochondrial uncoupling protein 5 (UCP5) almost absent in GAIs in frontal cortex (FC). Expression of oligodendrocyte markers OLIG1 and OLIG2mRNA, and myelin-related genes MBP, PLP1, CNP, MAG, MAL, MOG, and MOBP are significantly decreased in WM; CNPase, PLP1, and MBP antibodies reveal reduction and disruption of myelinated fibres; and SMI31 antibodies mark axonal damage in the WM. Altered expression of AQ4, GLUC-t, and GLT-1 is also observed in sGGT and in GGT linked to MAPT K317M mutation. These alterations point to primary astrogliopathy and oligodendrogliopathy in GGT. In addition, GGT linked to MAPT P301T mutation proteotypes unveil a proteostatic imbalance due to widespread (phospho)proteomic dearrangement in the FC and WM, triggering a disruption of neuron projection morphogenesis and synaptic transmission. Identification of hyper-phosphorylation of variegated proteins calls into question the concept of phospho-tau-only alteration in the pathogenesis of GGT. Finally, unilateral inoculation of sarkosyl-insoluble fractions of GGT homogenates from GGT linked to MAPT P301T, sGGT, and GGT linked to MAPT K317M mutation in the hippocampus, corpus callosum, or caudate/putamen in wild-type mice produces seeding, and time- and region-dependent spreading of phosphorylated, non-oligomeric, and non-truncated 4Rtau and 3Rtau, without GAIs and GOIs but only of coiled bodies. These experiments prove that host tau strains are important in the modulation of cellular vulnerability and phenotypes of phospho-tau aggregates.

JTD Keywords: Globular glial tauopathy, Tau, Astrogliopathy, Oligodendrogliopathy, Phosphoproteome, Seeding and spreading


Monteil, Vanessa, Kwon, Hyesoo, Prado, Patricia, Hagelkrüys, Astrid, Wimmer, Reiner A., Stahl, Martin, Leopoldi, Alexandra, Garreta, Elena, Hurtado Del Pozo, Carmen, Prosper, Felipe, Romero, Juan Pablo, Wirnsberger, Gerald, Zhang, Haibo, Slutsky, Arthur S., Conder, Ryan, Montserrat, Nuria, Mirazimi, Ali, Penninger, Josef M., (2020). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 Cell 181, (4), 905-913.e7

We have previously provided the first genetic evidence that angiotensin converting enzyme 2 (ACE2) is the critical receptor for severe acute respiratory syndrome coronavirus (SARS-CoV), and ACE2 protects the lung from injury, providing a molecular explanation for the severe lung failure and death due to SARS-CoV infections. ACE2 has now also been identified as a key receptor for SARS-CoV-2 infections, and it has been proposed that inhibiting this interaction might be used in treating patients with COVID-19. However, it is not known whether human recombinant soluble ACE2 (hrsACE2) blocks growth of SARS-CoV-2. Here, we show that clinical grade hrsACE2 reduced SARS-CoV-2 recovery from Vero cells by a factor of 1,000-5,000. An equivalent mouse rsACE2 had no effect. We also show that SARS-CoV-2 can directly infect engineered human blood vessel organoids and human kidney organoids, which can be inhibited by hrsACE2. These data demonstrate that hrsACE2 can significantly block early stages of SARS-CoV-2 infections.

JTD Keywords: COVID-19, Angiotensin converting enzyme 2, Blood vessels, Human organoids, Kidney, Severe acute respiratory syndrome coronavirus, Spike glycoproteins, Treatment


Casanellas, Ignasi, Lagunas, Anna, Vida, Yolanda, Pérez-Inestrosa, Ezequiel, Andrades, J. A., Becerra, J., Samitier, Josep, (2020). The Janus role of adhesion in chondrogenesis International Journal of Molecular Sciences 21, (15), 5269

Tackling the first stages of the chondrogenic commitment is essential to drive chondrogenic differentiation to healthy hyaline cartilage and minimize hypertrophy. During chondrogenesis, the extracellular matrix continuously evolves, adapting to the tissue adhesive requirements at each stage. Here, we take advantage of previously developed nanopatterns, in which local surface adhesiveness can be precisely tuned, to investigate its effects on prechondrogenic condensation. Fluorescence live cell imaging, immunostaining, confocal microscopy and PCR analysis are used to follow the condensation process on the nanopatterns. Cell tracking parameters, condensate morphology, cell–cell interactions, mechanotransduction and chondrogenic commitment are evaluated in response to local surface adhesiveness. Results show that only condensates on the nanopatterns of high local surface adhesiveness are stable in culture and able to enter the chondrogenic pathway, thus highlighting the importance of controlling cell–substrate adhesion in the tissue engineering strategies for cartilage repair.

JTD Keywords: Dendrimer, Nanopatterning, RGD, Mesenchymal cell condensation, Cell–cell interactions, YAP, Chondrogenesis


Rodríguez-Pereira, Cristina, Lagunas, Anna, Casanellas, Ignasi, Vida, Yolanda, Pérez-Inestrosa, Ezequiel, Andrades, José A., Becerra, José, Samitier, Josep, Blanco, Francisco J., Magalhães, Joana, (2020). RGD-dendrimer-poly(L-lactic) acid nanopatterned substrates for the early chondrogenesis of human mesenchymal stromal cells derived from osteoarthritic and healthy donors Materials 13, (10), 2247

Aiming to address a stable chondrogenesis derived from mesenchymal stromal cells (MSCs) to be applied in cartilage repair strategies at the onset of osteoarthritis (OA), we analyzed the effect of arginine–glycine–aspartate (RGD) density on cell condensation that occurs during the initial phase of chondrogenesis. For this, we seeded MSC-derived from OA and healthy (H) donors in RGD-dendrimer-poly(L-lactic) acid (PLLA) nanopatterned substrates (RGD concentrations of 4 × 10−9, 10−8, 2.5 × 10−8, and 10−2 w/w), during three days and compared to a cell pellet conventional three-dimensional culture system. Molecular gene expression (collagens type-I and II–COL1A1 and COL2A1, tenascin-TNC, sex determining region Y-box9-SOX9, and gap junction protein alpha 1–GJA1) was determined as well as the cell aggregates and pellet size, collagen type-II and connexin 43 proteins synthesis. This study showed that RGD-tailored first generation dendrimer (RGD-Cys-D1) PLLA nanopatterned substrates supported the formation of pre-chondrogenic condensates from OA- and H-derived human bone marrow-MSCs with enhanced chondrogenesis regarding the cell pellet conventional system (presence of collagen type-II and connexin 43, both at the gene and protein level). A RGD-density dependent trend was observed for aggregates size, in concordance with previous studies. Moreover, the nanopatterns’ had a higher effect on OA-derived MSC morphology, leading to the formation of bigger and more compact aggregates with improved expression of early chondrogenic markers.

JTD Keywords: Cell condensation, Gap junctions, RGD-density, Chondrogenic differentiation, Osteoarthritis


Calvo, M., Le Rolle, V., Romero, D., Béhar, N., Gomis, P., Mabo, P., Hernández, A. I., (2019). Recursive model identification for the analysis of the autonomic response to exercise testing in Brugada syndrome Artificial Intelligence in Medicine 97, 98-104

This paper proposes the integration and analysis of a closed-loop model of the baroreflex and cardiovascular systems, focused on a time-varying estimation of the autonomic modulation of heart rate in Brugada syndrome (BS), during exercise and subsequent recovery. Patient-specific models of 44 BS patients at different levels of risk (symptomatic and asymptomatic) were identified through a recursive evolutionary algorithm. After parameter identification, a close match between experimental and simulated signals (mean error = 0.81%) was observed. The model-based estimation of vagal and sympathetic contributions were consistent with physiological knowledge, enabling to observe the expected autonomic changes induced by exercise testing. In particular, symptomatic patients presented a significantly higher parasympathetic activity during exercise, and an autonomic imbalance was observed in these patients at peak effort and during post-exercise recovery. A higher vagal modulation during exercise, as well as an increasing parasympathetic activity at peak effort and a decreasing vagal contribution during post-exercise recovery could be related with symptoms and, thus, with a worse prognosis in BS. This work proposes the first evaluation of the sympathetic and parasympathetic responses to exercise testing in patients suffering from BS, through the recursive identification of computational models; highlighting important trends of clinical relevance that provide new insights into the underlying autonomic mechanisms regulating the cardiovascular system in BS. The joint analysis of the extracted autonomic parameters and classic electrophysiological markers could improve BS risk stratification.

JTD Keywords: Autonomic nervous system, Brugada syndrome, Computational model, Recursive identification


Klein, S., Frohn, F., Magdaleno, F., Reker-Smit, C., Schierwagen, R., Schierwagen, I., Uschner, F. E., van Dijk, F., Fürst, D. O., Djudjaj, S., Boor, P., Poelstra, K., Beljaars, L., Trebicka, J., (2019). Rho-kinase inhibitor coupled to peptide-modified albumin carrier reduces portal pressure and increases renal perfusion in cirrhotic rats Scientific Reports 9, (1), 2256

Rho-kinase (ROCK) activation in hepatic stellate cells (HSC) is a key mechanism promoting liver fibrosis and portal hypertension (PTH). Specific delivery of ROCK-inhibitor Y-27632 (Y27) to HSC targeting mannose-6-phosphate-receptors reduces portal pressure and fibrogenesis. In decompensated cirrhosis, presence of ascites is associated with reduced renal perfusion. Since in cirrhosis, platelet-derived growth factor receptor beta (PDGFRβ) is upregulated in the liver as well as the kidney, this study coupled Y27 to human serum albumin (HSA) substituted with PDGFRβ-recognizing peptides (pPB), and investigated its effect on PTH in cirrhotic rats. In vitro collagen contraction assays tested biological activity on LX2 cells. Hemodynamics were analyzed in BDL and CCl4 cirrhotic rats 3 h, 6 h and 24 h after i.v. administration of Y27pPBHSA (0.5/1 mg/kg b.w). Phosphorylation of moesin and myosin light chain (MLC) assessed ROCK activity in liver, femoral muscle, mesenteric artery, kidney and heart. Three Y27 molecules were coupled to pPBHSA as confirmed by HPLC/MS, which was sufficient to relax LX2 cells. In vivo, Y27pPBHSA-treated rats exhibited lower portal pressure, hepatic vascular resistance without effect on systemic vascular resistance, but a tendency towards lower cardiac output compared to non-treated cirrhotic rats. Y27pPBHSA reduced intrahepatic resistance by reduction of phosphorylation of moesin and MLC in Y27pPBHSA-treated cirrhotic rats. Y27pPBHSA was found in the liver of rats up to 6 hours after its injection, in the HSC demonstrated by double-immunostainings. Interestingly, Y27pPBHSA increased renal arterial flow over time combined with an antifibrotic effect as shown by decreased renal acta2 and col1a1 mRNA expression. Therefore, targeting the ROCK inhibitor Y27 to PDGFRβ decreases portal pressure with potential beneficial effects in the kidney. This unique approach should be tested in human cirrhosis.

JTD Keywords: Hepatic stellate cells, Hepatorenal syndrome


Oliveira, V. R., Uriarte, J. J., Falcones, B., Zin, W. A., Navajas, D., Farré, R., Almendros, I., (2019). Escherichia coli lipopolysaccharide induces alveolar epithelial cell stiffening Journal of Biomechanics 83, 315-318

Introduction: Application of lipopolysaccharide (LPS) is a widely employed model to mimic acute respiratory distress syndrome (ARDS). Available data regarding LPS-induced biomechanical changes on pulmonary epithelial cells are limited only to P. aeruginosa LPS. Considering that LPS from different bacteria could promote a specific mechanical response in epithelial cells, we aim to assess the effect of E. coli LPS, widely employed as a model of ARDS, in the biomechanics of alveolar epithelial cells. Methods: Young’s modulus (E) of alveolar epithelial cells (A549) was measured by atomic force microscopy every 5 min throughout 60 min of experiment after treatment with LPS from E. coli (100 μg/mL). The percentage of cells presenting actin stress fibers (F-actin staining) was also evaluated. Control cells were treated with culture medium and the values obtained were compared with LPS-treated cells for each time-point. Results: Application of LPS induced significant increase in E after 20 min (77%) till 60 min (104%) in comparison to controls. Increase in lung epithelial cell stiffness induced by LPS was associated with a higher number of cells presenting cytoskeletal remodeling. Conclusions: The observed effects of E. coli LPS on alveolar epithelial cells suggest that this widely-used LPS is able to promote a quick formation of actin stress fibers and stiffening cells, thereby facilitating the disruption of the pulmonary epithelial barrier.

JTD Keywords: Acute respiratory distress syndrome model, Alveolar epithelium, Biomechanics, E. coli, Lipopolysaccharide


Fuentes-Mera, L., Camacho, A., Engel, E., Pérez-Silos, V., Lara-Arias, J., Marino-Martínez, I., Peña-Martínez, V., (2019). Therapeutic potential of articular cartilage regeneration using tissue engineering based on multiphase designs Cartilage Tissue Engineering and Regeneration Techniques (ed. Nikolopoulos, Dimitrios D., Safos, George K., Dimitrios, Kalpaxis), IntechOpen (Budapest, Hungary) , 331-359

Articular cartilage tissue possesses poor ability to regenerate; as the lesion progresses, it extends to the underlying subchondral bone and an osteochondral (OC) defect appears complicating the therapeutic approaches. Cartilage tissue engineering has become a very active research area capable of contributing to medical technology innovation. In this regard, the development of new biomaterials in combination with cells represents one of the best alternatives for the treatment of OC injuries. In the last decades, the strategies have been designed without considering the cartilage as a complex tissue with a functionally stratified three-dimensional structure. Today, efforts are focused on creating a starting point in the process of cartilage formation with the development of a multiphase implants that recapitulates the cartilage as an OC unit, which improves its integration. This chapter will focus on a review of tissue engineering based on multiphase designs for cartilage and OC injuries, highlighting the importance of the biomaterial selection, and also the relevance of a biomimetic approach to reach a suitable microenvironment for the differentiation and maturation of the chondral tissue.

JTD Keywords: Osteochondral regeneration, Cartilage tissue engineering, Multiphasic designs, Biofunctionalization, Vascularization


Garcia-Esparcia, P., Koneti, A., Rodríguez-Oroz, M. C., Gago, B., del Rio, J. A., Ferrer, Isidro, (2018). Mitochondrial activity in the frontal cortex area 8 and angular gyrus in Parkinson's disease and Parkinson's disease with dementia Brain Pathology 28, (1), 43-57

Altered mitochondrial function is characteristic in the substantia nigra in Parkinson's disease (PD). Information about mitochondria in other brain regions such as the cerebral cortex is conflicting mainly because most studies have not contemplated the possibility of variable involvement depending on the region, stage of disease progression and clinical symptoms such as the presence or absence of dementia. RT-qPCR of 18 nuclear mRNAs encoding subunits of mitochondrial complexes and 12 mRNAs encoding energy metabolism-related enzymes; western blotting of mitochondrial proteins; and analysis of enzymatic activities of complexes I, II, II, IV and V of the respiratory chain were assessed in frontal cortex area 8 and the angular gyrus of middle-aged individuals (MA), and those with incidental PD (iPD), long-lasting PD with parkinsonism without dementia (PD) and long-lasting PD with dementia (PDD). Up-regulation of several genes was found in frontal cortex area 8 in PD when compared with MA and in the angular gyrus in iPD when compared with MA. Marked down-regulation of genes encoding mitochondrial subunits and energy metabolism-related enzymes occurs in frontal cortex but only of genes coding for energy metabolism-related enzymes in the angular gyrus in PDD. Significant decrease in the protein expression levels of several mitochondrial subunits encoded by these genes occurs in frontal cortex area 8 and angular gyrus in PDD. Moreover, expression of MT-ND1 which is encoded by mitochondrial DNA is also reduced in PDD. Reduced enzymatic activity of complex III in frontal cortex area 8 and angular gyrus is observed in PD, but dramatic reduction in the activity of complexes I, II, II and IV in both regions characterizes PDD. Dementia in the context of PD is linked to region-specific deregulation of genomic genes encoding subunits of mitochondrial complexes and to marked reduction in the activity of mitochondrial complexes I, II, III and IV.

JTD Keywords: Cerebral cortex, Dementia, Energy metabolism, Incidental PD, Mitochondria, Oxidative phosphorylation, Parkinson disease, PDD, Respiratory chain


Mata, A., Gil, V., Pérez-Clausell, J., Dasilva, M., González-Calixto, M. C., Soriano, E., García-Verdugo, J. M., Sanchez-Vives, M. V., Del Río, J. A., (2018). New functions of Semaphorin 3E and its receptor PlexinD1 during developing and adult hippocampal formation Scientific Reports 8, (1), 1381

The development and maturation of cortical circuits relies on the coordinated actions of long and short range axonal guidance cues. In this regard, the class 3 semaphorins and their receptors have been seen to be involved in the development and maturation of the hippocampal connections. However, although the role of most of their family members have been described, very few data about the participation of Semaphorin 3E (Sema3E) and its receptor PlexinD1 during the development and maturation of the entorhino-hippocampal (EH) connection are available. In the present study, we focused on determining their roles both during development and in adulthood. We determined a relevant role for Sema3E/PlexinD1 in the layer-specific development of the EH connection. Indeed, mice lacking Sema3E/PlexinD1 signalling showed aberrant layering of entorhinal axons in the hippocampus during embryonic and perinatal stages. In addition, absence of Sema3E/PlexinD1 signalling results in further changes in postnatal and adult hippocampal formation, such as numerous misrouted ectopic mossy fibers. More relevantly, we describe how subgranular cells express PlexinD1 and how the absence of Sema3E induces a dysregulation of the proliferation of dentate gyrus progenitors leading to the presence of ectopic cells in the molecular layer. Lastly, Sema3E mutant mice displayed increased network excitability both in the dentate gyrus and the hippocampus proper.

JTD Keywords: Adult neurogenesis, Axon and dendritic guidance


Franco, Rafael, Aguinaga, David, Reyes, Irene, Canela, Enric I., Lillo, Jaume, Tarutani, Airi, Hasegawa, Masato, del Ser-Badia, Anna, del Rio, José A., Kreutz, Michael R., Saura, Carlos A., Navarro, Gemma, (2018). N-methyl-D-aspartate receptor link to the MAP kinase pathway in cortical and hippocampal neurons and microglia Is dependent on calcium sensors and Is blocked by α-Synuclein, Tau, and phospho-Tau in non-transgenic and transgenic APPSw,Ind Mice Frontiers in Molecular Neuroscience 11, (273), Article 273

N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer’s disease model. Interestingly, a very marked increase in NMDAR–NCS1 complexes was identified in neurons and a marked increase of both NMDAR–NCS1 and NMDAR–CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor–calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.

JTD Keywords: Alzheimer’s disease, Calmodulin, Calneuron-1, Caldendrin, NCS1, Extracellular signal-regulated kinase, Glutamate receptor, Proximity ligation assay


Garreta, E., González, F., Montserrat, N., (2018). Studying kidney disease using tissue and genome engineering in human pluripotent stem cells Nephron 138, 48-59

Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease.

JTD Keywords: Clustered regularly interspaced short palindromic repeats/CRISPR-associated systems 9, Disease modeling, Gene editing, Human pluripotent stem cells, Kidney genetics, Tissue engineering


Casanellas, Ignasi, Lagunas, Anna, Tsintzou, Iro, Vida, Yolanda, Collado, Daniel, Pérez-Inestrosa, Ezequiel, Rodríguez-Pereira, Cristina, Magalhaes, Joana, Gorostiza, Pau, Andrades, José A., Becerra, José, Samitier, Josep, (2018). Dendrimer-based uneven nanopatterns to locally control surface adhesiveness: A method to direct chondrogenic differentiation Journal of Visualized Experiments Bioengineering, (131), e56347

Cellular adhesion and differentiation is conditioned by the nanoscale disposition of the extracellular matrix (ECM) components, with local concentrations having a major effect. Here we present a method to obtain large-scale uneven nanopatterns of arginine-glycine-aspartic acid (RGD)-functionalized dendrimers that permit the nanoscale control of local RGD surface density. Nanopatterns are formed by surface adsorption of dendrimers from solutions at different initial concentrations and are characterized by water contact angle (CA), X-ray photoelectron spectroscopy (XPS), and scanning probe microscopy techniques such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The local surface density of RGD is measured using AFM images by means of probability contour maps of minimum interparticle distances and then correlated with cell adhesion response and differentiation. The nanopatterning method presented here is a simple procedure that can be scaled up in a straightforward manner to large surface areas. It is thus fully compatible with cell culture protocols and can be applied to other ligands that exert concentration-dependent effects on cells.

JTD Keywords: Bioengineering, Dendrimer, Nanopattern, Arginine-Glycine-Aspartic Acid (RGD), Atomic Force Microscopy (AFM), Cell Adhesion, Mesenchymal Stem Cells (Mscs), Chondrogenesis


Frau-Méndez, Margalida A., Fernández-Vega, Iván, Ansoleaga, Belén, Blanco, Rosa, Carmona, Margarita, Antonio del Rio, Jose, Zerr, Inga, Llorens, Franc, Zarranz, Juan José, Ferrer, Isidro, (2017). Fatal familial insomnia: Mitochondrial and protein synthesis machinery decline in the mediodorsal thalamus Brain Pathology 27, (1), 95-106

The expression of subunits of mitochondrial respiratory complexes and components of the protein synthesis machinery from the nucleolus to the ribosome was analyzed in the mediodorsal thalamus in seven cases of Fatal Familial Insomnia (FFI) compared with age-matched controls. NDUFB8 (complex I subunit), SDHB (complex II subunit), UQCRC2 (complex III subunit), COX2 (complex IV subunit) and ATP50 (complex V subunit) expression levels, as revealed by western blotting, were reduced in FFI. Voltage-dependent anion channel (VDAC) and ATP5H were also reduced due to the marked depopulation of neurons. In contrast, a marked increase in superoxide dismutase 2 (SOD2) was found in reactive astrocytes thus suggesting that astrocytes are key factors in oxidative stress responses. The histone-binding chaperones nucleolin and nucleoplasmin 3, and histone H3 di-methylated K9 were markedly reduced together with a decrease in the expression of protein transcription elongation factor eEF1A. These findings show severe impairment in the expression of crucial components of mitochondrial function and protein synthesis in parallel with neuron loss in mediodorsal thalamus at terminal stages of FFI. Therapeutic measures must be taken long before the appearance of clinical symptoms to prevent the devastating effects of FFI.

JTD Keywords: Fatal familial insomnia, Mitochondria, Protein synthesis, Mitochondrial respiratory chain, Nucleolus, Ribosome


Garcia-Esparcia, Paula, López-González, Irene, Grau-Rivera, Oriol, García-Garrido, María Francisca, Konetti, Anusha, Llorens, Franc, Zafar, Saima, Carmona, Margarita, del Rio, José Antonio, Zerr, Inga, Gelpi, Ellen, Ferrer, Isidro, (2017). Dementia with Lewy Bodies: Molecular pathology in the frontal cortex in typical and rapidly progressive forms Frontiers in Neurology 8, Article 89

Objectives: The goal of this study was to assess mitochondrial function, energy, and purine metabolism, protein synthesis machinery from the nucleolus to the ribosome, inflammation, and expression of newly identified ectopic olfactory receptors (ORs) and taste receptors (TASRs) in the frontal cortex of typical cases of dementia with Lewy bodies (DLB) and cases with rapid clinical course (rpDLB: 2 years or less) compared with middle-aged non-affected individuals, in order to learn about the biochemical abnormalities underlying Lewy body pathology. Methods: Real-time quantitative PCR, mitochondrial enzymatic assays, and analysis of β-amyloid, tau, and synuclein species were used. Results: The main alterations in DLB and rpDLB, which are more marked in the rapidly progressive forms, include (i) deregulated expression of several mRNAs and proteins of mitochondrial subunits, and reduced activity of complexes I, II, III, and IV of the mitochondrial respiratory chain; (ii) reduced expression of selected molecules involved in energy metabolism and increased expression of enzymes involved in purine metabolism; (iii) abnormal expression of nucleolar proteins, rRNA18S, genes encoding ribosomal proteins, and initiation factors of the transcription at the ribosome; (iv) discrete inflammation; and (v) marked deregulation of brain ORs and TASRs, respectively. Severe mitochondrial dysfunction involving activity of four complexes, minimal inflammatory responses, and dramatic altered expression of ORs and TASRs discriminate DLB from Alzheimer’s disease. Altered solubility and aggregation of α-synuclein, increased β-amyloid bound to membranes, and absence of soluble tau oligomers are common in DLB and rpDLB. Low levels of soluble β-amyloid are found in DLB. However, increased soluble β-amyloid 1–40 and β-amyloid 1–42, and increased TNFα mRNA and protein expression, distinguish rpDLB. Conclusion: Molecular alterations in frontal cortex in DLB involve key biochemical pathways such as mitochondria and energy metabolism, protein synthesis, purine metabolism, among others and are accompanied by discrete innate inflammatory response.

JTD Keywords: Dementia with Lewy bodies, Alzheimer’s disease, α-synuclein, Mitochondria, Protein synthesis, Inflammation, β-amyloid, Olfactory receptors


Bosch, M., Castro, J., Sur, M., Hayashi, Y., (2017). Photomarking relocalization technique for correlated two-photon and electron microcopy imaging of single stimulated synapses Synapse Development - Methods and Protocols (Methods in Molecular Biology) (ed. Poulopoulos , A.), Humana Press (New York, USA) 1538, 185-214

Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here, we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.

JTD Keywords: Correlated imaging, DAB, Dendritic spine, Photobranding, Photoetching, Photomarking, Postsynaptic density, Serial-section transmission electron microscopy, Synapse, Time-lapse live two-photon fluorescence microscopy


De Koker, Stefaan, Cui, Jiwei, Vanparijs, Nane, Albertazzi, Lorenzo, Grooten, Johan, Caruso, Frank, De Geest, Bruno G., (2016). Engineering polymer hydrogel nanoparticles for lymph node-targeted delivery Angewandte Chemie - International Edition 55, (4), 1334-1339

The induction of antigen-specific adaptive immunity exclusively occurs in lymphoid organs. As a consequence, the efficacy by which vaccines reach these tissues strongly affects the efficacy of the vaccine. Here, we report the design of polymer hydrogel nanoparticles that efficiently target multiple immune cell subsets in the draining lymph nodes. Nanoparticles are fabricated by infiltrating mesoporous silica particles (ca. 200 nm) with poly(methacrylic acid) followed by disulfide-based crosslinking and template removal. PEGylation of these nanoparticles does not affect their cellular association in vitro, but dramatically improves their lymphatic drainage in vivo. The functional relevance of these observations is further illustrated by the increased priming of antigen-specific T cells. Our findings highlight the potential of engineered hydrogel nanoparticles for the lymphatic delivery of antigens and immune-modulating compounds.

JTD Keywords: Dendritic cells, Disulfides, Hydrogels, Nanoparticles, Vaccines


Ansoleaga, B., Garcia-Esparcia, Paula, Llorens, Franc, Hernández-Ortega, Karina, Carmona Tech, Margarita, Antonio del Rio, José, Zerr, Inga, Ferrer, Isidro, (2016). Altered mitochondria, protein synthesis machinery, and purine metabolism are molecular contributors to the pathogenesis of Creutzfeldt–Jakob disease Journal of Neuropathology & Experimental Neurology , 75, (8), 755-769

Neuron loss, synaptic decline, and spongiform change are the hallmarks of sporadic Creutzfeldt–Jakob disease (sCJD), and may be related to deficiencies in mitochondria, energy metabolism, and protein synthesis. To investigate these relationships, we determined the expression levels of genes encoding subunits of the 5 protein complexes of the electron transport chain, proteins involved in energy metabolism, nucleolar and ribosomal proteins, and enzymes of purine metabolism in frontal cortex samples from 15 cases of sCJD MM1 and age-matched controls. We also assessed the protein expression levels of subunits of the respiratory chain, initiation and elongation translation factors of protein synthesis, and localization of selected mitochondrial components. We identified marked, generalized alterations of mRNA and protein expression of most subunits of all 5 mitochondrial respiratory chain complexes in sCJD cases. Expression of molecules involved in protein synthesis and purine metabolism were also altered in sCJD. These findings point to altered mRNA and protein expression of components of mitochondria, protein synthesis machinery, and purine metabolism as components of the pathogenesis of CJD.

JTD Keywords: Creutzfeldt–Jakob disease, Electron transport chain, Mitochondria, Oxidative phosphorylation, Protein synthesis, Purine.


Forget, J., Awaja, F., Gugutkov, D., Gustavsson, J., Gallego Ferrer, G., Coelho-Sampaio, T., Hochman-Mendez, C., Salmeron-Sánchez, M., Altankov, G., (2016). Differentiation of human mesenchymal stem cells toward quality cartilage using fibrinogen-based nanofibers Macromolecular Bioscience 16, (9), 1348-1359

Mimicking the complex intricacies of the extra cellular matrix including 3D configurations and aligned fibrous structures were traditionally perused for producing cartilage tissue from stem cells. This study shows that human adipose derived mesenchymal stem cells (hADMSCs) establishes significant chondrogenic differentiation and may generate quality cartilage when cultured on 2D and randomly oriented fibrinogen/poly-lactic acid nanofibers compared to 3D sandwich-like environments. The adhering cells show well-developed focal adhesion complexes and actin cytoskeleton arrangements confirming the proper cellular interaction with either random or aligned nanofibers. However, quantitative reverse transcription-polymerase chain reaction analysis for Collagen 2 and Collagen 10 genes expression confirms favorable chondrogenic response of hADMSCs on random nanofibers and shows substantially higher efficacy of their differentiation in 2D configuration versus 3D constructs. These findings introduce a new direction for cartilage tissue engineering through providing a simple platform for the routine generation of transplantable stem cells derived articular cartilage replacement that might improve joint function.

JTD Keywords: Cartilage, Chondrogenic response, Collagen, FBG/PLA nanofibers, Mesenchymal stem cells


Reginensi, Diego, Carulla, Patricia, Nocentini, Sara, Seira, Oscar, Serra-Picamal, Xavier, Torres-Espín, Abel, Matamoros-Angles, Andreu, Gavín, Rosalina, Moreno-Flores, María Teresa, Wandosell, Francisco, Samitier, Josep, Trepat, Xavier, Navarro, Xavier, del Río, José Antonio, (2015). Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord Cellular and Molecular Life Sciences , 72, (14), 2719-2737

Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.

JTD Keywords: Olfactory ensheathing cells, Traction force microscopy, Chondroitin sulphate proteoglycans, Cell migration, Nogo receptor ectodomain


da Palma, R. K., Farré, R., Montserrat, J. M., Gorbenko Del Blanco, D., Egea, G., de Oliveira, L. V. F., Navajas, D., Almendros, I., (2015). Increased upper airway collapsibility in a mouse model of Marfan syndrome Respiratory Physiology & Neurobiology , 207, 58-60

Marfan syndrome (MFS) is a genetic disorder caused by mutations in the FBN1 gene that codifies for fibrilin-1. MFS affects elastic fiber formation and the resulting connective tissue shows abnormal tissue laxity and organization. Although an increased prevalence of obstructive sleep apnea among patients with MFS has been described, the potential effects of this genetic disease on the collapsible properties of the upper airway are unknown. The aim of this study was to assess the collapsible properties of the upper airway in a mouse model of MFS Fbn1(C1039G/+) that is representative of most of the clinical manifestations observed in human patients. The upper airway in wild-type and Marfan mice was cannulated and its critical pressure (Pcrit) was measured in vivo by increasing the negative pressure through a controlled pressure source. Pcrit values from MFS mice were higher (less negative) compared to wild-type mice (-3.1±0.9cmH2O vs. -7.8±2.0cm H2O) suggesting that MFS increases the upper airway collapsibility, which could in turn explain the higher prevalence of OSA in MFS patients.

JTD Keywords: Marfan syndrome, Obstructive sleep apnea, Upper airway collapsibility


Movellan, J., Urbán, P., Moles, E., de la Fuente, J. M., Sierra, T., Serrano, J. L., Fernàndez-Busquets, X., (2014). Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs Biomaterials 35, (27), 7940-7950

It can be foreseen that in a future scenario of malaria eradication, a varied armamentarium will be required, including strategies for the targeted administration of antimalarial compounds. The development of nanovectors capable of encapsulating drugs and of delivering them to Plasmodium-infected cells with high specificity and efficacy and at an affordable cost is of particular interest. With this objective, dendritic derivatives based on 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) and Pluronic® polymers have been herein explored. Four different dendritic derivatives have been tested for their capacity to encapsulate the antimalarial drugs chloroquine (CQ) and primaquine (PQ), their specific targeting to Plasmodium-infected red blood cells (pRBCs), and their antimalarial activity in vitro against the human pathogen Plasmodium falciparum and in vivo against the rodent malaria species Plasmodium yoelii. The results obtained have allowed the identification of two dendritic derivatives exhibiting specific targeting to pRBCs vs. non-infected RBCs, which reduce the in vitro IC50 of CQ and PQ by ca. 3- and 4-fold down to 4.0 nm and 1.1 μm, respectively. This work on the application of dendritic derivatives to antimalarial targeted drug delivery opens the way for the use of this new type of chemicals in future malaria eradication programs.

JTD Keywords: Antimalarial targeted drug delivery, Dendrimers, Malaria, Nanomedicine, Plasmodium, Polymeric nanoparticles


Lagunas, A., Garcia, A., Artés, J. M., Vida, Y., Collado, D., Pérez-Inestrosa, E., Gorostiza, P., Claros, S., Andrades, J. A., Samitier, J., (2014). Large-scale dendrimer-based uneven nanopatterns for the study of local arginine-glycine-aspartic acid (RGD) density effects on cell adhesion Nano Research , 7, (3), 399-409

Cell adhesion processes are governed by the nanoscale arrangement of the extracellular matrix (ECM), being more affected by local rather than global concentrations of cell adhesive ligands. In many cell-based studies, grafting of dendrimers on surfaces has shown the benefits of the local increase in concentration provided by the dendritic configuration, although the lack of any reported surface characterization has limited any direct correlation between dendrimer disposition and cell response. In order to establish a proper correlation, some control over dendrimer surface deposition is desirable. Here, dendrimer nanopatterning has been employed to address arginine-glycine-aspartic acid (RGD) density effects on cell adhesion. Nanopatterned surfaces were fully characterized by atomic force microscopy (AFM), scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), showing that tunable distributions of cell adhesive ligands on the surface are obtained as a function of the initial dendrimer bulk concentration. Cell experiments showed a clear correlation with dendrimer surface layout: Substrates presenting regions of high local ligand density resulted in a higher percentage of adhered cells and a higher degree of maturation of focal adhesions (FAs). Therefore, dendrimer nanopatterning is presented as a suitable and controlled approach to address the effect of local ligand density on cell response. Moreover, due to the easy modification of dendrimer peripheral groups, dendrimer nanopatterning can be further extended to other ECM ligands having density effects on cells.

JTD Keywords: Arginine-glycine-aspartic acid, Atomic force microscopy, Cell adhesion, Dendrimer, Focal adhesions, Scanning tunneling microscopy


Urbán, P., Fernàndez-Busquets, X., (2014). Nanomedicine against malaria Current Medicinal Chemistry , 21, (5), 605-629

Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium sp. The clinical, social and economic burden of malaria has led for the last 100 years to several waves of serious efforts to reach its control and eventual eradication, without success to this day. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial drugs exclusively to Plasmodium-infected cells. Different types of encapsulating structure, targeting molecule, and antimalarial compound will be discussed for the assembly of Trojan horse nanocapsules capable of targeting with complete specificity diseased cells and of delivering inside them their antimalarial cargo with the objective of eliminating the parasite with a single dose. Nanotechnology can also be applied to the discovery of new antimalarials through single-molecule manipulation approaches for the identification of novel drugs targeting essential molecular components of the parasite. Finally, methods for the diagnosis of malaria can benefit from nanotools applied to the design of microfluidic-based devices for the accurate identification of the parasite's strain, its precise infective load, and the relative content of the different stages of its life cycle, whose knowledge is essential for the administration of adequate therapies. The benefits and drawbacks of these nanosystems will be considered in different possible scenarios, including cost-related issues that might be hampering the development of nanotechnology-based medicines against malaria with the dubious argument that they are too expensive to be used in developing areas.

JTD Keywords: Dendrimers, Liposomes, Malaria diagnosis, Nanobiosensors, Nanoparticles, Plasmodium, Polymers, Targeted drug delivery


Lozano-Garcia, M., Fiz, J. A., Jané, R., (2014). Analysis of normal and continuous adventitious sounds for the assessment of asthma IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 981-984

Assessment of asthma is a difficult procedure which is based on the correlation of multiple factors. A major component in the diagnosis of asthma is the assessment of BD response, which is performed by traditional spirometry. In this context, the analysis of respiratory sounds (RS) provides relevant and complementary information about the function of the respiratory system. In particular, continuous adventitious sounds (CAS), such as wheezes, contribute to assess the severity of patients with obstructive diseases. On the other hand, the intensity of normal RS is dependent on airflow level and, therefore, it changes depending on the level of obstruction. This study proposes a new approach to RS analysis for the assessment of asthmatic patients, by combining the quantification of CAS and the analysis of the changes in the normal sound intensity-airflow relationship. According to results obtained from three patients with different characteristics, the proposed technique seems more sensitive and promising for the assessment of asthma.

JTD Keywords: Asthma, Bronchodilator response, Continuous adventitious sound, Respiratory sound intensity, Wheezes


La Torre, A., Del Mar Masdeu, M., Cotrufo, T., Moubarak, R. S., Del Río, J. A., Comella, J. X., Soriano, E., Ureña, J. M., (2013). A role for the tyrosine kinase ACK1 in neurotrophin signaling and neuronal extension and branching Cell Death and Disease , 4, (4), e602

Neurotrophins are involved in many crucial cellular functions, including neurite outgrowth, synapse formation, and plasticity. Although these events have long been known, the molecular determinants underlying neuritogenesis have not been fully characterized. Ack1 (activated Cdc42-associated tyrosine kinase) is a non-receptor tyrosine kinase that is highly expressed in the brain. Here, we demonstrate that Ack1 is a molecular constituent of neurotrophin signaling cascades in neurons and PC12 cells. We report that Ack1 interacts with Trk receptors and becomes tyrosine phosphorylated and its kinase activity is increased in response to neurotrophins. Moreover, our data indicate that Ack1 acts upstream of the Akt and MAPK pathways. We show that Ack1 overexpression induces neuritic outgrowth and promotes branching in neurotrophin-treated neuronal cells, whereas the expression of Ack1 dominant negatives or short-hairpin RNAs counteract neurotrophin-stimulated differentiation. Our results identify Ack1 as a novel regulator of neurotrophin-mediated events in primary neurons and in PC12 cells.

JTD Keywords: Axonal, Branching, Dendritic, Neurotrophins, Tyrosine kinase


Guo, S., Artés, J. M., Díez-Pérez, I., (2013). Electrochemically-gated single-molecule electrical devices Electrochimica Acta 63rd Annual Meeting of the International Society of Electrochemistry , Elsevier (Prague, Czech Republic) 110, 741-753

In the last decade, single-molecule electrical contacts have emerged as a new experimental platform that allows exploring charge transport phenomena in individual molecular blocks. This novel tool has evolved into an essential element within the Molecular Electronics field to understand charge transport processes in hybrid (bio)molecule/electrode interfaces at the nanoscale, and prospect the implementation of active molecular components into functional nanoscale optoelectronic devices. Within this area, three-terminal single-molecule devices have been sought, provided that they are highly desired to achieve full functionality in logic electronic circuits. Despite the latest experimental developments offer consistent methods to bridge a molecule between two electrodes (source and drain in a transistor notation), placing a third electrode (gate) close to the single-molecule electrical contact is still technically challenging. In this vein, electrochemically-gated single-molecule devices have emerged as an experimentally affordable alternative to overcome these technical limitations. In this review, the operating principle of an electrochemically-gated single-molecule device is presented together with the latest experimental methodologies to built them and characterize their charge transport characteristics. Then, an up-to-date comprehensive overview of the most prominent examples will be given, emphasizing on the relationship between the molecular structure and the final device electrical behaviour.

JTD Keywords: Electrochemical gate, Electrochemical switches, NDR, Single-molecule junctions, Unipolar/ambipolar FETs


Dries, Koen, Helden, Suzanne, Riet, Joostte, Diez-Ahedo, Ruth, Manzo, Carlo, Oud, Machteld, Leeuwen, Frank, Brock, Roland, Garcia-Parajo, Maria, Cambi, Alessandra, Figdor, CarlG, (2012). Geometry sensing by dendritic cells dictates spatial organization and PGE2-induced dissolution of podosomes Cellular and Molecular Life Sciences , 69, (11), 1889-1901

Assembly and disassembly of adhesion structures such as focal adhesions (FAs) and podosomes regulate cell adhesion and differentiation. On antigen-presenting dendritic cells (DCs), acquisition of a migratory and immunostimulatory phenotype depends on podosome dissolution by prostaglandin E2 (PGE2). Whereas the effects of physico-chemical and topographical cues have been extensively studied on FAs, little is known about how podosomes respond to these signals. Here, we show that, unlike for FAs, podosome formation is not controlled by substrate physico-chemical properties. We demonstrate that cell adhesion is the only prerequisite for podosome formation and that substrate availability dictates podosome density. Interestingly, we show that DCs sense 3-dimensional (3-D) geometry by aligning podosomes along the edges of 3-D micropatterned surfaces. Finally, whereas on a 2-dimensional (2-D) surface PGE2 causes a rapid increase in activated RhoA levels leading to fast podosome dissolution, 3-D geometric cues prevent PGE2-mediated RhoA activation resulting in impaired podosome dissolution even after prolonged stimulation. Our findings indicate that 2-D and 3-D geometric cues control the spatial organization of podosomes. More importantly, our studies demonstrate the importance of substrate dimensionality in regulating podosome dissolution and suggest that substrate dimensionality plays an important role in controlling DC activation, a key process in initiating immune responses.

JTD Keywords: Mechanosensitivity, Podosomes, Dendritic cell, Adhesion


Urban, P., Valle-Delgado, J. J., Moles, E., Marques, J., Diez, C., Fernàndez-Busquets, X., (2012). Nanotools for the delivery of antimicrobial peptides Current Drug Targets , 13, (9), 1158-1172

Antimicrobial peptide drugs are increasingly attractive therapeutic agents as their roles in physiopathological processes are being unraveled and because the development of recombinant DNA technology has made them economically affordable in large amounts and high purity. However, due to lack of specificity regarding the target cells, difficulty in attaining them, or reduced half-lives, most current administration methods require high doses. On the other hand, reduced specificity of toxic drugs demands low concentrations to minimize undesirable side-effects, thus incurring the risk of having sublethal amounts which favour the appearance of resistant microbial strains. In this scenario, targeted delivery can fulfill the objective of achieving the intake of total quantities sufficiently low to be innocuous for the patient but that locally are high enough to be lethal for the infectious agent. One of the major advances in recent years has been the size reduction of drug carriers that have dimensions in the nanometer scale and thus are much smaller than -and capable of being internalized by- many types of cells. Among the different types of potential antimicrobial peptide-encapsulating structures reviewed here are liposomes, dendritic polymers, solid core nanoparticles, carbon nanotubes, and DNA cages. These nanoparticulate systems can be functionalized with a plethora of biomolecules providing specificity of binding to particular cell types or locations; as examples of these targeting elements we will present antibodies, DNA aptamers, cell-penetrating peptides, and carbohydrates. Multifunctional Trojan horse-like nanovessels can be engineered by choosing the adequate peptide content, encapsulating structure, and targeting moiety for each particular application.

JTD Keywords: Antibodies, Aptamers, Dendrimers, Liposomes, Nanomedicine, Nanoparticles, Nanovectors, Targeting


Armendáriz, Beatriz G., Bribian, Ana, Pérez-Martínez, Esther, Martínez, Albert, de Castro, Fernando, Soriano, Eduardo, Burgaya, Ferran, (2012). Expression of Semaphorin 4F in neurons and brain oligodendrocytes and the regulation of oligodendrocyte precursor migration in the optic nerve Molecular and Cellular Neuroscience , 49, (1), 54-67

Semaphorins are secreted or membrane-anchored proteins that play critical roles in neural development and adult brain plasticity. Sema4F is a transmembrane semaphorin found on glutamatergic synapses, in which it is attached to the PSD-95-scaffolding protein. Here we further examined the expression of Sema4F by raising specific antibodies. We show that Sema4F protein is widely expressed by neurons during neural development and in the adult brain. We also demonstrate a preferential localization of this protein in postsynaptic dendrites. Moreover, Sema4F is expressed not only by neurons but also by oligodendrocyte precursors in the optic nerve and along the migratory pathways of oligodendroglial cells, and also by subsets of postnatal oligodendroglial cells in the brain. Finally, in vitro experiments demonstrate that endogenous Sema4F expressed by brain cells of oligodendroglial lineage regulates the outgrowth migration of oligodendrocyte precursors and promotes their differentiation. The present data extend our knowledge about the expression of Sema4F and uncover a novel function in the control of oligodendrocyte precursor migration in the developing brain.

JTD Keywords: Semaphorin, Oligodendrocyte, Guidance, Optic nerve, Brain


Mesquita, J., Poree, F., Carrault, G., Fiz, J. A., Abad, J., Jané, R., (2012). Respiratory and spontaneous arousals in patients with Sleep Apnea Hypopnea Syndrome Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 6337-6340

Sleep in patients with Sleep Apnea-Hypopnea Syndrome (SAHS) is frequently interrupted with arousals. Increased amounts of arousals result in shortening total sleep time and repeated sleep-arousal change can result in sleep fragmentation. According to the American Sleep Disorders Association (ASDA) an arousal is a marker of sleep disruption representing a detrimental and harmful feature for sleep. The nature of arousals and its role on the regulation of the sleep process raises controversy and has sparked the debate in the last years. In this work, we analyzed and compared the EEG spectral content of respiratory and spontaneous arousals on a database of 45 SAHS subjects. A total of 3980 arousals (1996 respiratory and 1984 spontaneous) were analyzed. The results showed no differences between the spectral content of the two kinds of arousals. Our findings raise doubt as to whether these two kinds of arousals are truly triggered by different organic mechanisms. Furthermore, they may also challenge the current beliefs regarding the underestimation of the importance of spontaneous arousals and their contribution to sleep fragmentation in patients suffering from SAHS.

JTD Keywords: Adaptive filters, Correlation, Databases, Electroencephalography, Hospitals, Sleep apnea, Electroencephalography, Medical signal processing, Pneumodynamics, Sleep, EEG spectral content, Organic mechanism, Respiratory, Sleep apnea hypopnea syndrome, Sleep fragmentation, Spectral content, Spontaneous arousal


Trepat, X., Fredberg, J. J., (2011). Plithotaxis and emergent dynamics in collective cellular migration Trends in Cell Biology 21, (11), 638-646

For a monolayer sheet to migrate cohesively, it has long been suspected that each constituent cell must exert physical forces not only upon its extracellular matrix but also upon neighboring cells. The first comprehensive maps of these distinct force components reveal an unexpected physical picture. Rather than showing smooth and systematic variation within the monolayer, the distribution of physical forces is dominated by heterogeneity, both in space and in time, which emerges spontaneously, propagates over great distances, and cooperates over the span of many cell bodies. To explain the severe ruggedness of this force landscape and its role in collective cell guidance, the well known mechanisms of chemotaxis, durotaxis, haptotaxis are clearly insufficient. In a broad range of epithelial and endothelial cell sheets, collective cell migration is governed instead by a newly discovered emergent mechanism of innately collective cell guidance - plithotaxis.

JTD Keywords: Positional information, Drosophila embryo, Sheet migration, Dpp gradient, Cells, Force, Morphogenesis, Transition, Identification, Proliferation


Izquierdo-Useros, Nuria, Esteban, Olga, Rodriguez-Plata, Maria T., Erkizia, Itziar, Prado, Julia G., Blanco, Julia, Garcia-Parajo, Maria F., Martinez-Picado, Javier, (2011). Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells Traffic , 12, (12), 1702-1713

Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional videomicroscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression.

JTD Keywords: Dendritic cells, HIV-1, Live cell imaging, Trans-infection


Fiz, José Antonio, Solà, J., Jané, Raimon, (2011). Métodos de análisis del ronquido Medicina Clínica , 137, (1), 36-42

El ronquido es un sonido respiratorio que se produce durante el sueño, ya sea nocturno o diurno. El ronquido puede ser inspiratorio, espiratorio o puede ocupar todo el ciclo respiratorio. Tiene su origen en la vibración de los diferentes tejidos de la vía aérea superior. Se han descrito numerosos métodos para analizarlo, desde el simple interrogatorio, pasando por cuestionarios estándares, hasta llegar a los métodos acústicos más sofisticados, que se han desarrollado gracias al gran avance de las técnicas biomédicas en los últimos años. El presente trabajo describe el estado del arte actual en los procedimientos de análisis del ronquido.

JTD Keywords: Ronquido, Apnea del sueño, Síndrome de apnea-hipoapnea del sueño, Snoring, Sleep apnea, Sleep Apnea and Hipoapnea Syndrome


Fiz, J. A., Jané, R., Solà, J., Abad, J., Garcia, M. A., Morera, J., (2010). Continuous analysis and monitoring of snores and their relationship to the apnea-hypopnea index Laryngoscope , 120, (4), 854-862

Objectives/Hypothesis: We used a new automatic snoring detection and analysis system to monitor snoring during full-night polysomnography to assess whether the acoustic characteristics of snores differ in relation to the apnea-hypopnea index (AHI) and to classify subjects according to their AHI Study Design: Individual Case-Control Study. Methods: Thirty-seven snorers (12 females and 25 males, ages 40-65 years; body mass index (BMI), 29.65 +/- 4.7 kg/m(2)) participated Subjects were divided into three groups: G1 (AHI <5), G2 (AHI >= 5, <15) and G3 (AHI >= 15) Snore and breathing sounds were : recorded with a tracheal microphone throughout 6 hours of nighttime polysomnography The snoring episodes identified were automatically and continuously analyzed with a previously trained 2-layer feed-forward neural network. Snore number, average intensity, and power spectral density parameters were computed for every subject and compared among AHI groups. Subjects were classified using different AHI thresholds by means of a logistic regression model. Results: There were significant differences in supine position between G1 and G3 in sound intensity, number of snores; standard deviation of the spectrum, power ratio in bands 0-500, 100-500, and 0-800 Hz, and the symmetry coefficient (P < .03); Patients were classified with thresholds AHI = 5 and AHI = 15 with a sensitivity (specificity) of 87% (71%) and 80% (90%), respectively. Conclusions: A new system for automatic monitoring and analysis of snores during the night is presented. Sound intensity and several snore frequency parameters allow differentiation of snorers according to obstructive sleep apnea syndrome severity (OSAS). Automatic snore intensity and frequency monitoring and analysis could be a promising tool for screening OSAS patients, significantly improving the managing of this pathology.

JTD Keywords: Breathing sounds, Signal interpretation, Sleep apnea syndromes, Snoring


Mesquita, J., Fiz, J. A., Solà, J., Morera, J., Jané, R., (2010). Regular and non regular snore features as markers of SAHS Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 6138-6141

Sleep Apnea-Hypopnea Syndrome (SAHS) diagnosis is still done with an overnight multi-channel polysomnography. Several efforts are being made to study profoundly the snore mechanism and discover how it can provide an opportunity to diagnose the disease. This work introduces the concept of regular snores, defined as the ones produced in consecutive respiratory cycles, since they are produced in a regular way, without interruptions. We applied 2 thresholds (TH/sub adaptive/ and TH/sub median/) to the time interval between successive snores of 34 subjects in order to select regular snores from the whole all-night snore sequence. Afterwards, we studied the effectiveness that parameters, such as time interval between successive snores and the mean intensity of snores, have on distinguishing between different levels of SAHS severity (AHI (Apnea-Hypopnea Index)<5h/sup -1/, AHI<10 h/sup -1/, AHI<15h/sup -1/, AHI<30h/sup -1/). Results showed that TH/sub adaptive/ outperformed TH/sub median/ on selecting regular snores. Moreover, the outcome achieved with non-regular snores intensity features suggests that these carry key information on SAHS severity.

JTD Keywords: Practical, Experimental/ acoustic signal processing, Bioacoustics, Biomedical measurement, Diseases, Feature extraction, Medical signal processing, Patient diagnosis, Pneumodynamics, Sleep/ nonregular snore features, SAHS markers, Sleep apnea hypopnea syndrome, Overnight multichannel polysomnography, Snore mechanism


Calvo, D., Salvador, J. P., Tort, N., Centi, F., Marco, M. P., Marco, S., (2009). Multidetection of anabolic androgenic steroids using immunoarrays and pattern recognition techniques Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 547-550

A first step towards the multidetection of anabolic androgenic steroids by Enzyme-linked immunosorbent assays (ELISA) has been performed in this study. This proposal combines an array of classical ELISA assays with different selectivities and multivariate data analysis techniques. Data has been analyzed by principal component analysis in conjunction with a k-nearest line classifier has been used. This proposal allows to detect simultaneously four different compounds in the range of concentration from 10(-1.5) to 10(3) mM with a total rate of 90.6% of correct detection.

JTD Keywords: Immunoarray, Anabolic androgenic steroid, Multidetection, Pattern recognition, K-nearlest line


Bravo, R., Arimon, M., Valle-Delgado, J. J., Garcia, R., Durany, N., Castel, S., Cruz, M., Ventura, S., Fernàndez-Busquets, X., (2008). Sulfated polysaccharides promote the assembly of amyloid beta(1-42) peptide into stable fibrils of reduced cytotoxicity Journal of Biological Chemistry , 283, (47), 32471-32483

The histopathological hallmarks of Alzheimer disease are the self-aggregation of the amyloid beta peptide (A beta) in extracellular amyloid fibrils and the formation of intraneuronal Tau filaments, but a convincing mechanism connecting both processes has yet to be provided. Here we show that the endogenous polysaccharide chondroitin sulfate B (CSB) promotes the formation of fibrillar structures of the 42-residue fragment, A beta(1-42). Atomic force microscopy visualization, thioflavin T fluorescence, CD measurements, and cell viability assays indicate that CSB-induced fibrils are highly stable entities with abundant beta-sheet structure that have little toxicity for neuroblastoma cells. We propose a wedged cylinder model for A beta(1-42) fibrils that is consistent with the majority of available data, it is an energetically favorable assembly that minimizes the exposure of hydrophobic areas, and it explains why fibrils do not grow in thickness. Fluorescence measurements of the effect of different A beta(1-42) species on Ca2+ homeostasis show that weakly structured nodular fibrils, but not CSB-induced smooth fibrils, trigger a rise in cytosolic Ca2+ that depends on the presence of both extracellular and intracellular stocks. In vitro assays indicate that such transient, local Ca2+ increases can have a direct effect in promoting the formation of Tau filaments similar to those isolated from Alzheimer disease brains.

JTD Keywords: AFM, Alzheimers-disease, Chondroitin sulfate, Heparan-sulfate, Lipid-bilayers, Beta-peptide, In-vitro, Neurodegenerative diseases, Extracellular-matrix, Prion protein