DONATE

Publications

by Keyword: materials

Mestre, R, Fuentes, J, Lefaix, L, Wang, JJ, Guix, M, Murillo, G, Bashir, R, Sanchez, S, (2023). Improved Performance of Biohybrid Muscle-Based Bio-Bots Doped with Piezoelectric Boron Nitride Nanotubes Advanced Materials Technologies , 2200505

Biohybrid robots, or bio-bots, integrate living and synthetic materials following a synergistic strategy to acquire some of the unique properties of biological organisms, like adaptability or bio-sensing, which are difficult to obtain exclusively using artificial materials. Skeletal muscle is one of the preferred candidates to power bio-bots, enabling a wide variety of movements from walking to swimming. Conductive nanocomposites, like gold nanoparticles or graphene, can provide benefits to muscle cells by improving the scaffolds' mechanical and conductive properties. Here, boron nitride nanotubes (BNNTs), with piezoelectric properties, are integrated in muscle-based bio-bots and an improvement in their force output and motion speed is demonstrated. A full characterization of the BNNTs is provided, and their piezoelectric behavior with piezometer and dynamometer measurements is confirmed. It is hypothesized that the improved performance is a result of an electric field generated by the nanocomposites due to stresses produced by the cells during differentiation. This hypothesis is backed with finite element simulations supporting that this stress can generate a non-zero electric field within the matrix. With this work, it is shown that the integration of nanocomposite into muscle-based bio-bots can improve their performance, paving the way toward stronger and faster bio-hybrid robots.

JTD Keywords: Bio-bots, Biohybrid robots, Biomaterials, Boron nitride nanotubes, Cells, Cytotoxicity, Differentiation, Myoblasts, Skeletal muscle tissue, Skeletal-muscle, Stimulation


Carter SD, Atif AR, Diez-Escudero A, Grape M, Ginebra MP, Tenje M, Mestres G, (2022). A microfluidic-based approach to investigate the inflammatory response of macrophages to pristine and drug-loaded nanostructured hydroxyapatite Materials Today Bio 16, 100351

The in vitro biological characterization of biomaterials is largely based on static cell cultures. However, for highly reactive biomaterials such as calcium-deficient hydroxyapatite (CDHA), this static environment has limitations. Drastic alterations in the ionic composition of the cell culture medium can negatively affect cell behavior, which can lead to misleading results or data that is difficult to interpret. This challenge could be addressed by a microfluidics-based approach (i.e. on-chip), which offers the opportunity to provide a continuous flow of cell culture medium and a potentially more physiologically relevant microenvironment. The aim of this work was to explore microfluidic technology for its potential to characterize CDHA, particularly in the context of inflammation. Two different CDHA substrates (chemically identical, but varying in microstructure) were integrated on-chip and subsequently evaluated. We demonstrated that the on-chip environment can avoid drastic ionic alterations and increase protein sorption, which was reflected in cell studies with RAW 264.7 macrophages. The cells grown on-chip showed a high cell viability and enhanced proliferation compared to cells maintained under static conditions. Whereas no clear differences in the secretion of tumor necrosis factor alpha (TNF-α) were found, variations in cell morphology suggested a more anti-inflammatory environment on-chip. In the second part of this study, the CDHA substrates were loaded with the drug Trolox. We showed that it is possible to characterize drug release on-chip and moreover demonstrated that Trolox affects the TNF-α secretion and morphology of RAW 264.7 ​cells. Overall, these results highlight the potential of microfluidics to evaluate (bioactive) biomaterials, both in pristine form and when drug-loaded. This is of particular interest for the latter case, as it allows the biological characterization and assessment of drug release to take place under the same dynamic in vitro environment.© 2022 The Authors.

JTD Keywords: alpha-tocopherol, antioxidant, biomaterials, calcium phosphate cement, culture, delivery, drug release, in vitro, in-vitro, ion, macrophage, on-chip, release, tool, Biomaterial, Calcium phosphate cement, Calcium-phosphate cements, Drug release, In vitro, Macrophage, On-chip


Bonany M, Pérez-Berná AJ, Dučić T, Pereiro E, Martin-Gómez H, Mas-Moruno C, van Rijt S, Zhao Z, Espanol M, Ginebra MP, (2022). Hydroxyapatite nanoparticles-cell interaction: New approaches to disclose the fate of membrane-bound and internalised nanoparticles Biomaterials Advances 142, 213148

Hydroxyapatite nanoparticles are popular tools in bone regeneration, but they have also been used for gene delivery and as anticancer drugs. Understanding their mechanism of action, particularly for the latter application, is crucial to predict their toxicity. To this end, we aimed to elucidate the importance of nanoparticle membrane interactions in the cytotoxicity of MG-63 cells using two different types of nanoparticles. In addition, conventional techniques for studying nanoparticle internalisation were evaluated and compared with newer and less exploited approaches. Hydroxyapatite and magnesium-doped hydroxyapatite nanoparticles were used as suspensions or compacted as specular discs. Comparison between cells seeded on the discs and those supplemented with the nanoparticles allowed direct interaction of the cell membrane with the material to be ruled out as the main mechanism of toxicity. In addition, standard techniques such as flow cytometry were inconclusive when used to assess nanoparticles toxicity. Interestingly, the use of intracellular calcium fluorescent probes revealed the presence of a high number of calcium-rich vesicles after nanoparticle supplementation in cell culture. These structures could not be detected by transmission electron microscopy due to their liquid content. However, by using cryo-soft X-ray imaging, which was used to visualise the cellular ultrastructure without further treatment other than vitrification and to quantify the linear absorption coefficient of each organelle, it was possible to identify them as multivesicular bodies, potentially acting as calcium stores. In the study, an advanced state of degradation of the hydroxyapatite and magnesium-doped hydroxyapatite nanoparticles within MG-63 cells was observed. Overall, we demonstrate that the combination of fluorescent calcium probes together with cryo-SXT is an excellent approach to investigate intracellular calcium, especially when found in its soluble form.Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.

JTD Keywords: adsorption, cryo-soft x-ray tomography, cytotoxicity, expression, flow cytometry, internalisation, intracellular calcium, magnesium, nano, nanomaterials, nanoparticles, proliferation, protein corona, ultrastructure, Calcium-phosphate nanoparticles, Cryo-soft x-ray tomography, Flow cytometry, Hydroxyapatite, Internalisation, Intracellular calcium, Nanoparticles


Mochi F, Scatena E, Rodriguez D, Ginebra MP, Del Gaudio C, (2022). Scaffold-based bone tissue engineering in microgravity: potential, concerns and implications Npj Microgravity 8, 45

One of humanity's greatest challenges is space exploration, which requires an in-depth analysis of the data continuously collected as a necessary input to fill technological gaps and move forward in several research sectors. Focusing on space crew healthcare, a critical issue to be addressed is tissue regeneration in extreme conditions. In general, it represents one of the hottest and most compelling goals of the scientific community and the development of suitable therapeutic strategies for the space environment is an urgent need for the safe planning of future long-term manned space missions. Osteopenia is a commonly diagnosed disease in astronauts due to the physiological adaptation to altered gravity conditions. In order to find specific solutions to bone damage in a reduced gravity environment, bone tissue engineering is gaining a growing interest. With the aim to critically investigate this topic, the here presented review reports and discusses bone tissue engineering scenarios in microgravity, from scaffolding to bioreactors. The literature analysis allowed to underline several key points, such as the need for (i) biomimetic composite scaffolds to better mimic the natural microarchitecture of bone tissue, (ii) uniform simulated microgravity levels for standardized experimental protocols to expose biological materials to the same testing conditions, and (iii) improved access to real microgravity for scientific research projects, supported by the so-called democratization of space.© 2022. The Author(s).

JTD Keywords: biomaterials, collagen/hydroxyapatite, composite scaffolds, in-vitro, mineralization, proliferation, regenerative medicine, stem-cells, vivo, Hydroxyapatite scaffolds


López-Canosa, Adrián, Pérez-Amodio, Soledad, Engel, Elisabeth, Castaño, Oscar, (2022). Microfluidic 3D Platform to Evaluate Endothelial Progenitor Cell Recruitment by Bioactive Materials Acta Biomaterialia 151, 264-277

Herrero-Gomez, A, Azagra, M, Marco-Rius, I, (2022). A cryopreservation method for bioengineered 3D cell culture models Biomedical Materials 17, 045023

Technologies to cryogenically preserve (a.k.a. cryopreserve) living tissue, cell lines and primary cells have matured greatly for both clinicians and researchers since their first demonstration in the 1950s and are widely used in storage and transport applications. Currently, however, there remains an absence of viable cryopreservation and thawing methods for bioengineered, three-dimensional (3D) cell models, including patients' samples. As a first step towards addressing this gap, we demonstrate a viable protocol for spheroid cryopreservation and survival based on a 3D carboxymethyl cellulose scaffold and precise conditions for freezing and thawing. The protocol is tested using hepatocytes, for which the scaffold provides both the 3D structure for cells to self-arrange into spheroids and to support cells during freezing for optimal post-thaw viability. Cell viability after thawing is improved compared to conventional pellet models where cells settle under gravity to form a pseudo-tissue before freezing. The technique may advance cryobiology and other applications that demand high-integrity transport of pre-assembled 3D models (from cell lines and in future cells from patients) between facilities, for example between medical practice, research and testing facilities.

JTD Keywords: 3d cell culture, Biofabrication, Biomaterials, Carboxymethyl cellulose, Cryopreservation, Hepatocytes, Prevention, Scaffolds, Spheroids


Iglesias-Fernandez, M, Buxadera-Palomero, J, Sadowska, JM, Espanol, M, Ginebra, MP, (2022). Implementation of bactericidal topographies on biomimetic calcium phosphates and the potential effect of its reactivity Biomaterials Advances 136, 212797

Since the discovery that nanostructured surfaces were able to kill bacteria, many works have been published focusing on the design of nanopatterned surfaces with antimicrobial properties. Synthetic bone grafts, based on calcium phosphate (CaP) formulations, can greatly benefit from this discovery if adequate nanotopographies can be developed. However, CaP are reactive materials and experience ionic exchanges when placed into aqueous solutions which may in turn affect cell behaviour and complicate the interpretation of the bactericidal results. The present study explores the bactericidal potential of two nanopillared CaP prepared by hydrolysis of two different sizes of alpha-tricalcium phosphate (alpha-TCP) powders under biomimetic or hydrothermal conditions. A more lethal bactericidal response toward Pseudomonas aeruginosa (similar to 75% killing efficiency of adhered bacteria) was obtained from the hydrothermally treated CaP which consisted in a more irregular topography in terms of pillar size (radius: 20-60 nm), interpillar distances (100-1500 nm) and pillar distribution (pillar groups forming bouquets) than the biomimetically treated one (radius: 20-40 nm and interpillar distances: 50-200 nm with a homogeneous pillar distribution). The material reactivity was greatly influenced by the type of medium (nutrient-rich versus nutrient-free) and the presence or not of bacteria. A lower reactivity and superior bacterial attachment were observed in the nutrient-free medium while a lower attachment was observed for the nutrient rich medium which was explained by a superior reactivity of the material paired with the lower tendency of planktonic bacteria to adhere on surfaces in the presence of nutrients. Importantly, the ionic exchanges produced by the presence of materials were not toxic to planktonic cells. Thus, we can conclude that topography was the main contributor to mortality in the bacterial adhesion tests.

JTD Keywords: Adhesion, Antibacterial, Bactericidal, Biomaterials, Calcium deficient hydroxyapatite, Calcium phosphates, Hydroxyapatite, In-vitro, Infections, Nanopillars, Pseudomonas aeruginosa, Pseudomonas-aeruginosa, Reactivity, Recent progress, Silver, Topography, Transmission


Moreira, VB, Aleman, C, Rintjema, J, Bravo, F, Kleij, AW, Armelin, E, (2022). A Biosourced Epoxy Resin for Adhesive Thermoset Applications Chemsuschem 15, e202102624

Biobased epoxy-derived raw materials will be essential for future coating and adhesive designs in industry. Here, a facile approach is reported towards the incorporation of limonene into an epoxy-functionalized polycarbonate and its crosslinking with a polyamine curing agent to obtain a thermoset material. For the first time, a solvent-borne adhesive with excellent film-forming, mechanical and adhesion strength properties is described.

JTD Keywords: adhesives, biobased epoxies, limonene, polycarbonate, Adhesives, Biobased epoxies, Biobased epoxy, Carbon-dioxide, Curing agents, Design in industries, Epoxides, Epoxy, Epoxy resins, Film adhesion, Film-forming, Functionalized, Limonene, Mechanical, Monomer, Monoterpenes, Oil, Oxide, Performance, Polyamines, Polycarbonate, Polycarbonates, Terpenes, Thermoset materials, Thermosets


Schieber, Romain, Mas-Moruno, Carlos, Lasserre, Federico, Roa, Joan Josep, Ginebra, Maria-Pau, Mücklich, Frank, Pegueroles, Marta, (2022). Effectiveness of Direct Laser Interference Patterning and Peptide Immobilization on Endothelial Cell Migration for Cardio-Vascular Applications: An In Vitro Study Nanomaterials 12, 1217

Endothelial coverage of an exposed cardiovascular stent surface leads to the occurrence of restenosis and late-stent thrombosis several months after implantation. To overcome this difficulty, modification of stent surfaces with topographical or biochemical features may be performed to increase endothelial cells’ (ECs) adhesion and/or migration. This work combines both strategies on cobalt-chromium (CoCr) alloy and studies the potential synergistic effect of linear patterned surfaces that are obtained by direct laser interference patterning (DLIP), coupled with the use of Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptides. An extensive characterization of the modified surfaces was performed by using AFM, XPS, surface charge, electrochemical analysis and fluorescent methods. The biological response was studied in terms of EC adhesion, migration and proliferation assays. CoCr surfaces were successfully patterned with a periodicity of 10 µm and two different depths, D (≈79 and 762 nm). RGD and YIGSR were immobilized on the surfaces by CPTES silanization. Early EC adhesion was increased on the peptide-functionalized surfaces, especially for YIGSR compared to RGD. High-depth patterns generated 80% of ECs’ alignment within the topographical lines and enhanced EC migration. It is noteworthy that the combined use of the two strategies synergistically accelerated the ECs’ migration and proliferation, proving the potential of this strategy to enhance stent endothelialization.

JTD Keywords: adhesion, bare-metal, biofunctionalization, biomaterials, cell adhesive peptides, cobalt-chromium alloy, endothelial cell migration, functionalization, matrix, proliferation, selectivity, shear-stress, surfaces, Direct laser interference patterning (dlip), Drug-eluting stents


Dhiman, Shikha, Andrian, Teodora, Gonzalez, Beatriz Santiago, Tholen, Marrit ME., Wang, Yuyang, Albertazzi, Lorenzo, (2022). Can super-resolution microscopy become a standard characterization technique for materials chemistry? Chemical Science 13, 2152-2166

The characterization of newly synthesized materials is a cornerstone of all chemistry and nanotechnology laboratories. For this purpose, a wide array of analytical techniques have been standardized and are used routinely by laboratories across the globe. With these methods we can understand the structure, dynamics and function of novel molecular architectures and their relations with the desired performance, guiding the development of the next generation of materials. Moreover, one of the challenges in materials chemistry is the lack of reproducibility due to improper publishing of the sample preparation protocol. In this context, the recent adoption of the reporting standard MIRIBEL (Minimum Information Reporting in Bio–Nano Experimental Literature) for material characterization and details of experimental protocols aims to provide complete, reproducible and reliable sample preparation for the scientific community. Thus, MIRIBEL should be immediately adopted in publications by scientific journals to overcome this challenge. Besides current standard spectroscopy and microscopy techniques, there is a constant development of novel technologies that aim to help chemists unveil the structure of complex materials. Among them super-resolution microscopy (SRM), an optical technique that bypasses the diffraction limit of light, has facilitated the study of synthetic materials with multicolor ability and minimal invasiveness at nanometric resolution. Although still in its infancy, the potential of SRM to unveil the structure, dynamics and function of complex synthetic architectures has been highlighted in pioneering reports during the last few years. Currently, SRM is a sophisticated technique with many challenges in sample preparation, data analysis, environmental control and automation, and moreover the instrumentation is still expensive. Therefore, SRM is currently limited to expert users and is not implemented in characterization routines. This perspective discusses the potential of SRM to transition from a niche technique to a standard routine method for material characterization. We propose a roadmap for the necessary developments required for this purpose based on a collaborative effort from scientists and engineers across disciplines.

JTD Keywords: blinking, fluorophore, intramolecular spirocyclization, localization, nanoparticles, resolution limit, reveals, single-molecule fluorescence, stimulated-emission, Characterization techniques, Diffraction, Distributed computer systems, Environmental management, Information reporting, Material chemistry, Materials characterization, Minimum information, Optical reconstruction microscopy, Optical resolving power, Sample preparation, Structure dynamics, Structure functions, Super-resolution microscopy, Synthesized materials


Sans, Jordi, Arnau, Marc, Sanz, Vanesa, Turon, Pau, Alemán, Carlos, (2022). Polarized Hydroxyapatite: New Insights and Future Perspectives Through Systematic Electrical Characterization at the Interface Advanced Materials Interfaces 9, 2101631

Yazıcı N, Opar E, Kodal M, Tanören B, Sezen M, Özkoç G, (2022). A novel practical approach for monitoring the crosslink density of an ethylene propylene diene monomer compound: Complementary scanning acoustic microscopy and FIB-SEM-EDS analyses Polymers & Polymer Composites 30,

Tuning of the crosslink density (CLD) in the rubber compounds is very crucial for optimizing the physical and mechanical properties of the ultimate rubber products. Conventionally, CLD can be measured via rheological methods such as moving die rheometer (MDR), via mechanical tests such as temperature scanning stress relaxation analysis (TSSR), or via direct swelling experiments using Flory–Rehner approach. In the current study, two novel techniques, focused ion beam - scanning electron microscopy (FIB-SEM) processing, with simultaneous energy dispersive X-ray spectrometry (EDS) mapping analysis and scanning acoustic microscopy (SAM) were combined and correlated to conventional methods on a model recipe of ethylene propylene diene monomer (EPDM) compound having different sulphur contents. Depending on the applied technique, the increase in the crosslink density with sulphur content was found to be 1.7 fold for the Flory–Rehner approach and 1.2 fold for both TSSR and MDR. It is directly monitored from the FIB-SEM-EDS analysis that the sulphur distribution and agglomeration behavior increased in line with ZnO content, which is an indirect indication of the rise in crosslink density. The impedance maps of the crosslinked samples obtained through SAM analysis revealed that the impedance of the samples increased with the increasing sulphur content, which can be attributed to higher level of crosslink density. A quantified correlation was obtained between SAM images and the crosslink density of the samples. It was shown that SAM is a promising tool for practical and non-destructive analysis for determining the formation of crosslink density of the rubbers. © The Author(s) 2022.

JTD Keywords: blends, compressibility, crosslink density, cure characteristics, ethylene propylene diene monomer, focused ion beam, mechanical-properties, morphology, natural-rubber, particles, scanning acoustic microscopy, scanning electron microscopy, vulcanization, Composite soft materials, Cross-link densities, Crosslink density, Crosslinking, Density (specific gravity), Ethylene, Ethylene propylene diene monomer, Flory-rehner, Focused ion beam - scanning electron microscopy, Focused ion beam-scanning electron microscopies, Ii-vi semiconductors, Monomers, Moving die rheometers, Physical and mechanical properties, Propylene, Relaxation analysis, Rubber, Scanning acoustic microscopy, Scanning electron microscopy, Stress relaxation, Sulfur contents, Temperature scanning stress relaxations, Zinc oxide


Tejo-Otero A, Fenollosa-Artés F, Achaerandio I, Rey-Vinolas S, Buj-Corral I, Mateos-Timoneda MÁ, Engel E, (2022). Soft-Tissue-Mimicking Using Hydrogels for the Development of Phantoms Gels 8, 40

With the currently available materials and technologies it is difficult to mimic the mechanical properties of soft living tissues. Additionally, another significant problem is the lack of information about the mechanical properties of these tissues. Alternatively, the use of phantoms offers a promising solution to simulate biological bodies. For this reason, to advance in the state-of-the-art a wide range of organs (e.g., liver, heart, kidney as well as brain) and hydrogels (e.g., agarose, polyvinyl alcohol –PVA–, Phytagel –PHY– and methacrylate gelatine –GelMA–) were tested regarding their mechanical properties. For that, viscoelastic behavior, hardness, as well as a non-linear elastic mechanical response were measured. It was seen that there was a significant difference among the results for the different mentioned soft tissues. Some of them appear to be more elastic than viscous as well as being softer or harder. With all this information in mind, a correlation between the mechanical properties of the organs and the different materials was performed. The next conclusions were drawn: (1) to mimic the liver, the best material is 1% wt agarose; (2) to mimic the heart, the best material is 2% wt agarose; (3) to mimic the kidney, the best material is 4% wt GelMA; and (4) to mimic the brain, the best materials are 4% wt GelMA and 1% wt agarose. Neither PVA nor PHY was selected to mimic any of the studied tissues. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: brain, composite hydrogel, elastography, hardness, hydrogels, in-vitro, liver, materials, mechanical-properties, mimicking, soft tissues, tissue scaffolding, viscoelasticity, warner-braztler shear test, Dynamic mechanical analysis, Hardness, Hydrogels, Materials, Mimicking, Soft tissues, Tissue scaffolding, Viscoelastic characterization, Viscoelasticity, Warner–braztler shear test


Zeinali, Reza, del Valle, Luis J., Franco, Lourdes, Yousef, Ibraheem, Rintjema, Jeroen, Alemán, Carlos, Bravo, Fernando, Kleij, Arjan W., Puiggalí, Jordi, (2022). Biobased Terpene Derivatives: Stiff and Biocompatible Compounds to Tune Biodegradability and Properties of Poly(butylene succinate) Polymers 14, 161

Different copolymers incorporating terpene oxide units (e.g., limonene oxide) have been evaluated considering thermal properties, degradability, and biocompatibility. Thus, polycarbonates and polyesters derived from aromatic, monocyclic and bicyclic anhydrides have been considered. Furthermore, ring substitution with myrcene terpene has been evaluated. All polymers were amorphous when evaluated directly from synthesis. However, spherulites could be observed after the slow evaporation of diluted chloroform solutions of polylimonene carbonate, with all isopropene units possessing an R configuration. This feature was surprising considering the reported information that suggested only the racemic polymer was able to crystallize. All polymers were thermally stable and showed a dependence of the maximum degradation rate temperature (from 242 °C to 342 °C) with the type of terpene oxide. The graduation of glass transition temperatures (from 44 °C to 172 °C) was also observed, being higher than those corresponding to the unsubstituted polymers. The chain stiffness of the studied polymers hindered both hydrolytic and enzymatic degradation while a higher rate was detected when an oxidative medium was assayed (e.g., weight losses around 12% after 21 days of exposure). All samples were biocompatible according to the adhesion and proliferation tests performed with fibroblast cells. Hydrophobic and mechanically consistent films (i.e., contact angles between 90° and 110°) were obtained after the evaporation of chloroform from the solutions, having different ratios of the studied biobased polyterpenes and poly(butylene succinate) (PBS). The blend films were comparable in tensile modulus and tensile strength with the pure PBS (e.g., values of 330 MPa and 7 MPa were determined for samples incorporating 30 wt.% of poly(PA-LO), the copolyester derived from limonene oxide and phthalic anhydride. Blends were degradable, biocompatible and appropriate to produce oriented-pore and random-pore scaffolds via a thermally-induced phase separation (TIPS) method and using 1,4-dioxane as solvent. The best results were attained with the blend composed of 70 wt.% PBS and 30 wt.% poly(PA-LO). In summary, the studied biobased terpene derivatives showed promising properties to be used in a blended form for biomedical applications such as scaffolds for tissue engineering.

JTD Keywords: alternating copolymerization, biobased materials, biodegradability, composites, crystallization, cyclohexene oxide, induced phase-separation, limonene oxide, mechanical-properties, polyesters, scaffolds, spherulites, terpene derivatives, thermal properties, thermally-induced phase separation, Acetone, Bio-based, Bio-based materials, Biobased materials, Biocompatibility, Biodegradability, Butenes, Cell culture, Chlorine compounds, Degradation, Evaporation, Glass transition, Limonene oxide, Monoterpenes, Phase separation, Poly (butylenes succinate), Polybutylene succinate, Property, Ring-opening copolymerization, Scaffolds, Spheru-lites, Tensile strength, Terpene derivatives, Thermal properties, Thermally induced phase separation, Thermally-induced phase separation, Thermally?induced phase separation, Thermodynamic properties, Thermogravimetric analysis


Raymond Y, Pastorino D, Ginebreda I, Maazouz Y, Ortiz M, Manzanares M-C, Ginebra M-P, (2021). Computed tomography and histological evaluation of xenogenic and biomimetic bone grafts in three-wall alveolar defects in minipigs Clinical Oral Investigations 25, 6695-6706

Objectives This study aimed to compare the performance of a xenograft (XG) and a biomimetic synthetic graft (SG) in three-wall alveolar defects in minipigs by means of 3D computerised tomography and histology. Materials and methods Eight minipigs were used. A total of eight defects were created in the jaw of each animal, three of which were grafted with XGs, three with SGs, and two were left empty as a negative control. The allocation of the different grafts was randomised. Four animals were euthanised at 6 weeks and four at 12 weeks. The grafted volume was then measured by spiral computed tomography to assess volume preservation. Additionally, a histological analysis was performed in undecalcified samples by backscattered scanning electron microscopy and optical microscopy after Masson's trichrome staining. Results A linear mixed-effects model was applied considering four fixed factors (bone graft type, regeneration time, anatomic position, and maxilla/mandible) and one random factor (animal). The SG exhibited significantly larger grafted volume (19%) than the XG. The anterior sites preserved better the grafted volume than the posterior ones. Finally, regeneration time had a positive effect on the grafted volume. Histological observations revealed excellent osseointegration and osteoconductive properties for both biomaterials. Some concavities found in the spheroidal morphologies of SGs were associated with osteoclastic resorption. Conclusions Both biomaterials met the requirements for bone grafting, i.e. biocompatibility, osseointegration, and osteoconduction. Granule morphology was identified as an important factor to ensure a good volume preservation.

JTD Keywords: bone graft, bone regeneration, in vivo, miniature swine, synthetic graft, 3-dimensional changes, Anorganic bovine bone, Autogenous bone, Bio-oss, Biomaterials, Bone graft, Bone regeneration, Calcium-phosphate, Hydroxyapatite, In vivo, Miniature swine, Sinus floor augmentation, Substitute, Synthetic graft, Volume, Xenograft


Maiti, B, Nandi, M, Bonardd, S, Franco, L, Puiggali, J, Enshaei, H, Aleman, C, Diaz, DD, (2021). Efficient One-Pot Preparation of Thermoresponsive Polyurethanes with Lower Critical Solution Temperatures Chempluschem 86, 1570-1576

This work reports a simple and scalable strategy to prepare a series of thermoresponsive polyurethanes synthesized via copolymerization of dicyclohexyl diisocyanate with glycerol ethoxylate in a single one-pot system. These polyurethanes exhibit lower critical solution temperatures (LCST) at 57 degrees C. The LCST of synthesized polyurethane was determined from Dynamic Scanning Calorimetry and UV-vis measurements. Both the LCST and T-g of synthesized polyurethane was tuned by varying the ratio between hard segment (dicyclohexyl diisocyanate) and soft segment (glycerol ethoxylate). Thus, T-g values could be tuned from -54.6 degrees C to -19.9 degrees C for samples with different flexibility. The swelling and deswelling studies were done at room temperature and above the LCST respectively. The results showed that the swelling ratio increases with the increase of soft segment (glycerol ethoxylate) in synthesized polyurethanes. Furthermore, the mechanical properties of the membrane were studied by universal tensile testing measurements. Specifically, stress at break values varied from 0.35 +/- 0.07 MPa to 0.91 +/- 0.15 MPa for the tested membranes, whereas elongation at break data ranged from 101.9 +/- 20.9 % to 192.4 +/- 24.4 %, and Young's modulus varied from 0.35 +/- 0.03 MPa to 1.85 +/- 0.19 MPa. Tensile strength of the films increased with the increase of the hard segment and elongation at break decreased.

JTD Keywords: copolymerization, critical solution temperatures, polyurethanes, tensile strength, Biodegradable polyurethanes, Copolymerization, Critical solution temperatures, Glycol), Polymers, Polyurethanes, Solvent-free, Tensile strength, Thermoresponsive materials


Pérez-Rafael S, Ivanova K, Stefanov I, Puiggalí J, del Valle LJ, Todorova K, Dimitrov P, Hinojosa-Caballero D, Tzanov T, (2021). Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment Acta Biomaterialia 134, 131-143

Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management. Statement of significance: Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load.

JTD Keywords: catechol, chronic wounds, dressing materials, inhibition, mechanism, nano-enabled hydrogels, polyphenols, promogran, self-assembling, silver-lignin nanoparticles, systems, tannins, Chronic wounds, Degradation, Dressing materials, Nano-enabled hydrogels, Self-assembling, Silver-lignin nanoparticles, Thiolated hyaluronic acid


Rodríguez-Contreras A, Torres D, Rafik B, Ortiz-Hernandez M, Ginebra MP, Calero JA, Manero JM, Ruperez E, (2021). Bioactivity and antibacterial properties of calcium- and silver-doped coatings on 3D printed titanium scaffolds Surface & Coatings Technology 421

One of the major problems faced by metallic implants is the high probability of bacterial infections, with significant consequences for the patient. In this work, a thermochemical treatment is proposed to obtain silver-doped calcium titanate coatings on the Ti surface to improve the bioactivity of porous 3D-printed Ti structures and simultaneously provide them with antibacterial properties. A complete characterization of the new coating, the study of the ion release and the analysis of its cytotoxicity were carried out together with evaluation of the natural apatite forming in simulated body fluid (SBF). Moreover, the antibacterial properties of the coatings were assessed against Pseudomona aeruginosa and Escherichia coli as gram-negative and Staphylococcus aureus and Staphylococcus epidermidis as gram-positive bacterial strains. Ag ions were integrated into the Ca titanate layer and Ag nanoparticles were formed within the entire 3D Ti surface. Ca and Ag ions were released from both porous and solid samples into the Hanks' solution for 48 h. The treated surfaces showed no cytotoxicity and an apatite layer precipitated on the entire porous surface when the samples were immersed in SBF. The release of Ag from the surface had a strong antibacterial effect and prevented bacterial adhesion and proliferation on the surface. Moreover, the nanostructured topography of the coating resulted also in a reduction of bacterial adhesion and proliferation, even in absence of Ag. In conclusion, the cost-effective approach here reported provided protection against the most predominant bacterial colonizers to the Ti porous implants, while maintaining their bioactivity.

JTD Keywords: 3d-printing, alkaline, antibacterial activity, arthroplasty, bacterial adhesion, biomaterials, generation, ions, nanoparticles, osseointegration, silver, surface-layer, titanium implants, toxicity, 3d-printing, Antibacterial activity, Biomaterials, Porous structures, Silver, Ti metal, Titanium implants


Konka, J, Espanol, M, Bosch, BM, de Oliveira, E, Ginebra, MP, (2021). Maturation of biomimetic hydroxyapatite in physiological fluids: a physicochemical and proteomic study Materials Today Bio 12,

Biomimetic calcium-deficient hydroxyapatite (CDHA) as a bioactive material exhibits exceptional intrinsic osteoinductive and osteogenic properties because of its nanostructure and composition, which promote a favorable microenvironment. Its high reactivity has been hypothesized to play a relevant role in the in vivo performance, mediated by the interaction with the biological fluids, which is amplified by its high specific surface area. Paradoxically, this high reactivity is also behind the in vitro cytotoxicity of this material, especially pro-nounced in static conditions. The present work explores the structural and physicochemical changes that CDHA undergoes in contact with physiological fluids and to investigate its interaction with proteins. Calcium-deficient hydroxyapatite discs with different micro/nanostructures, coarse (C) and fine (F), were exposed to cell-free complete culture medium over extended periods of time: 1, 7, 14, 21, 28, and 50 days. Precipitate formation was not observed in any of the materials in contact with the physiological fluid, which would indicate that the ionic exchanges were linked to incorporation into the crystal structure of CDHA or in the hydrated layer. In fact, CDHA experienced a maturation process, with a progressive increase in crystallinity and the Ca/P ratio, accompanied by an uptake of Mg and a B-type carbonation process, with a gradual propagation into the core of the samples. However, the reactivity of biomimetic hydroxyapatite was highly dependent on the specific surface area and was amplified in nanosized needle-like crystal structures (F), whereas in coarse specimens the ionic exchanges were restricted to the surface, with low penetration in the material bulk. In addition to showing a higher protein adsorption on F substrates, the proteomics study revealed the existence of protein selectivity to-ward F or C microstructures, as well as the capability of CDHA, and more remarkably of F-CDHA, to concentrate specific proteins from the culture medium. Finally, a substantial improvement in the material's ability to support cell proliferation was observed after the CDHA maturation process.

JTD Keywords: calcium phosphates, ion exchange, nanostructure, protein adsorption, Biological-systems, Biomaterials, Biomimetic hydroxyapatites, Biomimetics, Bone-formation, Calcium deficient hydroxyapatite, Calcium phosphate, Calcium phosphates, Cell proliferation, Crystal structure, Crystallinity, Crystals structures, Culture medium, Growth, High reactivity, Hydroxyapatite, In-vitro, Ion exchange, Ionic exchange, Molecular biology, Nanocrystalline apatites, Nanostructure, Nanostructures, Octacalcium phosphate, Physicochemical studies, Physiological fluids, Physiology, Protein adsorption, Proteins, Proteomic studies, Raman spectroscopy, Serum-albumin, Specific surface area


Checa M, Millan-Solsona R, Mares AG, Pujals S, Gomila G, (2021). Fast Label-Free Nanoscale Composition Mapping of Eukaryotic Cells Via Scanning Dielectric Force Volume Microscopy and Machine Learning Small Methods 5,

Mapping the biochemical composition of eukaryotic cells without the use of exogenous labels is a long-sought objective in cell biology. Recently, it has been shown that composition maps on dry single bacterial cells with nanoscale spatial resolution can be inferred from quantitative nanoscale dielectric constant maps obtained with the scanning dielectric microscope. Here, it is shown that this approach can also be applied to the much more challenging case of fixed and dry eukaryotic cells, which are highly heterogeneous and show micrometric topographic variations. More importantly, it is demonstrated that the main bottleneck of the technique (the long computation times required to extract the nanoscale dielectric constant maps) can be shortcut by using supervised neural networks, decreasing them from weeks to seconds in a wokstation computer. This easy-to-use data-driven approach opens the door for in situ and on-the-fly label free nanoscale composition mapping of eukaryotic cells with scanning dielectric microscopy. © 2021 The Authors. Small Methods published by Wiley-VCH GmbH

JTD Keywords: label-free mapping, machine learning, nanoscale, scanning dielectric microscopy, Biochemical composition, Cells, Constant, Cytology, Data-driven approach, Dielectric forces, Dielectric materials, Eukaryotic cells, Label-free mapping, Machine learning, Mapping, Nanoscale, Nanoscale composition, Nanoscale spatial resolution, Nanotechnology, Scanning, Scanning dielectric microscopy, Supervised neural networks


Balakrishnan H, Millan-Solsona R, Checa M, Fabregas R, Fumagalli L, Gomila G, (2021). Depth mapping of metallic nanowire polymer nanocomposites by scanning dielectric microscopy Nanoscale 13, 10116-10126

Polymer nanocomposite materials based on metallic nanowires are widely investigated as transparent and flexible electrodes or as stretchable conductors and dielectrics for biosensing. Here we show that Scanning Dielectric Microscopy (SDM) can map the depth distribution of metallic nanowires within the nanocomposites in a non-destructive way. This is achieved by a quantitative analysis of sub-surface electrostatic force microscopy measurements with finite-element numerical calculations. As an application we determined the three-dimensional spatial distribution of ?50 nm diameter silver nanowires in ?100 nm-250 nm thick gelatin films. The characterization is done both under dry ambient conditions, where gelatin shows a relatively low dielectric constant, ?r ? 5, and under humid ambient conditions, where its dielectric constant increases up to ?r ? 14. The present results show that SDM can be a valuable non-destructive subsurface characterization technique for nanowire-based nanocomposite materials, which can contribute to the optimization of these materials for applications in fields such as wearable electronics, solar cell technologies or printable electronics. © The Royal Society of Chemistry.

JTD Keywords: composite, constant, electrodes, mode, nanostructures, objects, progress, subsurface, tomography, Composite materials, Dielectric materials, Electric force microscopy, Electrostatic force, Force microscopy, Low dielectric constants, Nanocomposites, Numerical calculation, Polymer nanocomposite, Printable electronics, Scanning dielectric microscopy, Silver nanowires, Solar cell technology, Stretchable conductors, Subsurface characterizations, Transparent electrodes, Wearable technology


Oliver-Cervelló L, Martin-Gómez H, Reyes L, Noureddine F, Ada Cavalcanti-Adam E, Ginebra MP, Mas-Moruno C, (2021). An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling Advanced Healthcare Materials 10,

© 2020 Wiley-VCH GmbH Recreating the healing microenvironment is essential to regulate cell–material interactions and ensure the integration of biomaterials. To repair bone, such bioactivity can be achieved by mimicking its extracellular matrix (ECM) and by stimulating integrin and growth factor (GF) signaling. However, current approaches relying on the use of GFs, such as bone morphogenetic protein 2 (BMP-2), entail clinical risks. Here, a biomimetic peptide integrating the RGD cell adhesive sequence and the osteogenic DWIVA motif derived from the wrist epitope of BMP-2 is presented. The approach offers the advantage of having a spatial control over the single binding of integrins and BMP receptors. Such multifunctional platform is designed to incorporate 3,4-dihydroxyphenylalanine to bind metallic oxides with high affinity in a one step process. Functionalization of glass substrates with the engineered peptide is characterized by physicochemical methods, proving a successful surface modification. The biomimetic interfaces significantly improve the adhesion of C2C12 cells, inhibit myotube formation, and activate the BMP-dependent signaling via p38. These effects are not observed on surfaces displaying only one bioactive motif, a mixture of both motifs or soluble DWIVA. These data prove the biological potential of recreating the ECM and engaging in integrin and GF crosstalk via molecular-based mimics.

JTD Keywords: binding, biomaterials, biomimetic peptides, bone, cell adhesion, cell differentiation, differentiation, dwiva, multifunctional coatings, osseointegration, osteoblasts, rgd, surface, surface functionalization, Biomimetic peptides, Cell adhesion, Cell differentiation, Dwiva, Matrix-bound bmp-2, Rgd, Surface functionalization


Mestre R, Cadefau N, Hortelão AC, Grzelak J, Gich M, Roig A, Sánchez S, (2021). Nanorods Based on Mesoporous Silica Containing Iron Oxide Nanoparticles as Catalytic Nanomotors: Study of Motion Dynamics Chemnanomat 7, 134-140

© 2020 Wiley-VCH GmbH Self-propelled particles and, in particular, those based on mesoporous silica, have raised considerable interest due to their potential applications in the environmental and biomedical fields thanks to their biocompatibility, tunable surface chemistry and large porosity. Although spherical particles have been widely used to fabricate nano- and micromotors, not much attention has been paid to other geometries, such as nanorods. Here, we report the fabrication of self-propelled mesoporous silica nanorods (MSNRs) that move by the catalytic decomposition of hydrogen peroxide by a sputtered Pt layer, Fe2O3 nanoparticles grown within the mesopores, or the synergistic combination of both. We show that motion can occur in two distinct sub-populations characterized by two different motion dynamics, namely enhanced diffusion or directional propulsion, especially when both catalysts are used. These results open up the possibility of using MSNRs as chassis for the fabrication of self-propelled particles for the environmental or biomedical fields.

JTD Keywords: Mesoporous silica, Nanomotors, Nanorods, Porous materials, Self-propulsion


Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J, (2021). Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies Journal Of Tissue Engineering 12,

© The Author(s) 2021. Muscular dystrophies are a group of highly disabling disorders that share degenerative muscle weakness and wasting as common symptoms. To date, there is not an effective cure for these diseases. In the last years, bioengineered tissues have emerged as powerful tools for preclinical studies. In this review, we summarize the recent technological advances in skeletal muscle tissue engineering. We identify several ground-breaking techniques to fabricate in vitro bioartificial muscles. Accumulating evidence shows that scaffold-based tissue engineering provides topographical cues that enhance the viability and maturation of skeletal muscle. Functional bioartificial muscles have been developed using human myoblasts. These tissues accurately responded to electrical and biological stimulation. Moreover, advanced drug screening tools can be fabricated integrating these tissues in electrical stimulation platforms. However, more work introducing patient-derived cells and integrating these tissues in microdevices is needed to promote the clinical translation of bioengineered skeletal muscle as preclinical tools for muscular dystrophies.

JTD Keywords: biomaterials, drug screening platforms, muscular dystrophy, skeletal muscle, tissue engineering, Biomaterials, Drug screening platforms, Muscular dystrophy, Skeletal muscle, Tissue engineering


Rodríguez-Contreras, A., Torres, D., Guillem-Marti, J., Sereno, P., Ginebra, M. P., Calero, J. A., Manero, J. M., Rupérez, E., (2020). Development of novel dual-action coatings with osteoinductive and antibacterial properties for 3D-printed titanium implants Surface and Coatings Technology 403, 126381

Gallium (Ga) has been recently proposed as a novel therapeutic agent, since it promotes bone formation and exhibits antibacterial properties. This work focuses on the optimization of a thermochemical treatment that incorporates Ga ions by the addition of the body-friendly Ga nitrate approved by the Food and Drug Administration. The objective was to simultaneously provide the inner and the outer surfaces of porous‑titanium surfaces obtained by 3D-printing with bioactivity and antibacterial properties. The apatite-forming ability of the coating, as well as the antibacterial activity and SaOS-2 cell adhesion, proliferation, differentiation and mineralization were evaluated and compared with untreated Ti surfaces. The characterization of the surfaces revealed the presence of a Ga-containing calcium titanate layer, which was non cytotoxic and in simulated body fluid produced a homogeneous apatite coating well adhered to the substrate. The formation of this apatite layer was accelerated with increasing Ga amounts present on the surface, resulting also in an increase in thickness. An initial quick release of Ga ion promoted the antibacterial effect against gram positive strains, especially for Pseudomonas aeruginosa, one of the most frequent resistant pathogens in nosocomial infections. SaOS-2 cells adhered and proliferated on the Ga-doped Ti surfaces, its presence contributed to cell differentiation and to considerably increase the mineralization levels. Thus, the developed multifunctional coatings could provide bioactivity to the porous Ti implants while protecting them from the most frequent gram-negative pathogens.

JTD Keywords: 3D-printing, Antibacterial activity, Biomaterials, Gallium, Porous structures, Titanium implants


Hakimi, O., Gelpi, J. L., Krallinger, M., Curi, F., Repchevsky, D., Ginebra, M. P., (2020). The devices, experimental scaffolds, and biomaterials ontology (DEB): A tool for mapping, annotation, and analysis of biomaterials data Advanced Functional Materials 30, (16), 1909910

The size and complexity of the biomaterials literature makes systematic data analysis an excruciating manual task. A practical solution is creating databases and information resources. Implant design and biomaterials research can greatly benefit from an open database for systematic data retrieval. Ontologies are pivotal to knowledge base creation, serving to represent and organize domain knowledge. To name but two examples, GO, the gene ontology, and CheBI, Chemical Entities of Biological Interest ontology and their associated databases are central resources to their respective research communities. The creation of the devices, experimental scaffolds, and biomaterials ontology (DEB), an open resource for organizing information about biomaterials, their design, manufacture, and biological testing, is described. It is developed using text analysis for identifying ontology terms from a biomaterials gold standard corpus, systematically curated to represent the domain's lexicon. Topics covered are validated by members of the biomaterials research community. The ontology may be used for searching terms, performing annotations for machine learning applications, standardized meta-data indexing, and other cross-disciplinary data exploitation. The input of the biomaterials community to this effort to create data-driven open-access research tools is encouraged and welcomed.

JTD Keywords: Biomaterials, Databases, Ontology


Lopez-Muñoz, Gerardo A., Ortega, Maria Alejandra, Ferret-Miñana, Ainhoa, De Chiara, Francesco, Ramón-Azcón, Javier, (2020). Direct and label-free monitoring of albumin in 2D fatty liver disease model using plasmonic nanogratings Nanomaterials 10, (12), 2520

Non-alcoholic fatty liver (NAFLD) is a metabolic disorder related to a chronic lipid accumulation within the hepatocytes. This disease is the most common liver disorder worldwide, and it is estimated that it is present in up to 25% of the world’s population. However, the real prevalence of this disease and the associated disorders is unknown mainly because reliable and applicable diagnostic tools are lacking. It is known that the level of albumin, a pleiotropic protein synthesized by hepatocytes, is correlated with the correct function of the liver. The development of a complementary tool that allows direct, sensitive, and label-free monitoring of albumin secretion in hepatocyte cell culture can provide insight into NAFLD’s mechanism and drug action. With this aim, we have developed a simple integrated plasmonic biosensor based on gold nanogratings from periodic nanostructures present in commercial Blu-ray optical discs. This sensor allows the direct and label-free monitoring of albumin in a 2D fatty liver disease model under flow conditions using a highly-specific polyclonal antibody. This technology avoids both the amplification and blocking steps showing a limit of detection within pM range (≈0.26 ng/mL). Thanks to this technology, we identified the optimal fetal bovine serum (FBS) concentration to maximize the cells’ lipid accumulation. Moreover, we discovered that the hepatocytes increased the amount of albumin secreted on the third day from the lipids challenge. These data demonstrate the ability of hepatocytes to respond to the lipid stimulation releasing more albumin. Further investigation is needed to unveil the biological significance of that cell behavior.

JTD Keywords: 2D fatty liver in vitro model, Blu-Ray disc, Plasmonic nanomaterials, Label-Free Biosensing


Delcanale, P., Albertazzi, L., (2020). DNA-PAINT super-resolution imaging data of surface exposed active sites on particles Data in Brief 30, 105468

Surface functionalization with targeting ligands confers to nanomaterials the ability of selectively recognize a biological target. Therefore, a quantitative characterization of surface functional molecules is critical for the rational development of nanomaterials-based applications, especially in nanomedicine research. Single-molecule localization microscopy can provide visualization of surface molecules at the level of individual particles, preserving the integrity of the material and overcoming the limitations of analytical methods based on ensemble averaging. Here we provide single-molecule localization data obtained on streptavidin-coated polystyrene particles, which can be exploited as a model system for surface-functionalized materials. After loading of the active sites of streptavidin molecules with a biotin-conjugated probe, they were imaged with a DNA-PAINT imaging approach, which can provide single-molecule imaging at subdiffraction resolution and molecule counting. Both raw records and analysed data, consisting in a list of space-time single-molecule coordinates, are shared. Additionally, Matlab functions are provided that analyse the single-molecule coordinates in order to quantify features of individual particles. These data might constitute a valuable reference for applications of similar quantitative imaging methodologies to other types of functionalized nanomaterials.

JTD Keywords: DNA-PAINT, Functional materials, Nanoparticles, Single-molecule localization microscopy, Super-resolution microscopy


Rubi-Sans, G., Castaño, O., Cano, I., Mateos-Timoneda, M. A., Perez-Amodio, S., Engel, E., (2020). Engineering cell-derived matrices: From 3D models to advanced personalized therapies Advanced Functional Materials 30, (44), e2000496

Regenerative medicine and disease models have evolved in recent years from two to three dimensions, providing in vitro constructs that are more similar to in vivo tissues. By mimicking native tissues, cell-derived matrices (CDMs) have emerged as new modifiable extracellular matrices for a variety of tissues, allowing researchers to study basic cellular processes in tissue-like structures, test tissue regeneration approaches, and model disease development. In this review, different fabrication techniques and characterization methods of CDMs are presented and examples of their application in cell behavior studies, tissue regeneration, and disease models are provided. In addition, future guidelines and perspectives in the field of CDMs are discussed.

JTD Keywords: 3D models, Biomaterials, Cell-derived matrices, Extracellular matrix, Personalized therapies


Park, D., Wershof, E., Boeing, S., Labernadie, A., Jenkins, R. P., George, S., Trepat, X., Bates, P. A., Sahai, E., (2020). Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions Nature Materials 19, 227-238

The isotropic or anisotropic organization of biological extracellular matrices has important consequences for tissue function. We study emergent anisotropy using fibroblasts that generate varying degrees of matrix alignment from uniform starting conditions. This reveals that the early migratory paths of fibroblasts are correlated with subsequent matrix organization. Combined experimentation and adaptation of Vicsek modelling demonstrates that the reorientation of cells relative to each other following collision plays a role in generating matrix anisotropy. We term this behaviour ‘cell collision guidance’. The transcription factor TFAP2C regulates cell collision guidance in part by controlling the expression of RND3. RND3 localizes to cell–cell collision zones where it downregulates actomyosin activity. Cell collision guidance fails without this mechanism in place, leading to isotropic matrix generation. The cross-referencing of alignment and TFAP2C gene expression signatures against existing datasets enables the identification and validation of several classes of pharmacological agents that disrupt matrix anisotropy.

JTD Keywords: Biomaterials – cells, Cell migration, Self-assembly, Tissues


Riccobelli, D., Noselli, G., Arroyo, M., DeSimone, A., (2020). Mechanics of axisymmetric sheets of interlocking and slidable rods Journal of the Mechanics and Physics of Solids 141, 103969

In this work, we study the mechanics of metamaterial sheets inspired by the pellicle of Euglenids. They are composed of interlocking elastic rods which can freely slide along their edges. We characterize the kinematics and the mechanics of these structures using the special Cosserat theory of rods and by assuming axisymmetric deformations of the tubular assembly. Through an asymptotic expansion, we investigate both structures that comprise a discrete number of rods and the limit case of a sheet composed by infinitely many rods. We apply our theoretical framework to investigate the stability of these structures in the presence of an axial load. Through a linear analysis, we compute the critical buckling force for both the discrete and the continuous case. For the latter, we also perform a numerical post-buckling analysis, studying the non-linear evolution of the bifurcation through finite elements simulations.

JTD Keywords: Biomimetic structures, Elastic structures, Helical rods, Mechanical instabilities, Metamaterials, Post-buckling analysis


Mestre, R., Cadefau, N., Hortelão, A. C., Grzelak, J., Gich, M., Roig, A., Sánchez, S., (2020). Nanorods based on mesoporous silica containing iron oxide nanoparticles as catalytic nanomotors: Study of motion dynamics ChemNanoMat 7, (2), 134-140

Self-propelled particles and, in particular, those based on mesoporous silica, have raised considerable interest due to their potential applications in the environmental and biomedical fields thanks to their biocompatibility, tunable surface chemistry and large porosity. Although spherical particles have been widely used to fabricate nano- and micromotors, not much attention has been paid to other geometries, such as nanorods. Here, we report the fabrication of self-propelled mesoporous silica nanorods (MSNRs) that move by the catalytic decomposition of hydrogen peroxide by a sputtered Pt layer, Fe2O3 nanoparticles grown within the mesopores, or the synergistic combination of both. We show that motion can occur in two distinct sub-populations characterized by two different motion dynamics, namely enhanced diffusion or directional propulsion, especially when both catalysts are used. These results open up the possibility of using MSNRs as chassis for the fabrication of self-propelled particles for the environmental or biomedical fields

JTD Keywords: Mesoporous silica, Nanomotors, Nanorods, Porous materials, Self-propulsion


De Corato, M., Pagonabarraga, I., Abdelmohsen, L. K. E. A., Sánchez, S., Arroyo, M., (2020). Spontaneous polarization and locomotion of an active particle with surface-mobile enzymes Physical Review Fluids 5, (12), 122001

We examine a mechanism of locomotion of active particles whose surface is uniformly coated with mobile enzymes. The enzymes catalyze a reaction that drives phoretic flows but their homogeneous distribution forbids locomotion by symmetry. We find that the ability of the enzymes to migrate over the surface combined with self-phoresis can lead to a spontaneous symmetry-breaking instability whereby the homogeneous distribution of enzymes polarizes and the particle propels. The instability is driven by the advection of enzymes by the phoretic flows and occurs above a critical Péclet number. The transition to polarized motile states occurs via a supercritical or subcritical pitchfork bifurcations, the latter of which enables hysteresis and coexistence of uniform and polarized states.

JTD Keywords: Biomimetic & bio-inspired materials, Locomotion, Surface-driven phase separation


Monferrer, Ezequiel, Martínn-Vañó, Susana, Carretero, Aitor, Garcíaa-Lizarribar, Andrea, Burgos-Panadero, Rebeca, Navarro, Samuel, Samitier, Josep, Noguera, Rosa, (2020). A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior Scientific Reports 10, (1), 6370

Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young’s modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.

JTD Keywords: Biomaterials - cells, Paediatric cancer


Vouloutsi, Vasiliki, Mura, Anna, Tauber, F., Speck, T., Prescott, T. J., Verschure, P., (2020). Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings , Springer, Cham (Lausanne, Switzerland) 12413, 1-428

This book constitutes the proceedings of the )th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2020, held in Freiburg, Germany, in July 2020. Due to COVID-19 pandemic the conference was held virtually. The 32 full and 7 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

JTD Keywords: Artificial intelligence, Soft robotics, Biomimetics, Insect navigation, Synthetic nervous system, Computer vision, Bio-inspired materials, Visual homing, Locomotion+, Image processing, Intelligent robots, Human-robot interaction, Machine learning, Snake robot, Mobile robots, Robotic systems, Drosophila, Robots, Sensors, Signal processing


Pujals, S., Feiner-Gracia, N., Delcanale, P., Voets, I., Albertazzi, L., (2019). Super-resolution microscopy as a powerful tool to study complex synthetic materials Nature Reviews Chemistry 3, (2), 68-84

Understanding the relations between the formation, structure, dynamics and functionality of complex synthetic materials is one of the great challenges in chemistry and nanotechnology and represents the foundation for the rational design of novel materials for a variety of applications. Initially conceived to study biology below the diffraction limit, super-resolution microscopy (SRM) is emerging as a powerful tool for studying synthetic materials owing to its nanometric resolution, multicolour ability and minimal invasiveness. In this Review, we provide an overview of the pioneering studies that use SRM to visualize materials, highlighting exciting recent developments such as experiments in operando, wherein materials, such as biomaterials in a biological environment, are imaged in action. Moreover, the potential and the challenges of the different SRM methods for application in nanotechnology and (bio)materials science are discussed, aiming to guide researchers to select the best SRM approach for their specific purpose.

JTD Keywords: Bioinspired materials, Imaging techniques


Llopis-Lorente, A., García-Fernández, A., Murillo-Cremaes, N., Hortelão, A. C., Patinño, T., Villalonga, R., Sancenón, F., Martínez-Máñer, R., Sánchez, S., (2019). Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery ACS Nano 13, (10), 12171-12183

The introduction of stimuli-responsive cargo release capabilities on self-propelled micro- and nanomotors holds enormous potential in a number of applications in the biomedical field. Herein, we report the preparation of mesoporous silica nanoparticles gated with pH-responsive supramolecular nanovalves and equipped with urease enzymes which act as chemical engines to power the nanomotors. The nanoparticles are loaded with different cargo molecules ([Ru(bpy)3]Cl2 (bpy = 2,2′-bipyridine) or doxorubicin), grafted with benzimidazole groups on the outer surface, and capped by the formation of inclusion complexes between benzimidazole and cyclodextrin-modified urease. The nanomotor exhibits enhanced Brownian motion in the presence of urea. Moreover, no cargo is released at neutral pH, even in the presence of the biofuel urea, due to the blockage of the pores by the bulky benzimidazole:cyclodextrin-urease caps. Cargo delivery is only triggered on-command at acidic pH due to the protonation of benzimidazole groups, the dethreading of the supramolecular nanovalves, and the subsequent uncapping of the nanoparticles. Studies with HeLa cells indicate that the presence of biofuel urea enhances nanoparticle internalization and both [Ru(bpy)3]Cl2 or doxorubicin intracellular release due to the acidity of lysosomal compartments. Gated enzyme-powered nanomotors shown here display some of the requirements for ideal drug delivery carriers such as the capacity to self-propel and the ability to “sense” the environment and deliver the payload on demand in response to predefined stimuli.

JTD Keywords: Controlled release, Drug delivery, Enzymatic catalysis, Gatekeepers, Nanocarriers, Nanomotors, Stimuli-responsive nanomaterials


Kaurin, D., Arroyo, M., (2019). Surface tension controls the hydraulic fracture of adhesive interfaces bridged by molecular bonds Physical Review Letters 123, (22), 228102

Biological function requires cell-cell adhesions to tune their cohesiveness; for instance, during the opening of new fluid-filled cavities under hydraulic pressure. To understand the physical mechanisms supporting this adaptability, we develop a stochastic model for the hydraulic fracture of adhesive interfaces bridged by molecular bonds. We find that surface tension strongly enhances the stability of these interfaces by controlling flaw sensitivity, lifetime, and optimal architecture in terms of bond clustering. We also show that bond mobility embrittles adhesions and changes the mechanism of decohesion. Our study provides a mechanistic background to understand the biological regulation of cell-cell cohesion and fracture.

JTD Keywords: Biomimetic & bio-inspired materials, Cell adhesion, Fracture, Self-healing


Marti-Muñoz, Joan, Xuriguera, Elena, Layton, John W., Planell, Josep A., Rankin, Stephen E., Engel, Elisabeth, Castaño, Oscar, (2019). Feasible and pure P2O5-CaO nanoglasses: An in-depth NMR study of synthesis for the modulation of the bioactive ion release Acta Biomaterialia 94, 574-584

The use of bioactive glasses (e.g. silicates, phosphates, borates) has demonstrated to be an effective therapy for the restoration of bone fractures, wound healing and vascularization. Their partial dissolution towards the surrounding tissue has shown to trigger positive bioactive responses, without the necessity of using growth factors or cell therapy, which reduces money-costs, side effects and increases their translation to the clinics. However, bioactive glasses often need from stabilizers (e.g. SiO44−, Ti4+, Co2+, etc.) that are not highly abundant in the body and which metabolization is not fully understood. In this study, we were focused on synthesizing pure calcium phosphate glasses without the presence of such stabilizers. We combined a mixture of ethylphosphate and calcium 2-methoxyethoxide to synthesize nanoparticles with different compositions and degradability. Synthesis was followed by an in-depth nuclear magnetic resonance characterization, complemented with other techniques that helped us to correlate the chemical structure of the glasses with their physiochemical properties and reaction mechanism. After synthesis, the organically modified xerogel (i.e. calcium monoethylphosphate) was treated at 200 or 350 °C and its solubility was maintained and controlled due to the elimination of organics, increase of phosphate-calcium interactions and phosphate polycondensation. To the best of our knowledge, we are reporting the first sol-gel synthesis of binary (P2O5-CaO) calcium phosphate glass nanoparticles in terms of continuous polycondensated phosphate chains structure without the addition of extra ions. The main goal is to straightforward the synthesis, to get a safer metabolization and to modulate the bioactive ion release. Additionally, we shed light on the chemical structure, reaction mechanism and properties of calcium phosphate glasses with high calcium contents, which nowadays are poorly understood. Statement of Significance The use of bioactive inorganic materials (i.e. bioactive ceramics, glass-ceramics and glasses) for biomedical applications is attractive due to their good integration with the host tissue without the necessity of adding exogenous cells or growth factors. In particular, degradable calcium phosphate glasses are completely resorbable, avoiding the retention in the body of the highly stable silica network of silicate glasses, and inducing a more controllable degradability than bioactive ceramics. However, most calcium phosphate glasses include the presence of stabilizers (e.g. Ti4+, Na+, Co2+), which metabolization is not fully understood and complicates their synthesis. The development of binary calcium phosphate glasses with controlled degradability reduces these limitations, offering a simple and completely metabolizable material with higher transfer to the clinics.

JTD Keywords: Calcium phosphate glasses, Sol-gel process, NMR spectroscopy, Ion release, Biomaterials


Labay, C., Hamouda, I., Tampieri, F., Ginebra, M. P., Canal, C., (2019). Production of reactive species in alginate hydrogels for cold atmospheric plasma-based therapies Scientific Reports 9, (1), 16160

In the last years, great advances have been made in therapies based in cold atmospheric plasmas (CAP). CAP generate reactive oxygen and nitrogen species (RONS) which can be transferred to liquids. These CAP activated liquids display the same biological efficacy (i.e. on killing cancer cells) as CAP themselves, opening the door for minimally invasive therapies. However, injection of a liquid in the body results in fast diffusion due to extracellular fluids and blood flow. Therefore, the development of efficient vehicles which allow local confinement and delivery of RONS to the diseased site is a fundamental requirement. In this work, we investigate the generation of RONS (H2O2, NO2−, short-lived RONS) in alginate hydrogels by comparing two atmospheric pressure plasma jets: kINPen and a helium needle, at a range of plasma treatment conditions (time, gas flow, distance to the sample). The physic-chemical properties of the hydrogels remain unchanged by the plasma treatment, while the hydrogel shows several-fold larger capacity for generation of RONS than a typical isotonic saline solution. Part of the RONS are quickly released to a receptor media, so special attention has to be put on the design of hydrogels with in-situ crosslinking. Remarkably, the hydrogels show capacity for sustained release of the RONS. The plasma-treated hydrogels remain fully biocompatible (due the fact that the species generated by plasma are previously washed away), indicating that no cytotoxic modifications have occurred on the polymer. Moreover, the RONS generated in alginate solutions showed cytotoxic potential towards bone cancer cells. These results open the door for the use of hydrogel-based biomaterials in CAP-associated therapies.

JTD Keywords: Biomedical materials, Plasma physics


Samitier, Josep, Correia, A., (2019). Biomimetic Nanotechnology for Biomedical Applications (NanoBio&Med 2018) Biomimetics MDPI

Emerging nanobiotechnologies can offer solutions to the current and future challenges in medicine. By covering topics from regenerative medicine, tissue engineering, drug delivery, bionanofabrication, and molecular biorecognition, this Special Issue aims to provide an update on the trends in nanomedicine and drug delivery using biomimetic approaches, and the development of novel biologically inspired devices for the safe and effective diagnosis, prevention, and treatment of disease.

JTD Keywords: Bioinspired nanotechnologies, Bionanofabrication, Bio-nano measurement and microscopy, Nanomaterials for biological and medical applications, Nanoassemblies, Nanostructured surfaces, Drug delivery, Nanobioelectronics, Integrated systems/nanobiosensors, Nanotoxicology, Graphene-based applications


Castaño, O., Pérez-Amodio, S., Navarro, C., Mateos-Timoneda, M.A., Engel, E., (2018). Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms Advanced Drug Delivery Reviews 129, 95-117

Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.

JTD Keywords: Instructive biomaterials, Skin regeneration, Wound healing, Signalling release, In situ tissue engineering


Navarro, C., Pérez-Amodio, S., Castaño, O., Engel, E., (2018). Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts Nanotechnology 29, (39), 395102

Extracellular calcium has been proved to influence the healing process of injuries and could be used as a novel therapy for skin wound healing. However, a better understanding of its effect, together with a system to obtain a controlled release is needed. In this study, we examined whether the ionic dissolution of the calcium–phosphate-based ormoglass nanoparticles coded SG5 may produce a similar stimulating effect as extracellular calcium (from CaCl2) on rat dermal fibroblast in vitro. Cells were cultured in the presence of medium containing different calcium concentrations, normally ranging from 0.1 to 3.5 mM Ca2+. A concentration of 3.5 mM of CaCl2 increased metabolic activity, in vitro wound closure, matrix metalloproteinases (MMP) activity, collagen synthesis and cytokine expression, and reduced cell contraction capacity. Interestingly, the levels of migration and contraction capacity measured followed a dose-dependent behavior. In addition, media conditioned with SG5 stimulated the same activities as media conditioned with CaCl2, but undesired effects in chronic wound healing such as inflammatory factor expression and MMP activity were reduced compared to the equivalent CaCl2 concentration. In summary, calcium-releasing particles such as SG5 are potential biological-free biostimulators to be applied in dressings for chronic wound healing.

JTD Keywords: Nanomaterials, Cell signaling, Skin wound healing


Fraioli, R., Tsimbouri, P. M., Fisher, L. E., Nobbs, A. H., Su, B., Neubauer, S., Rechenmacher, F., Kessler, H., Ginebra, M. P., Dalby, M. J., Manero, J. M., Mas-Moruno, C., (2017). Towards the cell-instructive bactericidal substrate: Exploring the combination of nanotopographical features and integrin selective synthetic ligands Scientific Reports 7, (1), 16363

Engineering the interface between biomaterials and tissues is important to increase implant lifetime and avoid failures and revision surgeries. Permanent devices should enhance attachment and differentiation of stem cells, responsible for injured tissue repair, and simultaneously discourage bacterial colonization; this represents a major challenge. To take first steps towards such a multifunctional surface we propose merging topographical and biochemical cues on the surface of a clinically relevant material such as titanium. In detail, our strategy combines antibacterial nanotopographical features with integrin selective synthetic ligands that can rescue the adhesive capacity of the surfaces and instruct mesenchymal stem cell (MSC) response. To this end, a smooth substrate and two different high aspect ratio topographies have been produced and coated either with an αvβ3-selective peptidomimetic, an α5β1-selective peptidomimetic, or an RGD/PHSRN peptidic molecule. Results showed that antibacterial effects of the substrates could be maintained when tested on pathogenic Pseudomonas aeruginosa. Further, functionalization increased MSC adhesion to the surfaces and the αvβ3-selective peptidomimetic-coated nanotopographies promoted osteogenesis. Such a dual physicochemical approach to achieve multifunctional surfaces represents a first step in the design of novel cell-instructive biomaterial surfaces.

JTD Keywords: Bioinspired materials, Biomaterials – cells


Sachot, Nadège, Castano, Oscar, Planell, Josep A., Engel, Elisabeth, (2015). Optimization of blend parameters for the fabrication of polycaprolactone-silicon based ormoglass nanofibers by electrospinning Journal of Biomedical Materials Research - Part B: Applied Biomaterials , 103, (6), 1287–1293

Electrospinning is a method that can be used to efficiently produce scaffolds that mimic the fibrous structure of natural tissue, such as muscle structures or the extracellular matrix of bone. The technique is often used as a way of depositing composites (organic/inorganic materials) to obtain bioactive nanofibers which have the requisite mechanical properties for use in tissue engineering. However, many factors can influence the formation and collection of fibers, including experimental variables such as the parameters of the solution of the electrospun slurry. In this study, we assessed the influence of the polymer concentration, glass content and glass hydrolysis level on the morphology and thickness of fibers produced by electrospinning for a PCL-(Si-Ca-P2) bioactive ormoglass—organically modified glass—blend. Based on previous assays, this combination of materials shows good angiogenic and osteogenic properties, which gives it great potential for use in tissue engineering. The results of our study showed that blend preparation directly affected the features of the resulting fibers, and when the parameters of the blend are precisely controlled, fibers with a regular diameter could be produced fairly easily when 2,2,2-trifluoroethanol was used as a solvent instead of tetrahydrofuran. The diameter of the homogeneous fibers ranged from 360 to 620 nm depending on the experimental conditions used. This demonstrates that experimental optimization of the electrospinning process is crucial in order to obtain a deposit of hybrid nanofibers with a regular shape.

JTD Keywords: Si-based glasses, Ormoglass, Electrospinning, Hybrid materials, Bioactivity, Angiogenesis


Castaño, O., Sachot, N., Xuriguera, E., Engel, E., Planell, J. A., Park, J. H., Jin, G. Z., Kim, T. H., Kim, J. H., Kim, H. W., (2014). Angiogenesis in bone regeneration: Tailored calcium release in hybrid fibrous scaffolds ACS Applied Materials & Interfaces 6, (10), 7512-7522

In bone regeneration, silicon-based calcium phosphate glasses (Bioglasses) have been widely used since the 1970s. However, they dissolve very slowly because of their high amount of Si (SiO2 > 45%). Recently, our group has found that calcium ions released by the degradation of glasses in which the job of silicon is done by just 5% of TiO2 are effective angiogenic promoters, because of their stimulation of a cell-membrane calcium sensing receptor (CaSR). Based on this, other focused tests on angiogenesis have found that Bioglasses also have the potential to be angiogenic promoters even with high contents of silicon (80%); however, their slow degradation is still a problem, as the levels of silicon cannot be decreased any lower than 45%. In this work, we propose a new generation of hybrid organically modified glasses, ormoglasses, that enable the levels of silicon to be reduced, therefore speeding up the degradation process. Using electrospinning as a faithful way to mimic the extracellular matrix (ECM), we successfully produced hybrid fibrous mats with three different contents of Si (40, 52, and 70%), and thus three different calcium ion release rates, using an ormoglass–polycaprolactone blend approach. These mats offered a good platform to evaluate different calcium release rates as osteogenic promoters in an in vivo subcutaneous environment. Complementary data were collected to complement Ca2+ release analysis, such as stiffness evaluation by AFM, ζ-potential, morphology evaluation by FESEM, proliferation and differentiation analysis, as well as in vivo subcutaneous implantations. Material and biological characterization suggested that compositions of organic/inorganic hybrid materials with a Si content equivalent to 40%, which were also those that released more calcium, were osteogenic. They also showed a greater ability to form blood vessels. These results suggest that Si-based ormoglasses can be considered an efficient tool for calcium release modulation, which could play a key role in the angiogenic promoting process.

JTD Keywords: Biological materials, Blood vessels, Calcium, Electrospinning, Glass, Hybrid materials, Silicon oxides, Sol-gel process, Sol-gels, Angiogenesis, Biological characterization, Calcium phosphate glass, Calcium-sensing receptors, Degradation process, Extracellular matrices, Organic/inorganic hybrid materials, ormoglasses, Silicon


Arcos, D., Boccaccini, A. R., Bohner, M., Díez-Pérez, A., Epple, M., Gómez-Barrena, E., Herrera, A., Planell, J. A., Rodríguez-Mañas, L., Vallet-Regí, M., (2014). The relevance of biomaterials to the prevention and treatment of osteoporosis Acta Biomaterialia 10, (5), 1793-1805

Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. In order to analyze this scenario and propose alternatives to overcome it, the Spanish and European Network of Excellence for the Prevention and Treatment of Osteoporotic Fractures, "Ageing", was created. This network integrates three communities, e.g. clinicians, materials scientists and industrial advisors, tackling the same problem from three different points of view. Keeping in mind the premise "living longer, living better", this commentary is the result of the thoughts, proposals and conclusions obtained after one year working in the framework of this network.

JTD Keywords: Ageing, Biomaterials, Bone, Osteoporosis


Sachot, N., Engel, E., Castaño, O., (2014). Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies Current Organic Chemistry , 18, (18), 2299-2314

The introduction of hybrid materials in regenerative medicine has solved some problems related to the mechanical and bioactive properties of biomaterials. Calcium phosphates and their derivatives have provided the basis for inorganic components, thanks to their good bioactivity, especially in bone regeneration. When mixed with biodegradable polymers, the result is a synergic association that mimics the composition of many tissues of the human body and, additionally, exhibits suitable mechanical properties. Together with the development of nanotechnology and new synthesis methods, hybrids offer a promising option for the development of a third or fourth generation of smart biomaterials and scaffolds to guide the regeneration of natural tissues, with an optimum efficiency/cost ratio. Their potential bioactivity, as well as other valuable features of hybrids, open promising new pathways for their use in bone regeneration and other tissue repair therapies. This review provides a comprehensive overview of the different hybrid organic-inorganic scaffolding biomaterials developed so far for regenerative therapies, especially in bone. It also looks at the potential for research into hybrid materials for other, softer tissues, which is still at an initial stage, but with very promising results.

JTD Keywords: Biodegradable polymer, Hybrid materials, Nanoparticles, Ormoglass


Torrent-Burgués, J., Cea, P., Giner, I., Guaus, E., (2014). Characterization of Langmuir and Langmuir-Blodgett films of an octasubstituted zinc phthalocyanine Thin Solid Films , 556, 485-494

In this work we report the fabrication of Langmuir and Langmuir-Blodgett (LB) films of a substituted ZnPc (octakis(oxyoctyl)phthalocyanine of zinc), and their characterization by means of several techniques. These characterization techniques include surface pressure (π-A) and surface potential (ΔV-A) isotherms as well as UV-vis Reflection spectroscopy and Brewster Angle Microscopy (BAM) for the films at the air-water interface together with UV-vis absorption and IR spectroscopies and Atomic Force Microscopy (AFM) for the LB films. The π-A and ΔV-A isotherms and BAM images indicate a phase transition at a surface pressure of ca. 9 mN/m and a multilayer formation at surface pressures around 19-20 mN/m; at a surface pressure around 27 mN/m a disordered collapse of the film occurs. In addition, AFM images of LB films at π = 10 mN/m and π = 20 mN/m show a monomolecular and a multilayered film, respectively. The comparison of the UV-vis spectrum of ZnPc in solution, the reflection spectra of the Langmuir films and UV-vis spectra of LB films reveals a significant reduction in the Q band intensity for the films, indicative of an organization of ZnPc in the Langmuir and LB films versus the random distribution in solution. The UV-vis Reflection spectra are also consistent with multilayer formation at surface pressures around 19-20 mN/m. The relative intensities of the IR spectrum bands change from the KBr pellet to the LB film which is also attributable to orientation effects in the film. Cyclic voltammetric experiments of LB films incorporating the ZnPc derivative show peaks that can be correlated with redox processes occurring in the phthalocyanine ring. A small but significant influence of the surface pressure and the number of deposited layers in the electrochemical behaviour is observed. The electrochemical response of cast films exhibits some differences with respect to that of LB films which have been attributed to their different molecular organizations.

JTD Keywords: Atomic Force Microscopy, Electrochemistry, Langmuir-Blodgett, Multilayers, Optical spectroscopy techniques, Zinc phthalocyanine, Atomic force microscopy, Electrochemistry, Interfaces (materials), Isotherms, Multilayers, Nitrogen compounds, Optical multilayers, Organic polymers, Zinc compounds, Brewster angle microscopy, Characterization techniques, Electrochemical behaviour, Langmuir and langmuir-blodgett films, Langmuir-blodgett, Optical spectroscopy techniques, UV-Vis Reflection Spectroscopy, Zinc phthalocyanines, Langmuir Blodgett films


Fumagalli, Laura, Esteban-Ferrer, Daniel, Cuervo, Ana, Carrascosa, Jose L., Gomila, Gabriel, (2012). Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces Nature Materials Nature Publishing Group 11, (9), 743-826

Label-free detection of the material composition of nanoparticles could be enabled by the quantification of the nanoparticles’ inherent dielectric response to an applied electric field. However, the sensitivity of dielectric nanoscale objects to geometric and non-local effects makes the dielectric response extremely weak. Here we show that electrostatic force microscopy with sub-piconewton resolution can resolve the dielectric constants of single dielectric nanoparticles without the need for any reference material, as well as distinguish nanoparticles that have an identical surface but different inner composition. We unambiguously identified unlabelled ~10unm nanoparticles of similar morphology but different low-polarizable materials, and discriminated empty from DNA-containing virus capsids. Our approach should make the in situ characterization of nanoscale dielectrics and biological macromolecules possible.

JTD Keywords: Biological materials, Nanoscale materials, Characterisation and analytical techniques, Computation, modelling and theory


Gustavsson, J., Ginebra, M. P., Planell, J., Engel, E., (2012). Electrochemical microelectrodes for improved spatial and temporal characterization of aqueous environments around calcium phosphate cements Acta Biomaterialia 8, (1), 386-393

Calcium phosphate compounds can potentially influence cellular fate through ionic substitutions. However, to be able to turn such solution-mediated processes into successful directors of cellular response, a perfect understanding of the material-induced chemical reactions in situ is required. We therefore report on the application of home-made electrochemical microelectrodes, tested as pH and chloride sensors, for precise spatial and temporal characterization of different aqueous environments around calcium phosphate-based biomaterials prepared from α-tricalcium phosphate using clinically relevant liquid to powder ratios. The small size of the electrodes allowed for online measurements in traditionally inaccessible in vitro environments, such as the immediate material-liquid interface and the interior of curing bone cement. The kinetic data obtained has been compared to theoretical sorption models, confirming that the proposed setup can provide key information for improved understanding of the biochemical environment imposed by chemically reactive biomaterials.

JTD Keywords: Calcium phosphate, Hydroxyapatite, Ion sorption, Iridium oxide, Sensors, Animals, Biocompatible Materials, Bone Cements, Calcium Phosphates, Cells, Cultured, Chlorides, Electrochemical Techniques, Gold, Hydrogen-Ion Concentration, Hydroxyapatites, Iridium, Materials Testing, Microelectrodes, Powders, Silver, Silver Compounds, Water


Baccar, Z.M., Caballero, D., Eritja, R., Errachid, A., (2012). Development of an impedimetric DNA-biosensor based on layered double hydroxide for the detection of long ssDNA sequences Electrochimica Acta 74, 123-129

DNA testing requires the development of sensitive and fast devices to measure the presence of nucleic acid sequences by DNA hybridization. In this paper, a simple and label-free DNA-biosensor has been investigated based on the detection of DNA hybridization on layered double hydroxide (LDH) nanomaterials with special emphasis on targeting long single stranded DNA sequences. First, the immobilization of a 20 bases long DNA probe on a thin layer of Mg2AlCO3 and Mg3AlCO3 LDH was studied. Then, DNA hybridization reaction was detected by means of Electrochemical Impedance Spectroscopy. The resulting biosensor showed a high sensitivity for the detection of 80 bases long DNA complementary sequences. The dynamic range was 18–270 ng/ml with a detection limit lower than 1.8 ng/ml.

JTD Keywords: DNA-biosensor, Nanomaterials, Layered double hydroxide, Self-assembly


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204

This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.

JTD Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment


Tambe, Dhananjay T., Corey Hardin, C., Angelini, Thomas E., Rajendran, Kavitha, Park, Chan Young, Serra-Picamal, Xavier, Zhou, Enhua H., Zaman, Muhammad H., Butler, James P., Weitz, David A., Fredberg, Jeffrey J., Trepat, X., (2011). Collective cell guidance by cooperative intercellular forces Nature Materials 10, (6), 469-475

Cells comprising a tissue migrate as part of a collective. How collective processes are coordinated over large multi-cellular assemblies has remained unclear, however, because mechanical stresses exerted at cell–cell junctions have not been accessible experimentally. We report here maps of these stresses within and between cells comprising a monolayer. Within the cell sheet there arise unanticipated fluctuations of mechanical stress that are severe, emerge spontaneously, and ripple across the monolayer. Within that stress landscape, local cellular migrations follow local orientations of maximal principal stress. Migrations of both endothelial and epithelial monolayers conform to this behaviour, as do breast cancer cell lines before but not after the epithelial–mesenchymal transition. Collective migration in these diverse systems is seen to be governed by a simple but unifying physiological principle: neighbouring cells join forces to transmit appreciable normal stress across the cell–cell junction, but migrate along orientations of minimal intercellular shear stress.

JTD Keywords: Biological materials, Mechanical properties


Gustavsson, J., Ginebra, M. P., Engel, E., Planell, J., (2011). Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media Acta Biomaterialia 7, (12), 4242-4252

Solution-mediated surface reactions occur for most calcium phosphate-based biomaterials and may influence cellular response. A reasonable extrapolation of such processes observed in vitro to in vivo performance requires a deep understanding of the underlying mechanisms. We therefore systematically investigated the nature of ion reactivity of calcium-deficient hydroxyapatite (CDHA) by exposing it for different periods of time to standard cell culture media of different chemical composition (DMEM and McCoy medium, with and without osteogenic supplements and serum proteins). Kinetic ion interaction studies of principal extracellular ions revealed non-linear sorption of Ca2+ (∼50% sorption) and K+ (∼8%) as well as acidification of all media during initial contact with CDHA (48 h). Interestingly, inorganic phosphorus (Pi) was sorbed from McCoy medium (∼50%) or when using osteogenic media containing β-glycerophosphate, but not from DMEM medium. Non-linear sorption data could be perfectly described by pseudo-first-order and pseudo-second-order sorption models. At longer contact time (21 days), and with frequent renewal of culture medium, sorption of Ca2+ remained constant throughout the experiment, while sorption of Pi gradually decreased in McCoy medium. In great contrast, CDHA began to release Pi slowly with time when using DMEM medium. Infrared spectra showed that CDHA exposed to culture media had a carbonated surface chemistry, suggesting that carbonate plays a key role in the ion reactivity of CDHA. Our data show that different compositions of the aqueous environment may provoke opposite ion reactivity of CDHA, and this must be carefully considered when evaluating the osteoinductive potential of the material.

JTD Keywords: Hydroxyapatite, Bioactive materials, Cell culture medium, Ion exchange, Sorption models


Miranda Coelho, Nuno, Gonzalez-Garcia, Cristina, Salmeron-Sanchez, Manuel, Altankov, George, (2011). Arrangement of type IV collagen and laminin on substrates with controlled density of -OH groups Tissue Engineering Part A , 17, (17-18), 2245-2257

Collagen IV (Col IV) and laminin (Lam) are the main structural components of the basement membrane where they form two overlapping polymeric networks. We studied the adsorption pattern of these proteins on five model surfaces with tailored density of -OH groups obtained by copolymerization of different ratios ethyl acrylate (EA) and hydroxyl EA (HEA): X(OH) = 0, X(OH) = 0.3, X(OH) = 0.5, X(OH) = 0.7, and X(OH) = 1 (where X refers the ratio of HEA). Atomic force microscopy revealed substratum-specific adsorption patterns of Col IV and Lam, ranging from single molecules deposition on more hydrophilic substrata to the formation of complex networks on hydrophobic ones. Human umbilical endothelial cells were used to study the biological performance of adsorbed proteins, following the overall cell morphology, the quantities for cell adhesion and spreading, and the development of focal adhesion complexes and actin cytoskeleton. Surprisingly, two optima in the cellular interaction were observed-one on the most hydrophilic X(OH) = 1 and other on the relatively hydrophobic X(OH) = 0.3 substrate-valid for both Col IV and Lam. When the proteins were adsorbed consecutively, a hydrophobic shift to X(OH) = 0 substratum was obtained. Collectively, these data suggest that varying with the density of -OH groups one can tailor the conformation and the functional activity of adsorbed basement membrane proteins.

JTD Keywords: Atomic-force microscopy, Fibronectin adsorption, Basement-membranes, Polymer surfaces, Cell-adhesion, Biomaterials, Wettability, Fibrinogen


Hristova, K., Pecheva, E., Pramatarova, L., Altankov, G., (2011). Improved interaction of osteoblast-like cells with apatite-nanodiamond coatings depends on fibronectin Journal of Materials Science: Materials in Medicine , 22, (8), 1891-1900

New apatite (AP)/nanodiamond (ND) coating has been developed to improve physical and biological properties of stainless steel (SS) versus single AP coating. Homogeneously electrodeposited AP-ND layer demonstrates increased mechanical strength, interlayer cohesion and ductility. In the absence of serum, osteoblast-like MG63 cells attach well but poorly spread on both AP and AP-ND substrata. Pre-adsorption with serum or fibronectin (FN) improves the cellular interaction-an effect that is better pronounced on the AP-ND coating. In single protein adsorption study fluorescein isothiocyanate-labeled FN (FITC-FN) shows enhanced deposition on the AP-ND layer consistent with the significantly improved cell adhesion, spreading and focal adhesions formation (in comparison to SS and AP), particularly at low FN adsorption concentrations (1 mu g/ml). Higher FN concentrations (20 mu g/ml) abolish this difference suggesting that the promoted cellular interaction of serum (where FN is low) is caused by the greater affinity for FN. Moreover, it is found that MG63 cells tend to rearrange both adsorbed and secreted FN on the AP-ND layer suggesting facilitated FN matrix formation.

JTD Keywords: Extracellular-matrix, Protein adsorption, Integrins, Adhesion, Biomaterials, Surfaces, Polymerization, Composite, Implants, Titanium


Roa, J. J., Oncins, G., Diaz, J., Sanz, F., Segarra, M., (2011). Calculation of young's modulus value by means of AFM Recent Patents on Nanotechnology , 5, (1), 27-36

In the last years, Atomic Force Microscopy (AFM) has become a powerful tool not only to study the surface morphology but also the nanomechanics of all kind of samples. In this paper, the applicability of this technique is reviewed and its basic aspects of operation, advantages and drawbacks of using the AFM probe as a picoindenter (Force Spectroscopy mode, FS-AFM) are discussed. The patents concerning picoindentation measurements are discussed in the text and special attention is paid to measurements performed on hard materials as ceramics, as they have not been as thoroughly reviewed in the literature as in the case of soft matter. The possibilities of AFM in the nanomechanics field include the quantitative determination of the Young's modulus (E) and the transition force from elastic to plastic deformation regimes, the measurement of adhesion forces and deformation mechanisms while applying vertical forces in the range from tens of pN to mu N.

JTD Keywords: Hard materials, Young's modulus, AFM-FS, Picoindentation technique


Lagunas, A., Comelles, J., Martinez, E., Samitier, J., (2010). Universal chemical gradient platforms using poly(methyl methacrylate) based on the biotin streptavidin interaction for biological applications Langmuir 26, (17), 14154-14161

This article describes a simple method for the construction of a universal surface chemical gradient platform based on the biotin streptavidin model. In this approach, surface chemical gradients were prepared in poly(methyl methacrylate) (PM MA), a biocompatible polymer, by a controlled hydrolysis procedure. The physicochemical properties of the resulting modified surfaces were extensively characterized. Chemical analysis carried out via time-of-flight secondary ion mass spectrometry (ToRSIMS) and X-ray photoelectron spectroscopy (XPS) showed the formation of a smooth, highly controllable carboxylic acid gradient of increasing concentration along the sample surface. Atomic force microscopy (AFM) and contact angle (CA) results indicate that, in contrast with most of the chemical gradient methods published in the literature, the chemical modification of the polymer surface barely affects its physical properties. The introduction of carboxylic acid functionality along the surface was then used for biomolecule anchoring. For this purpose, the surface was activated and derivatized first with biotin and finally with streptavidin (SA V) in a directed orientation fashion. The SAV gradient was qualitatively assessed by fluorescence microscopy analysis and quantified by surface plasmon resonance (SPR) in order to establish a quantitative relationship between SAV surface densities and the surface location. The usefulness of the fabrication method described for biological applications was tested by immobilizing biotinylated bradykinin onto the SAV gradient. This proof-of-concept application shows the effectiveness of the concentration range of the gradient because the effects of bradykinin on cell morphology were observed to increase gradually with increasing drug concentrations. The intrinsic characteristics of the fabricated gradient platform (absence of physicochemical modifications other than those due to the biomolecules included) allow us to attribute cell behavior unequivocally to the biomolecule surface density changes.

JTD Keywords: Wettability gradient, Polyethylene surface, Combinatorial, Immobilization, Biomaterials, Fabrication, Deposition, Bradykinin, Monolayers, Discharge


Toromanov, Georgi, González-García, Cristina, Altankov, George, Salmerón-Sánchez, Manuel, (2010). Vitronectin activity on polymer substrates with controlled -OH density Polymer 51, (11), 2329-2336

Vitronectin (VN) adsorption on a family of model substrates consisting of copolymers of ethyl acrylate and hydroxyl ethylacrylate in different ratios (to obtain a controlled surface density of -OH groups) was investigated by Atomic Force Microscopy (AFM). It is shown that the fraction of the substrate covered by the protein depends strongly on the amount of hydroxyl groups in the sample and it monotonically decreases as the -OH density increases. Isolated globular-like VN molecules are observed on the surfaces with the higher OH density. As the fraction of hydroxyl groups decreases, aggregates of 3-5 VN molecules are observed on the sample. Overall cell morphology, focal adhesion formation and actin cytoskeleton development are investigated to assess the biological activity of the adsorbed VN on the different surfaces. Dermal fibroblast cells show excellent material interaction on the more hydrophobic samples (OH contents lower than 0.5), which reveals enhanced VN activity on this family of substrates as compared with other extracellular matrix proteins (e.g., fibronectin and fibrinogen).

JTD Keywords: Copolymers, Vitronectin, AFM, Self-assembled monolayers, Cell-adhesion, Thermal transitions, Protein adsorption, Surfaces, Fibronectin, Biomaterials, Attachment, Fibrinogen


Fumagalli, L., Gramse, G., Esteban-Ferrer, D., Edwards, M. A., Gomila, G., (2010). Quantifying the dielectric constant of thick insulators using electrostatic force microscopy Applied Physics Letters , 96, (18), 183107

Quantitative measurement of the low-frequency dielectric constants of thick insulators at the nanoscale is demonstrated utilizing ac electrostatic force microscopy combined with finite-element calculations based on a truncated cone with hemispherical apex probe geometry. The method is validated on muscovite mica, borosilicate glass, poly(ethylene naphthalate), and poly(methyl methacrylate). The dielectric constants obtained are essentially given by a nanometric volume located at the dielectric-air interface below the tip, independently of the substrate thickness, provided this is on the hundred micrometer-length scale, or larger.

JTD Keywords: Borosilicate glasses, Finite element analysis, Insulating thin films, Mica, Nanostructured materials, Permittivity, Polymers, Scanning probe microscopy


Salmeron-Sanchez, M., Altankov, G., (2010). Cell-Protein-Material interaction in tissue engineering Tissue Engineering (ed. Eberli, D.), Intech (Vukovar, Croatia) , 77-102

The initial cellular events that take place at the biomaterials interface mimic to a certain extent the natural adhesive interaction of cells with the extracellular matrix (ECM) (Spie, 2002; Griffin & Naughton, 2002; Grinnell, 1986). In fact, the living cells cannot interact directly with foreign materials, but they readily attach to the adsorbed layer of proteins (upon contact with physiological fluids in vivo or culture medium in vitro) such as fibronectin (FN), vitronectin (VN), fibrinogen (FG), representing the so-called soluble matrix proteins in the biological fluids (Grinnell 1986).

JTD Keywords: Tissue Engineering, Protein-material interaction, ECM, Biomaterials


Altankov, George, Groth, Thomas, Engel, Elisabeth, Gustavsson, Jonas, Pegueroles, Marta, Aparicio, Conrado, Gil, Francesc J., Ginebra, Maria-Pau, Planell, Josep A., (2010). Development of provisional extracellular matrix on biomaterials interface: Lessons from in vitro cell culture NATO Science for Peace and Security Series A: Chemistry and Biology Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles (ed. Shastri, P., Altankov, G., Lendlein, A.), Springer Netherlands (Dortrecht, The Netherlands) , 19-43

The initial cellular events that take place at the biomaterials interface mimic to a certain extent the natural interaction of cells with the extracellular matrix (ECM). The cells adhering to the adsorbed soluble matrix proteins, such as fibronectin (FN) and fibrinogen (FNG) tend to re-arrange them in fibril-like pattern. Using model surfaces we have demonstrated that this cellular activity is abundantly dependent on the surface properties of materials, such as wettability, surface chemistry, charge and topography. This raises the possibility that tissue compatibility of materials is connected with the allowance of cells to remodel substratum associated proteins presumably to form provisional ECM. We have further shown that antibodies which bind β1 and αv integrins (subunits of the FN and FNG receptors respectively) may induce their linear rearrangement on the dorsal surface of living cells – a phenomenon presumably related to the same early molecular events of fibrillar matrix assembly. Because the quantitative measurements revealed that this receptor dynamics is strongly altered on the low compatible (hydrophobic) substrata we hypothesized that in order to be biocompatible, materials need to adsorb matrix proteins loosely, i.e. in such a way that the cells can easily remove and organize them in matrix-like fibrils via coordinated functioning of integrins. More recent studies on the fate of FN on some real biomaterial surfaces, including different rough titanium (Ti) and hydroxyapatite (HA) cements and the surface of biosensors confirmed this point of view. They also show that quantitative measurements of adsorbed matrix proteins and their dynamic rearrangement at cell-material interface might provide insight to the biocompatibility of given material and even predict its tissue integration.

JTD Keywords: Materials Science


Planell, Josep A., Navarro, Melba, Altankov, George, Aparicio, Conrado, Engel, Elisabeth, Gil, Javier, Ginebra, Maria Pau, Lacroix, Damien, (2010). Materials surface effects on biological interactions NATO Science for Peace and Security Series A: Chemistry and Biology Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles (ed. Shastri, P., Altankov, G., Lendlein, A.), Springer Netherlands (Dortrecht, The Netherlands) , 233-252

At present it is well accepted that different surface properties play a strong role in the interaction between synthetic materials and biological entities. Surface properties such as surface energy, topography, surface chemistry and crystallinity affect the protein adsorption mechanisms as well as cell behaviour in terms of attachment, proliferation and differentiation. The aim of this chapter is to show the most relevant processes and interactions that take place during the first stages of contact between the material and the physiological environment. Some examples show that the modification of different biomaterials surfaces affects both protein adsorption and cell behaviour.

JTD Keywords: Materials Science


Aparicio, C., Salvagni, E., Werner, M., Engel, E., Pegueroles, M., Rodriguez-Cabello, C., Munoz, F., Planell, J. A., Gil, J., (2009). Biomimetic treatments on dental implants for immediate loading applications Journal of Medical Devices , 3, (2), 027555

Summary form only given. Commercially pure titanium (cp Ti) dental implants have been widely and successfully used with high rates of clinical success in normal situations. However, there is still a lack of reliable synthetic materials to be used either a) when immediate loading of the implant is desired or b) when bone presents compromised conditions due to trauma, infection, systemic disease and/or lack of significant bone volume. Our group has aimed the development of biomimetic strategies of surface modification to obtain metallic implants with osteostimulative capabilities. These surface modifications will provide implants with a rapid rate of newly-formed bone growth and with ossecoalescence, i.e., direct chemical contact with the surrounding tissues. Consequently, the biomimetically-modified implants will be reliably used on those more demanding clinical situations, cp Ti surfaces treated to obtain a combination of an optimal random surface topography (in the micro and nanolevels) with a chemical modification of the naturally-formed titania layer have been proved bioactive. These rough and bioactive surfaces nucleate and grow a homogeneous hydroxyapatite layer both in vitro and in vivo. They stimulate the osteoblasts differentiation and trigger a rapid bone formation that mechanically fixes implants under immediate-loading conditions. A simple process using silane chemistry has been proved specific, rapid, and reliable to covalently immobilize biomolecules on cp Ti surfaces. This methodology can be used to develop biofunc- tionalized implant surfaces with different or combined bioactivities. The biofunctional molecules can be biopolymers, proteins, growth factors, and synthetic peptides specifically designed to be attached to the surface. The bioactive properties of the molecules designed and used can be mineral growing and nucleation, osteoblast differentiation (bone regeneration), fibroblasts differentiation (biological sealing), antibiotic,... Specifically, we have obtained mechanically and thermochemically stable coatings made of recombinant elastin-like biopolymers. The biopolymers bear either a) the RODS peptide, which is a highly-specific cell-adhesion motif present in proteins of the extracellular matrix for different tissues including bone, or b) an acidic peptide sequence derived from statherin, a protein present in saliva with high affinity for calcium-phosphates and with a leading role in the remineralization processes of the hard tissues forming our teeth. Two different biomimetic strategies have been successfully developed combining topographical modification, inorganic treatments and/or biofunctionalization for improving bioactive integrative properties of cp Ti implants.

JTD Keywords: Biomedical materials, Bone, Cellular biophysics, Dentistry, Molecular biophysics, Prosthetics, Proteins, Surface treatment, Titanium


Fernandez, Javier G., Mills, C. A., Samitier, J., (2009). Complex microstructured 3D surfaces using chitosan biopolymer Small 5, (5), 614-620

A technique for producing micrometer-scale structures over large, nonplanar chitosan surfaces is described. The technique makes use of the rheological characteristics (deformability) of the chitosan to create freestanding, three-dimensional scaffolds with controlled shapes, incorporating defined microtopography. The results of an investigation into the technical limits of molding different combinations of shapes and microtopographies are presented, highlighting the versatility of the technique when used irrespectively with inorganic or delicate organic moulds. The final, replicated scaffolds presented here are patterned with arrays of one-micrometer-tall microstructures over large areas. Structural integrity is characterized by the measurement of structural degradation. Human umbilical vein endothelial cells cultured on a tubular scaffold show that early cell growth is conditioned by the microtopography and indicate possible uses for the structures in biomedical applications. For those applications requiring improved chemical and mechanical resistance, the structures can be replicated in poly(dimethyl siloxane).

JTD Keywords: Biocompatible Materials/ chemistry, Cell Adhesion, Cell Culture Techniques/ methods, Cell Proliferation, Cells, Cultured, Chitosan/ chemistry, Crystallization/methods, Endothelial Cells/ cytology/ physiology, Humans, Materials Testing, Nanostructures/ chemistry/ ultrastructure, Nanotechnology/methods, Particle Size, Surface Properties, Tissue Engineering/methods


Lacroix, D., Planell, J. A., Prendergast, P. J., (2009). Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences , 367, (1895), 1993-2009

Scaffold biomaterials for tissue engineering can be produced in many different ways depending on the applications and the materials used. Most research into new biomaterials is based on an experimental trial-and-error approach that limits the possibility of making many variations to a single material and studying its interaction with its surroundings. Instead, computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. In this paper, a review of the current approach in biomaterials designed through computer-aided design (CAD) and through finite-element modelling is given. First we review the approach used in tissue engineering in the development of scaffolds and the interactions existing between biomaterials, cells and mechanical stimuli. Then, scaffold fabrication through CAD is presented and characterization of existing scaffolds through computed images is reviewed. Several case studies of finite-element studies in tissue engineering show the usefulness of computer simulations in determining the mechanical environment of cells when seeded into a scaffold and the proper design of the geometry and stiffness of the scaffold. This creates a need for more advanced studies that include aspects of mechanobiology in tissue engineering in order to be able to predict over time the growth and differentiation of tissues within scaffolds. Finally, current perspectives indicate that more efforts need to be put into the development of such advanced studies, with the removal of technical limitations such as computer power and the inclusion of more accurate biological and genetic processes into the developed algorithms.

JTD Keywords: Biomechanics, Tissue engineering, Biomaterials, Finite-element modelling


Rodriguez-Segui, S. A., Pla, M., Engel, E., Planell, J. A., Martinez, E., Samitier, J., (2009). Influence of fabrication parameters in cellular microarrays for stem cell studies Journal of Materials Science: Materials in Medicine , 20, (7), 1525-1533

Lately there has been an increasing interest in the development of tools that enable the high throughput analysis of combinations of surface-immobilized signaling factors and which examine their effect on stem cell biology and differentiation. These surface-immobilized factors function as artificial microenvironments that can be ordered in a microarray format. These microarrays could be useful for applications such as the study of stem cell biology to get a deeper understanding of their differentiation process. Here, the evaluation of several key process parameters affecting the cellular microarray fabrication is reported in terms of its effects on the mesenchymal stem cell culture time on these microarrays. Substrate and protein solution requirements, passivation strategies and cell culture conditions are investigated. The results described in this article serve as a basis for the future development of cellular microarrays aiming to provide a deeper understanding of the stem cell differentiation process.

JTD Keywords: Bone-marrow, Protein microarrays, Progenitor cells, Differentiation, Surfaces, Growth, Biomaterials, Commitment, Pathways, Culture media


Baccar, Z. M., Caballero, D., Zine, N., Jaffrezic-Renault, N., Errachid, A., (2009). Development of urease/layered double hydroxides nanohybrid materials for the urea detection: Synthesis, analytical and catalytic characterizations Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 676-682

We developed new hybrid nanomaterials, urease/LDH (layered double hydroxides), for the urea detection. The LDH that were prepared by co-precipitation in constant pH and in ambient temperature are hydrotalcites (Mg2Al, Mg3Al) and zaccagnaite (Zn2Al and Zn3Al). The immobilization of urease in these various layered hybrid materials is realized by auto-assembly. The structures of hosted matrices were studied by X-ray diffraction, Absorbance Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allowed the characterisation of the urease immobilization and its interactions with LDH chemical groups. The urease was adsorbed and its morphology was conserved in its new environment. Furthermore, the study of catalytic parameters of Urease/LDH biomembranes and of the kinetics reaction of urea hydrolysis shows a good conformation of the enzyme in hydrotalcite matrices and that the affinity is similar to free urease.

JTD Keywords: Ldh hybrid nanomaterials, Surface properties, Urea biosensors, Urease thin films


Baccar, Z. M., Hidouri, S., El Bari, N., Jaffrezic-Renault, N., Errachid, A., Zine, N., (2009). Stable immobilization of anti-beta casein antibody onto layered double hydroxides materials for biosensor applications Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 647-655

This review presents the development of new kind of antibody/LDH (layered double hydroxides) hybrid nanomaterials for beta casein detection. The preparation method of the LDH is described. It is based on the co-precipitation of metallic salts in constant pH and temperature. The chosen LDH are hydrotalcites (Mg2AICO3, Mg3AICO3), Zaccagnaite: Zn2AICO3 and hydrocalumite: Ca 2AICI. Finally, the antibody is immobilized into the LDH materials using Layer-by-Layer method by autoassembly. In this work, we studied the surface properties of the prepared hybrid biomembranes using X-ray diffraction, Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allow describing the antibody immobilization and its interactions with LDH. The antibody was adsorbed and its morphology was conserved in its new environment after more than 15 days continuously in PBS solution, promising a constant biosensor performance.

JTD Keywords: Anti β-casein antibody, Antibody immobilization, Ldh hybrid biomaterials, Urea biosensors


Engel, E., Michiardi, A., Navarro, M., Lacroix, D., Planell, J. A., (2008). Nanotechnology in regenerative medicine: the materials side Trends in Biotechnology , 26, (1), 39-47

Regenerative medicine is an emerging multidisciplinary field that aims to restore, maintain or enhance tissues and hence organ functions. Regeneration of tissues can be achieved by the combination of living cells, which will provide biological functionality, and materials, which act as scaffolds to support cell proliferation. Mammalian cells behave in vivo in response to the biological signals they receive from the surrounding environment, which is structured by nanometre-scaled components. Therefore, materials used in repairing the human body have to reproduce the correct signals that guide the cells towards a desirable behaviour. Nanotechnology is not only an excellent tool to produce material structures that mimic the biological ones but also holds the promise of providing efficient delivery systems. The application of nanotechnology to regenerative medicine is a wide issue and this short review will only focus on aspects of nanotechnology relevant to biomaterials science. Specifically, the fabrication of materials, such as nanoparticles and scaffolds for tissue engineering, and the nanopatterning of surfaces aimed at eliciting specific biological responses from the host tissue will be addressed.

JTD Keywords: Animals, Biocompatible Materials/ metabolism, Humans, Nanoparticles, Nanotechnology/ methods, Regenerative Medicine/ methods, Tissue Scaffolds


Engel, E., Del Valle, S., Aparicio, C., Altankov, G., Asin, L., Planell, J. A., Ginebra, M. P., (2008). Discerning the role of topography and ion exchange in cell response of bioactive tissue engineering scaffolds Tissue Engineering Part A , 14, (8), 1341-1351

Surface topography is known to have an influence on osteoblast activity. However, in the case of bioactive materials, topographical changes can affect also ion exchange properties. This makes the problem more complex, since it is often difficult to separate the strictly topographical effects from the effects of ionic fluctuations in the medium. The scope of this paper is to analyze the simultaneous effect of topography and topography-mediated ion exchange on the initial cellular behavior of osteoblastic-like cells cultured on bioactive tissue engineering substrates. Two apatitic substrates with identical chemical composition but different micro/nanostructural features were obtained by low-temperature setting of a calcium phosphate cement. MG63 osteoblastic-like cells were cultured either in direct contact with the substrates or with their extracts. A strong and permanent decrease of calcium concentration in the culture medium, dependent on substrate topography, was detected. A major effect of the substrate microstructure on cell proliferation was observed, explained in part by the topography-mediated ion exchange, but not specifically by the ionic Ca(2+) fluctuations. Cell differentiation was strongly enhanced when cells were cultured on the finer substrate. This effect was not explained by the chemical modification of the medium, but rather suggested a strictly topographical effect.

JTD Keywords: Alkaline Phosphatase/metabolism, Bone Cements/pharmacology, Calcium/metabolism, Calcium Phosphates/pharmacology, Cell Adhesion/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Shape/drug effects, Cells, Cultured, Culture Media, Durapatite/pharmacology, Humans, Interferometry, Ion Exchange, Materials Testing, Osteoblasts/ cytology/drug effects/enzymology/ultrastructure, Phosphorus/metabolism, Powders, Tissue Engineering, Tissue Scaffolds


Navarro, M., Michiardi, A., Castano, O., Planell, J. A., (2008). Biomaterials in orthopaedics Journal of the Royal Society Interface , 5, (27), 1137-1158

At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field.

JTD Keywords: Biomaterials, Orthopaedics, Tissue engineering, Bioactive materials, Biodegradable materials, Bioinert materials


Charles-Harris, M., Koch, M. A., Navarro, M., Lacroix, D., Engel, E., Planell, J. A., (2008). A PLA/calcium phosphate degradable composite material for bone tissue engineering: an in vitro study Journal of Materials Science-Materials in Medicine , 19, (4), 1503-1513

Biodegradable polymers reinforced with an inorganic phase such as calcium phosphate glasses may be a promising approach to fulfil the challenging requirements presented by 3D porous scaffolds for tissue engineering. Scaffolds' success depends mainly on their biological behaviour. This work is aimed to the in vitro study of polylactic acid (PLA)/CaP glass 3D porous constructs for bone regeneration. The scaffolds were elaborated using two different techniques, namely solvent-casting and phase-separation. The effect of scaffolds' micro and macrostructure on the biological response of these scaffolds was assayed. Cell proliferation, differentiation and morphology within the scaffolds were studied. Furthermore, polymer/glass scaffolds were seeded under dynamic conditions in a custom-made perfusion bioreactor. Results indicate that the final architecture of the solvent-cast or phase separated scaffolds have a significant effect on cells' behaviour. Solvent-cast scaffolds seem to be the best candidates for bone tissue engineering. Besides, dynamic seeding yielded a higher seeding efficiency in comparison with the static method.

JTD Keywords: Biocompatible Materials/ chemistry, Bone and Bones/ metabolism, Calcium Phosphates/ chemistry, Cell Differentiation, Cell Proliferation, Humans, Lactic Acid/ chemistry, Microscopy, Confocal, Microscopy, Electron, Scanning, Osteoblasts/metabolism, Permeability, Polymers/ chemistry, Porosity, Solvents/chemistry, Tissue Engineering/ methods


Gustavsson, J., Altankov, G., Errachid, A., Samitier, J., Planell, J. A., Engel, E., (2008). Surface modifications of silicon nitride for cellular biosensor applications Journal of Materials Science-Materials in Medicine , 19, (4), 1839-1850

Thin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.

JTD Keywords: Adsorption, Amines/chemistry, Biocompatible Materials/ chemistry, Biosensing Techniques, Cell Differentiation, Cell Line, Cell Proliferation, Electric Impedance, Extracellular Matrix/metabolism, Fibronectins/chemistry, Humans, Materials Testing, Osteoblasts/ cytology, Silicon Compounds/ chemistry, Surface Properties


Koch, M. A., Engel, E., Planell, J. A., Lacroix, D., (2008). Cell seeding and characterisation of PLA/glass composite scaffolds for bone tissue engineering Journal of Biomechanics 16th Congress, European Society of Biomechanics , Elsevier (Lucerne, Switzerland) 41, (Supplement 1), S162

In this study polymer-glass composite scaffolds were characterized by permeability and porosity, two important properties for the use in perfusion bioreactors. These scaffolds were seeded with osteoblast-like cells to assess the efficiency of the used bioreactor. The used PLA/glass composite scaffolds are adequate for the perfusion culture. The high porosity and pore interconnectivity allow an even cell distribution and incorporation of a high cell number. For optimisation of the perfusion bioreactor system, further research has to be dedicated to the cell seeding and culture.

JTD Keywords: Biomedical materials, Bioreactors, Bone, Cellular biophysics, Composite materials, Orthopaedics, Permeability, Polymers, Porosity, Porous materials, Tissue engineering


Rodriguez, Segui, Bucior, I., Burger, M. M., Samitier, J., Errachid, A., Fernàndez-Busquets, X., (2007). Application of a bio-QCM to study carbohydrates self-interaction in presence of calcium Transducers '07 & Eurosensors Xxi, Digest of Technical Papers 14th International Conference on Solid-State Sensors, Actuators and Microsystems , IEEE (Lyon, France) 1-2, 1995-1998

In the past years, the quartz crystal microbalance (QCM) has been successfully applied to follow interfacial physical chemistry phenomena in a label free and real time manner. However, carbohydrate self adhesion has only been addressed partially using this technique. Carbohydrates play an important role in cell adhesion, providing a highly versatile form of attachment, suitable for biologically relevant recognition events in the initial steps of adhesion. Here, we provide a QCM study of carbohydrates' self-recognition in the presence of calcium, based on a species-specific cell recognition model provided by marine sponges. Our results show a difference in adhesion kinetics when varying either the calcium concentration (with a constant carbohydrate concentration) or the carbohydrate concentration (with constant calcium concentration).

JTD Keywords: Biomedical materials, Calcium, Cellular biophysics, Microbalances, Porous materials, Quartz, Surface chemistry/ bio-QCM, Carbohydrates self-interaction, Quartz crystal microbalance, Interfacial physical chemistry phenomena, Carbohydrate self adhesion, Biologically relevant recognition events, Marine sponges, Adhesion kinetics, Calcium concentration, Carbohydrate concentration, Biosensors, Biomedical materials, Surface chemistry, Cellular biophysics