DONATE

Publications

by Keyword: Migration

Morcillo I Soler P, Hidalgo C, Fekete Z, Zalanyi L, Khalil ISM, Yeste M, Magdanz V, (2022). Bundle formation of sperm: Influence of environmental factors Frontiers In Endocrinology 13, 957684

Cooperative behaviour of sperm is one of the mechanisms that plays a role in sperm competition. It has been observed in several species that spermatozoa interact with each other to form agglomerates or bundles. In this study, we investigate the effect of physical and biochemical factors that will most likely promote bundle formation in bull sperm. These factors include fluid viscosity, swim-up process, post-thaw incubation time and media additives which promote capacitation. While viscosity does not seem to influence the degree of sperm bundling, swim-up, post-thaw migration time and suppressed capacitation increase the occurrence of sperm bundles. This leads to the conclusion that sperm bundling is a result of hydrodynamic and adhesive interactions between the cells which occurs frequently during prolonged incubation times.Copyright © 2022 Morcillo i Soler, Hidalgo, Fekete, Zalanyi, Khalil, Yeste and Magdanz.

JTD Keywords: Bundling, Cell-cell interaction, Cooperative behaviour, Sperm competition, Sperm migration, Sperm selection, Spermatozoa


Hino N, Matsuda K, Jikko Y, Maryu G, Sakai K, Imamura R, Tsukiji S, Aoki K, Terai K, Hirashima T, Trepat X, Matsuda M, (2022). A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration Developmental Cell 57, 2290-2304.e7

Upon the initiation of collective cell migration, the cells at the free edge are specified as leader cells; however, the mechanism underlying the leader cell specification remains elusive. Here, we show that lamellipodial extension after the release from mechanical confinement causes sustained extracellular signal-regulated kinase (ERK) activation and underlies the leader cell specification. Live-imaging of Madin-Darby canine kidney (MDCK) cells and mouse epidermis through the use of Förster resonance energy transfer (FRET)-based biosensors showed that leader cells exhibit sustained ERK activation in a hepatocyte growth factor (HGF)-dependent manner. Meanwhile, follower cells exhibit oscillatory ERK activation waves in an epidermal growth factor (EGF) signaling-dependent manner. Lamellipodial extension at the free edge increases the cellular sensitivity to HGF. The HGF-dependent ERK activation, in turn, promotes lamellipodial extension, thereby forming a positive feedback loop between cell extension and ERK activation and specifying the cells at the free edge as the leader cells. Our findings show that the integration of physical and biochemical cues underlies the leader cell specification during collective cell migration.Copyright © 2022 Elsevier Inc. All rights reserved.

JTD Keywords: Collective cell migration, Erk, Feedback regulation, Fret, Hgf, Lamellipodia, Leader cell specification, Signal transduction, Traction force, Wound healing


Zambarda C, Pérez González C, Schoenit A, Veits N, Schimmer C, Jung R, Ollech D, Christian J, Roca-Cusachs P, Trepat X, Cavalcanti-Adam EA, (2022). Epithelial cell cluster size affects force distribution in response to EGF-induced collective contractility European Journal Of Cell Biology 101, 151274

Several factors present in the extracellular environment regulate epithelial cell adhesion and dynamics. Among them, growth factors such as EGF, upon binding to their receptors at the cell surface, get internalized and directly activate the acto-myosin machinery. In this study we present the effects of EGF on the contractility of epithelial cancer cell colonies in confined geometry of different sizes. We show that the extent to which EGF triggers contractility scales with the cluster size and thus the number of cells. Moreover, the collective contractility results in a radial distribution of traction forces, which are dependent on integrin β1 peripheral adhesions and transmitted to neighboring cells through adherens junctions. Taken together, EGF-induced contractility acts on the mechanical crosstalk and linkage between the cell-cell and cell-matrix compartments, regulating collective responses.Copyright © 2022 The Authors. Published by Elsevier GmbH.. All rights reserved.

JTD Keywords: actin, activation, actomyosin, adherens junctions, adhesion, e-cadherin, egf, maturation, mechanical regulation, micropatterning, migration, traction forces, transduction, transmission, Actomyosin, Adherens junctions, Collective contractility, Egf, Epidermal-growth-factor, Micropatterning, Traction forces


Larrañaga, Enara, Fernández‐Majada, Vanesa, Ojosnegros, Samuel, Comelles, Jordi, Martinez, Elena, (2022). Ephrin Micropatterns Exogenously Modulate Cell Organization in Organoid‐Derived Intestinal Epithelial Monolayers Advanced Materials Interfaces , 2201301

De Corato, M, Arroyo, M, (2022). A theory for the flow of chemically responsive polymer solutions: Equilibrium and shear-induced phase separation Journal Of Rheology 66, 813-835

Chemically responsive polymers are macromolecules that respond to local variations of the chemical composition of the solution by changing their conformation, with notable examples including polyelectrolytes, proteins, and DNA. The polymer conformation changes can occur in response to changes in the pH, the ionic strength, or the concentration of a generic solute that interacts with the polymer. These chemical stimuli can lead to drastic variations of the polymer flexibility and even trigger a transition from a coil to a globule polymer conformation. In many situations, the spatial distribution of the chemical stimuli can be highly inhomogeneous, which can lead to large spatial variations of polymer conformation and of the rheological properties of the mixture. In this paper, we develop a theory for the flow of a mixture of solute and chemically responsive polymers. The approach is valid for generic flows and inhomogeneous distributions of polymers and solutes. To model the polymer conformation changes introduced by the interactions with the solute, we consider the polymers as linear elastic dumbbells whose spring stiffness depends on the solute concentration. We use Onsager's variational formalism to derive the equations governing the evolution of the variables, which unveils novel couplings between the distribution of dumbbells and that of the solute. Finally, we use a linear stability analysis to show that the governing equations predict an equilibrium phase separation and a distinct shear-induced phase separation whereby a homogeneous distribution of solute and dumbbells spontaneously demix. Similar phase transitions have been observed in previous experiments using stimuli-responsive polymers and may play an important role in living systems. (C) 2022 The Society of Rheology.

JTD Keywords: Coil-globule transition, Constitutive equation, Dilute-solutions, Dumbbell model, Dynamics, Macromolecules, Nonequilibrium thermodynamics, Polyelectrolytes, Polymer migration, Polymer phase separation, Polymers, Predictions, Rheology, Shear-induced phase separation, Solute-polymer interactions, Stress, Viscoelasticity


Mesquida-Veny, F, Martinez-Torres, S, Del Rio, JA, Hervera, A, (2022). Nociception-Dependent CCL21 Induces Dorsal Root Ganglia Axonal Growth via CCR7-ERK Activation Frontiers In Immunology 13, 880647

While chemokines were originally described for their ability to induce cell migration, many studies show how these proteins also take part in many other cell functions, acting as adaptable messengers in the communication between a diversity of cell types. In the nervous system, chemokines participate both in physiological and pathological processes, and while their expression is often described on glial and immune cells, growing evidence describes the expression of chemokines and their receptors in neurons, highlighting their potential in auto- and paracrine signalling. In this study we analysed the role of nociception in the neuronal chemokinome, and in turn their role in axonal growth. We found that stimulating TRPV1(+) nociceptors induces a transient increase in CCL21. Interestingly we also found that CCL21 enhances neurite growth of large diameter proprioceptors in vitro. Consistent with this, we show that proprioceptors express the CCL21 receptor CCR7, and a CCR7 neutralizing antibody dose-dependently attenuates CCL21-induced neurite outgrowth. Mechanistically, we found that CCL21 binds locally to its receptor CCR7 at the growth cone, activating the downstream MEK-ERK pathway, that in turn activates N-WASP, triggering actin filament ramification in the growth cone, resulting in increased axonal growth.

JTD Keywords: Actin dynamics, Axonal growth, Ccl21, Ccr7, Cell-migration, Central-nervous-system, Chemokine, Ligands, Mek-erk, Microglia, Neurons, Neuropathic pain, Nociception, Phosphorylation, Regeneration


Clark, AG, Maitra, A, Jacques, C, Bergert, M, Perez-Gonzalez, C, Simon, A, Lederer, L, Diz-Munoz, A, Trepat, X, Voituriez, R, Vignjevic, DM, (2022). Self-generated gradients steer collective migration on viscoelastic collagen networks Nature Materials 21, 1200-1210

Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.; Cell clusters mechanically reorganize viscoelastic collagen networks, resulting in transient gradients in collagen density, alignment and stiffness that promote spontaneous persistent migration.

JTD Keywords: Cell-migration, Design, Invasion, Limits, Mechanics, Microscopy, Morphogenesis, Motility, Rear, Rigidity


Lopez-Mengual, A, Segura-Feliu, M, Sunyer, R, Sanz-Fraile, H, Otero, J, Mesquida-Veny, F, Gil, V, Hervera, A, Ferrer, I, Soriano, J, Trepat, X, Farre, R, Navajas, D, del Rio, JA, (2022). Involvement of Mechanical Cues in the Migration of Cajal-Retzius Cells in the Marginal Zone During Neocortical Development Frontiers In Cell And Developmental Biology 10,

Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the developing cortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.

JTD Keywords: Atomic force microscopy, Cajal-retzius cells, Central-nervous-system, Cortical development, Cortical hem, Developing cerebral-cortex, Expression, Growth, Marginal zone, Mechanical cues, Mouse, Neuronal migration, Nogo receptor, Olfactory ensheathing cells, Tangential migration, Traction force microscopy


Karkali, K, Tiwari, P, Singh, A, Tlili, S, Jorba, I, Navajas, D, Munoz, JJ, Saunders, TE, Martin-Blanco, E, (2022). Condensation of the Drosophila nerve cord is oscillatory and depends on coordinated mechanical interactions Developmental Cell 57, 867-882

During development, organs reach precise shapes and sizes. Organ morphology is not always obtained through growth; a classic counterexample is the condensation of the nervous system during Drosophila embryogenesis. The mechanics underlying such condensation remain poorly understood. Here, we characterize the condensation of the embryonic ventral nerve cord (VNC) at both subcellular and tissue scales. This analysis reveals that condensation is not a unidirectional continuous process but instead occurs through oscillatory contractions. The VNC mechanical properties spatially and temporally vary, and forces along its longitudinal axis are spatially heterogeneous. We demonstrate that the process of VNC condensation is dependent on the coordinated mechanical activities of neurons and glia. These outcomes are consistent with a viscoelastic model of condensation, which incorporates time delays and effective frictional interactions. In summary, we have defined the progressive mechanics driving VNC condensation, providing insights into how a highly viscous tissue can autonomously change shape and size.

JTD Keywords: Collagen-iv, Contraction, Forces, Gene, Glial-cells, Migration, Morphogenesis, Quantification, System, Tissue


Schieber, Romain, Mas-Moruno, Carlos, Lasserre, Federico, Roa, Joan Josep, Ginebra, Maria-Pau, Mücklich, Frank, Pegueroles, Marta, (2022). Effectiveness of Direct Laser Interference Patterning and Peptide Immobilization on Endothelial Cell Migration for Cardio-Vascular Applications: An In Vitro Study Nanomaterials 12, 1217

Endothelial coverage of an exposed cardiovascular stent surface leads to the occurrence of restenosis and late-stent thrombosis several months after implantation. To overcome this difficulty, modification of stent surfaces with topographical or biochemical features may be performed to increase endothelial cells’ (ECs) adhesion and/or migration. This work combines both strategies on cobalt-chromium (CoCr) alloy and studies the potential synergistic effect of linear patterned surfaces that are obtained by direct laser interference patterning (DLIP), coupled with the use of Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptides. An extensive characterization of the modified surfaces was performed by using AFM, XPS, surface charge, electrochemical analysis and fluorescent methods. The biological response was studied in terms of EC adhesion, migration and proliferation assays. CoCr surfaces were successfully patterned with a periodicity of 10 µm and two different depths, D (≈79 and 762 nm). RGD and YIGSR were immobilized on the surfaces by CPTES silanization. Early EC adhesion was increased on the peptide-functionalized surfaces, especially for YIGSR compared to RGD. High-depth patterns generated 80% of ECs’ alignment within the topographical lines and enhanced EC migration. It is noteworthy that the combined use of the two strategies synergistically accelerated the ECs’ migration and proliferation, proving the potential of this strategy to enhance stent endothelialization.

JTD Keywords: adhesion, bare-metal, biofunctionalization, biomaterials, cell adhesive peptides, cobalt-chromium alloy, endothelial cell migration, functionalization, matrix, proliferation, selectivity, shear-stress, surfaces, Direct laser interference patterning (dlip), Drug-eluting stents


Pérez-González, Carlos, Ceada, Gerardo, Matejcic, Marija, Trepat, Xavier, (2022). Digesting the mechanobiology of the intestinal epithelium Current Opinion In Genetics & Development 72, 82-90

The dizzying life of the homeostatic intestinal epithelium is governed by a complex interplay between fate, form, force and function. This interplay is beginning to be elucidated thanks to advances in intravital and ex vivo imaging, organoid culture, and biomechanical measurements. Recent discoveries have untangled the intricate organization of the forces that fold the monolayer into crypts and villi, compartmentalize cell types, direct cell migration, and regulate cell identity, proliferation and death. These findings revealed that the dynamic equilibrium of the healthy intestinal epithelium relies on its ability to precisely coordinate tractions and tensions in space and time. In this review, we discuss recent findings in intestinal mechanobiology, and highlight some of the many fascinating questions that remain to be addressed in this emerging field.Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.

JTD Keywords: crypt fission, designer matrices, differentiation, growth, gut, migration, model, scaffold, tissue mechanics, Cell migration, Cell proliferation, Ex vivo study, Human tissue, Intestine epithelium, Monolayer culture, Organoid, Review, Stem-cell, Tension, Traction therapy


Elosegui-Artola A, (2021). The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics Current Opinion In Cell Biology 72, 10-18

The extracellular matrix mechanical properties regulate processes in development, cancer, and fibrosis. Among the distinct mechanical properties, the vast majority of research has focused on the extracellular matrix's elasticity as the primary determinant of cell and tissue behavior. However, both cells and the extracellular matrix are not only elastic but also viscous. Despite viscoelasticity being a universal feature of living tissues, our knowledge of the influence of the extracellular matrix's viscoelasticity in cell behavior is limited. This mini-review describes some of the recent findings that have highlighted the role of the extracellular matrix's viscoelasticity in cell and tissue dynamics.

JTD Keywords: behavior, cell adhesion, cell mechanics, cell migration, deformability, extracellular matrix, extracellular matrix mechanics, fluidity, forces, hydrogels, mechanobiology, mechanotransduction, tissue mechanics, viscoelasticity, viscosity, Cell adhesion, Cell mechanics, Cell migration, Extracellular matrix, Extracellular matrix mechanics, Fluidity, Mechanobiology, Mechanotransduction, Migration, Tissue mechanics, Viscoelasticity, Viscosity


Castaño O, López-Mengual A, Reginensi D, Matamoros-Angles A, Engel E, del Rio JA, (2021). Chemotactic TEG3 Cells’ Guiding Platforms Based on PLA Fibers Functionalized With the SDF-1α/CXCL12 Chemokine for Neural Regeneration Therapy Frontiers In Bioengineering And Biotechnology 9, 627805

(Following spinal cord injury, olfactory ensheathing cell (OEC) transplantation is a promising therapeutic approach in promoting functional improvement. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical concentration differences. Here we compare the attachment, morphology, and directionality of an OEC-derived cell line, TEG3 cells, seeded on functionalized nanoscale meshes of Poly(l/dl-lactic acid; PLA) nanofibers. The size of the nanofibers has a strong effect on TEG3 cell adhesion and migration, with the PLA nanofibers having a 950 nm diameter being the ones that show the best results. TEG3 cells are capable of adopting a bipolar morphology on 950 nm fiber surfaces, as well as a highly dynamic behavior in migratory terms. Finally, we observe that functionalized nanofibers, with a chemical concentration increment of SDF-1α/CXCL12, strongly enhance the migratory characteristics of TEG3 cells over inhibitory substrates.

JTD Keywords: cell migration, cxcl12, electrospinning, gradients, pla nanofibers, sdf-1alpha, Cell migration, Cxcl12, Electrospinning, Gradients, Olfactory ensheathing cells, Pla nanofibers, Sdf-1alpha


Conti S, Kato T, Park D, Sahai E, Trepat X, Labernadie A, (2021). CAFs and cancer cells co-migration in 3D spheroid invasion assay Methods In Molecular Biology 2179, 243-256

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell–cell interactions and cell–matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.

JTD Keywords: 3d spheroid invasion, cancer associated fibroblasts, collective migration, dissemination, epithelial cancer cells, leader/follower cells, 3d spheroid invasion, Cancer associated fibroblasts, Collective invasion, Collective migration, Epithelial cancer cells, Leader/follower cells


Ben Hamouda S, Vargas A, Boivin R, Miglino MA, da Palma RK, Lavoie JP, (2021). Recellularization of Bronchial Extracellular Matrix With Primary Bronchial Smooth Muscle Cells Journal Of Equine Veterinary Science 96, 103313

© 2020 Elsevier Inc. Severe asthma is associated with an increased airway smooth muscle (ASM) mass and altered composition of the extracellular matrix (ECM). Studies have indicated that ECM-ASM cell interactions contribute to this remodeling and its limited reversibility with current therapy. Three-dimensional matrices allow the study of complex cellular responses to different stimuli in an almost natural environment. Our goal was to obtain acellular bronchial matrices and then develop a recellularization protocol with ASM cells. We studied equine bronchi as horses spontaneously develop a human asthma-like disease. The bronchi were decellularized using Triton/Sodium Deoxycholate. The obtained scaffolds retained their anatomical and histological properties. Using immunohistochemistry and a semi-quantitative score to compare native bronchi to scaffolds revealed no significant variation for matrixial proteins. DNA quantification and electrophoresis revealed that most DNA was 29.6 ng/mg of tissue ± 5.6, with remaining fragments of less than 100 bp. Primary ASM cells were seeded on the scaffolds. Histological analysis of the recellularizations showed that ASM cells migrated and proliferated primarily in the decellularized smooth muscle matrix, suggesting a chemotactic effect of the scaffolds. This is the first report of primary ASM cells preferentially repopulating the smooth muscle matrix layer in bronchial matrices. This protocol is now being used to study the molecular interactions occurring between the asthmatic ECMs and ASM to identify effectors of asthmatic bronchial remodeling.

JTD Keywords: 2d, airway smooth muscle cells, asthma, decellularization, disease, elastin, extracellular matrix, lung scaffolds, migration, peptide, recellularization, tissues, Airway smooth muscle cells, Asthma, Culture-systems, Decellularization, Extracellular matrix, Recellularization


Hino, N., Rossetti, L., Marín-Llauradó, A., Aoki, K., Trepat, X., Matsuda, M., Hirashima, T., (2020). ERK-mediated mechanochemical waves direct collective cell polarization Developmental Cell 53, (6), 646-660.e8

During collective migration of epithelial cells, the migration direction is aligned over a tissue-scale expanse. Although the collective cell migration is known to be directed by mechanical forces transmitted via cell-cell junctions, it remains elusive how the intercellular force transmission is coordinated with intracellular biochemical signaling to achieve collective movements. Here, we show that intercellular coupling of extracellular signal-regulated kinase (ERK)-mediated mechanochemical feedback yields long-distance transmission of guidance cues. Mechanical stretch activates ERK through epidermal growth factor receptor (EGFR) activation, and ERK activation triggers cell contraction. The contraction of the activated cell pulls neighboring cells, evoking another round of ERK activation and contraction in the neighbors. Furthermore, anisotropic contraction based on front-rear polarization guarantees unidirectional propagation of ERK activation, and in turn, the ERK activation waves direct multicellular alignment of the polarity, leading to long-range ordered migration. Our findings reveal that mechanical forces mediate intercellular signaling underlying sustained transmission of guidance cues for collective cell migration.

JTD Keywords: Collective cell migration, EGFR, ERK/MAPK, FRET, Front-rear polarity, Intercellular signal transfer, Mathematical model, Mechanochemical feedback, Mechanotransduction, wave propagation


Park, D., Wershof, E., Boeing, S., Labernadie, A., Jenkins, R. P., George, S., Trepat, X., Bates, P. A., Sahai, E., (2020). Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions Nature Materials 19, 227-238

The isotropic or anisotropic organization of biological extracellular matrices has important consequences for tissue function. We study emergent anisotropy using fibroblasts that generate varying degrees of matrix alignment from uniform starting conditions. This reveals that the early migratory paths of fibroblasts are correlated with subsequent matrix organization. Combined experimentation and adaptation of Vicsek modelling demonstrates that the reorientation of cells relative to each other following collision plays a role in generating matrix anisotropy. We term this behaviour ‘cell collision guidance’. The transcription factor TFAP2C regulates cell collision guidance in part by controlling the expression of RND3. RND3 localizes to cell–cell collision zones where it downregulates actomyosin activity. Cell collision guidance fails without this mechanism in place, leading to isotropic matrix generation. The cross-referencing of alignment and TFAP2C gene expression signatures against existing datasets enables the identification and validation of several classes of pharmacological agents that disrupt matrix anisotropy.

JTD Keywords: Biomaterials – cells, Cell migration, Self-assembly, Tissues


Conti, S., Kato, T., Park, D., Sahai, E., Trepat, X., Labernadie, A., (2020). CAFs and cancer cells co-migration in 3D spheroid invasion assay Methods in Molecular Biology (ed. Campbell, K., Thevenea, E.), Humana Press (New York, USA) 2179, 243-256

In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell–cell interactions and cell–matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.

JTD Keywords: 3D spheroid invasion, Cancer associated fibroblasts, Collective migration, Epithelial cancer cells, Leader/follower cells


Kechagia, Jenny Z., Ivaska, Johanna, Roca-Cusachs, Pere, (2019). Integrins as biomechanical sensors of the microenvironment Nature Reviews Molecular Cell Biology 20, (8), 457-473

Integrins, and integrin-mediated adhesions, have long been recognized to provide the main molecular link attaching cells to the extracellular matrix (ECM) and to serve as bidirectional hubs transmitting signals between cells and their environment. Recent evidence has shown that their combined biochemical and mechanical properties also allow integrins to sense, respond to and interact with ECM of differing properties with exquisite specificity. Here, we review this work first by providing an overview of how integrin function is regulated from both a biochemical and a mechanical perspective, affecting integrin cell-surface availability, binding properties, activation or clustering. Then, we address how this biomechanical regulation allows integrins to respond to different ECM physicochemical properties and signals, such as rigidity, composition and spatial distribution. Finally, we discuss the importance of this sensing for major cell functions by taking cell migration and cancer as examples.

JTD Keywords: Cell migration, Extracellular matrix, Integrins, Mechanotransduction, Single-molecule biophysics


Gil, Vanessa, del Río, José Antonio, (2019). Functions of plexins/neuropilins and their ligands during hippocampal development and neurodegeneration Cells 8, (3), 206

There is emerging evidence that molecules, receptors, and signaling mechanisms involved in vascular development also play crucial roles during the development of the nervous system. Among others, specific semaphorins and their receptors (neuropilins and plexins) have, in recent years, attracted the attention of researchers due to their pleiotropy of functions. Their functions, mainly associated with control of the cellular cytoskeleton, include control of cell migration, cell morphology, and synapse remodeling. Here, we will focus on their roles in the hippocampal formation that plays a crucial role in memory and learning as it is a prime target during neurodegeneration.

JTD Keywords: PlexinD1, Sema3E, Neuropilins, Neuronal migration, Synapse formation


Caballero, D., Palacios, L., Freitas, P. P., Samitier, J., (2017). An interplay between matrix anisotropy and actomyosin contractility regulates 3D-directed cell migration Advanced Functional Materials 27, (35), 1702322

Directed cell migration is essential for many biological processes, such as embryonic development or cancer progression. Cell contractility and adhesion to the extracellular matrix are known to regulate cell locomotion machinery. However, the cross-talk between extrinsic and intrinsic factors at the molecular level on the biophysical mechanism of three dimensional (3D)-directed cell migration is still unclear. In this work, a novel physiologically relevant in vitro model of the extracellular microenvironment is used to reveal how the topological anisotropy of the extracellular matrix synergizes with actomyosin contractility to modulate directional cell migration morphodynamics. This study shows that cells seeded on polarized 3D matrices display asymmetric protrusion morphodynamics and in-vivo-like phenotypes. It is found that matrix anisotropy significantly enhances cell directionality, but strikingly, not the invasion distance of cells. In Rho-inhibited cells, matrix anisotropy counteracts the lack of actomyosin-driven forces to stabilize cell directionality suggesting a myosin-II-independent mechanism for cell guidance. Finally, this study shows that on isotropic 3D environments, cell directionality is independent of actomyosin contractility. Altogether, this study provides novel quantitative data on the biomechanical regulation of directional cell motion and shows the important regulatory role of matrix anisotropy and actomyosin forces to guide cell migration in 3D microenvironments.

JTD Keywords: Anisotropy, Directed cell migration, Extracellular matrices, Migration modes, Three dimensional microenvironments


Caballero, D., Samitier, J., (2017). Topological control of extracellular matrix growth: A native-like model for cell morphodynamics studies ACS Applied Materials & Interfaces 9, (4), 4159-4170

The interaction of cells with their natural environment influences a large variety of cellular phenomena, including cell adhesion, proliferation, and migration. The complex extracellular matrix network has challenged the attempts to replicate in vitro the heterogeneity of the cell environment and has threatened, in general, the relevance of in vitro studies. In this work, we describe a new and extremely versatile approach to generate native-like extracellular matrices with controlled morphologies for the in vitro study of cellular processes. This general approach combines the confluent culture of fibroblasts with microfabricated guiding templates to direct the three-dimensional growth of well-defined extracellular networks which recapitulate the structural and biomolecular complexity of features typically found in vivo. To evaluate its performance, we studied fundamental cellular processes, including cell cytoskeleton organization, cell-matrix adhesion, proliferation, and protrusions morphodynamics. In all cases, we found striking differences depending on matrix architecture and, in particular, when compared to standard two-dimensional environments. We also assessed whether the engineered matrix networks influenced cell migration dynamics and locomotion strategy, finding enhanced migration efficiency for cells seeded on aligned matrices. Altogether, our methodology paves the way to the development of high-performance models of the extracellular matrix for potential applications in tissue engineering, diagnosis, or stem-cell biology.

JTD Keywords: Biomimetics, Cell migration, Engineered cell-derived matrices, Extracellular matrix, In vitro model


Ladoux, B., Mège, R. M., Trepat, X., (2016). Front-rear polarization by mechanical cues: From single cells to tissues Trends in Cell Biology 26, (6), 420-433

Directed cell migration is a complex process that involves front-rear polarization, characterized by cell adhesion and cytoskeleton-based protrusion, retraction, and contraction of either a single cell or a cell collective. Single cell polarization depends on a variety of mechanochemical signals including external adhesive cues, substrate stiffness, and confinement. In cell ensembles, coordinated polarization of migrating tissues results not only from the application of traction forces on the extracellular matrix but also from the transmission of mechanical stress through intercellular junctions. We focus here on the impact of mechanical cues on the establishment and maintenance of front-rear polarization from single cell to collective cell behaviors through local or large-scale mechanisms.

JTD Keywords: Cell forces, Cell polarity, Collective cell migration, Mechanobiology, Micropatterning, Substrate stiffness


Garcia-Calero, Elena, Botella-Lopez, Arancha, Bahamonde, Olga, Perez-Balaguer, Ariadna, Martinez, Salvador, (2016). FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon Brain Structure and Function , 221, (6), 2905-2917

In the mammalian telencephalon, part of the progenitor cells transition from multipolar to bipolar morphology as they invade the mantle zone. This associates with changing patterns of radial migration. However, the molecules implicated in these morphology transitions are not well known. In the present work, we analyzed the function of FoxP2 protein in this process during telencephalic development in vertebrates. We analyzed the expression of FoxP2 protein and its relation with cell morphology and migratory patterns in mouse and chicken developing striatum. We observed FoxP2 protein expressed in a gradient from the subventricular zone to the mantle layer in mice embryos. In the FoxP2 low domain cells showed multipolar migration. In the striatal mantle layer where FoxP2 protein expression is higher, cells showed locomoting migration and bipolar morphology. In contrast, FoxP2 showed a high and homogenous expression pattern in chicken striatum, thus bipolar morphology predominated. Elevation of FoxP2 in the striatal subventricular zone by in utero electroporation promoted bipolar morphology and impaired multipolar radial migration. In mouse cerebral cortex we obtained similar results. FoxP2 promotes transition from multipolar to bipolar morphology by means of gradiental expression in mouse striatum and cortex. Together these results indicate a role of FoxP2 differential expression in cell morphology control of the vertebrate telencephalon.

JTD Keywords: Radial migration, Bipolar morphology, Striatum, Cortex


Silva, N., Muñoz, C., Diaz-Marcos, J., Samitier, J., Yutronic, N., Kogan, M. J., Jara, P., (2016). In situ visualization of the local photothermal effect produced on α-cyclodextrin inclusion compound associated with gold nanoparticles Nanoscale Research Letters 11, 180

Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix).

JTD Keywords: Cyclodextrin inclusion compound, Gold nanoparticles, Guest migration, Plasmonic heating


Reginensi, Diego, Carulla, Patricia, Nocentini, Sara, Seira, Oscar, Serra-Picamal, Xavier, Torres-Espín, Abel, Matamoros-Angles, Andreu, Gavín, Rosalina, Moreno-Flores, María Teresa, Wandosell, Francisco, Samitier, Josep, Trepat, Xavier, Navarro, Xavier, del Río, José Antonio, (2015). Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord Cellular and Molecular Life Sciences , 72, (14), 2719-2737

Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.

JTD Keywords: Olfactory ensheathing cells, Traction force microscopy, Chondroitin sulphate proteoglycans, Cell migration, Nogo receptor ectodomain


Mrkonji, Garcia-Elias, A., Pardo-Pastor, C., Bazellières, E., Trepat, X., Vriens, J., Ghosh, D., Voets, T., Vicente, R., Valverde, M. A., (2015). TRPV4 participates in the establishment of trailing adhesions and directional persistence of migrating cells Pflugers Archiv European Journal of Physiology , 467, (10), 2107-2119

Calcium signaling participates in different cellular processes leading to cell migration. TRPV4, a non-selective cation channel that responds to mechano-osmotic stimulation and heat, is also involved in cell migration. However, the mechanistic involvement of TRPV4 in cell migration is currently unknown. We now report that expression of the mutant channel TRPV4-121AAWAA (lacking the phosphoinositide-binding site 121KRWRK125 and the response to physiological stimuli) altered HEK293 cell migration. Altered migration patterns included periods of fast and persistent motion followed by periods of stalling and turning, and the extension of multiple long cellular protrusions. TRPV4-WT overexpressing cells showed almost complete loss of directionality with frequent turns, no progression, and absence of long protrusions. Traction microscopy revealed higher tractions forces in the tail of TRPV4-121AAWAA than in TRPV4-WT expressing cells. These results are consistent with a defective and augmented tail retraction in TRPV4-121AAWAA- and TRPV4-WT-expressing cells, respectively. The activity of calpain, a protease implicated in focal adhesion (FA) disassembly, was decreased in TRPV4-121AAWAA compared with TRPV4-WT-expressing cells. Consistently, larger focal adhesions were seen in TRPV4-121AAWAA compared with TRPV4-WT-expressing HEK293 cells, a result that was also reproduced in T47D and U87 cells. Similarly, overexpression of the pore-dead mutant TRPV4-M680D resumed the TRPV4-121AAWAA phenotype presenting larger FA. The migratory phenotype obtained in HEK293 cells overexpressing TRPV4-121AAWAA was mimicked by knocking-down TRPC1, a cationic channel that participates in cell migration. Together, our results point to the participation of TRPV4 in the dynamics of trailing adhesions, a function that may require the interplay of TRPV4 with other cation channels or proteins present at the FA sites.

JTD Keywords: Calcium, Calpain, Focal adhesion, Migration, Traction forces, TRPV4


Estévez, M., Martínez, Elena, Yarwood, S. J., Dalby, M. J., Samitier, J., (2015). Adhesion and migration of cells responding to microtopography Journal of Biomedical Materials Research - Part A , 103, (5), 1659-1668

It is known that cells respond strongly to microtopography. However, cellular mechanisms of response are unclear. Here, we study wild-type fibroblasts responding to 25 μm2 posts and compare their response to that of FAK-/- fibroblasts and fibroblasts with PMA treatment to stimulate protein kinase C (PKC) and the small g-protein Rac. FAK knockout cells modulated adhesion number and size in a similar way to cells on topography; that is, they used more, smaller adhesions, but migration was almost completely stalled demonstrating the importance of FAK signaling in contact guidance and adhesion turnover. Little similarity, however, was observed to PKC stimulated cells and cells on the topography. Interestingly, with PKC stimulation the cell nuclei became highly deformable bringing focus on these surfaces to the study of metastasis. Surfaces that aid the study of cellular migration are important in developing understanding of mechanisms of wound healing and repair in aligned tissues such as ligament and tendon.

JTD Keywords: Adhesion, Cell migration, Cell morphology, Focal adhesion kinase, Microstructures


Serra-Picamal, Xavier, Conte, Vito, Sunyer, Raimon, Muñoz, José J., Trepat, Xavier, (2015). Mapping forces and kinematics during collective cell migration Methods in Cell Biology - Biophysical Methods in Cell Biology (ed. Wilson, L., Tran, P.), Academic Press (Santa Barbara, USA) 125, 309-330

Abstract Fundamental biological processes including morphogenesis and tissue repair require cells to migrate collectively. In these processes, epithelial or endothelial cells move in a cooperative manner coupled by intercellular junctions. Ultimately, the movement of these multicellular systems occurs through the generation of cellular forces, exerted either on the substrate via focal adhesions (cell–substrate forces) or on neighboring cells through cell–cell junctions (cell–cell forces). Quantitative measurements of multicellular forces and kinematics with cellular or subcellular resolution have become possible only in recent years. In this chapter, we describe some of these techniques, which include particle image velocimetry to map cell velocities, traction force microscopy to map forces exerted by cells on the substrate, and monolayer stress microscopy to map forces within and between cells. We also describe experimental protocols to perform these measurements. The combination of these techniques with high-resolution imaging tools and molecular perturbations will lead to a better understanding of the mechanisms underlying collective cell migration in health and disease.

JTD Keywords: Collective cell migration, Monolayer stress microscopy, Traction force microscopy


Nocentini, S., Reginensi, D., Garcia, S., Carulla, P., Moreno-Flores, Wandosell, F., Trepat, X., Bribian, A., Del Rí, (2012). Myelin-associated proteins block the migration of olfactory ensheathing cells: an in vitro study using single-cell tracking and traction force microscopy Cellular and Molecular Life Sciences , 69, (10), 1689-1703

Newly generated olfactory receptor axons grow from the peripheral to the central nervous system aided by olfactory ensheathing cells (OECs). Thus, OEC transplantation has emerged as a promising therapy for spinal cord injuries and for other neural diseases. However, these cells do not present a uniform population, but instead a functionally heterogeneous population that exhibits a variety of responses including adhesion, repulsion, and crossover during cell–cell and cell–matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. Here, we demonstrated that rodent OECs express all the components of the Nogo receptor complex and that their migration is blocked by myelin. Next, we used cell tracking and traction force microscopy to analyze OEC migration and its mechanical properties over myelin. Our data relate the decrease of traction force of OEC with lower migratory capacity over myelin, which correlates with changes in the F-actin cytoskeleton and focal adhesion distribution. Lastly, OEC traction force and migratory capacity is enhanced after cell incubation with the Nogo receptor inhibitor NEP1-40.

JTD Keywords: Ensheathing glia, Traction force, microscopy, Migration, Myelin-associated inhibitors


Comelles, J., Hortigüela, V., Samitier, J., Martinez, E., (2012). Versatile gradients of covalently bound proteins on microstructured substrates Langmuir 28, (38), 13688-13697

In this work, we propose an easy method to produce highly tunable gradients of covalently bound proteins on topographically modified poly(methyl methacrylate). We used a rnicrofluidic approach to obtain linear gradients with high slope (0.5 pmol.cm(-2).mm(-1)), relevant at the single-cell level. These protein gradients were characterized using fluorescence microscopy and surface plasmon resonance. Both experimental results and theoretical modeling on the protein gradients generated have proved them to be highly reproducible, stable up to 7 days, and easily tunable. This method enables formation of versatile cell culture platforms combining both complex biochemical and physical cues in an attempt to approach in vitro cell culture methods to in vivo cellular microenvironments.

JTD Keywords: Cell-migration, Microfluidic channel, Surface, Streptavidin, Molecules, Topography, Mechanisms, Generation, Responses, Guidance


Trepat, X., Fredberg, J. J., (2011). Plithotaxis and emergent dynamics in collective cellular migration Trends in Cell Biology 21, (11), 638-646

For a monolayer sheet to migrate cohesively, it has long been suspected that each constituent cell must exert physical forces not only upon its extracellular matrix but also upon neighboring cells. The first comprehensive maps of these distinct force components reveal an unexpected physical picture. Rather than showing smooth and systematic variation within the monolayer, the distribution of physical forces is dominated by heterogeneity, both in space and in time, which emerges spontaneously, propagates over great distances, and cooperates over the span of many cell bodies. To explain the severe ruggedness of this force landscape and its role in collective cell guidance, the well known mechanisms of chemotaxis, durotaxis, haptotaxis are clearly insufficient. In a broad range of epithelial and endothelial cell sheets, collective cell migration is governed instead by a newly discovered emergent mechanism of innately collective cell guidance - plithotaxis.

JTD Keywords: Positional information, Drosophila embryo, Sheet migration, Dpp gradient, Cells, Force, Morphogenesis, Transition, Identification, Proliferation