by Keyword: SIM
Chen S, Peetroons X, Bakenecker AC, Lezcano F, Aranson IS, Sánchez S, (2024). Collective buoyancy-driven dynamics in swarming enzymatic nanomotors. Nature Communications 15, 9315
Enzymatic nanomotors harvest kinetic energy through the catalysis of chemical fuels. When a drop containing nanomotors is placed in a fuel-rich environment, they assemble into ordered groups and exhibit intriguing collective behaviour akin to the bioconvection of aerobic microorganismal suspensions. This collective behaviour presents numerous advantages compared to individual nanomotors, including expanded coverage and prolonged propulsion duration. However, the physical mechanisms underlying the collective motion have yet to be fully elucidated. Our study investigates the formation of enzymatic swarms using experimental analysis and computational modelling. We show that the directional movement of enzymatic nanomotor swarms is due to their solutal buoyancy. We investigate various factors that impact the movement of nanomotor swarms, such as particle concentration, fuel concentration, fuel viscosity, and vertical confinement. We examine the effects of these factors on swarm self-organization to gain a deeper understanding. In addition, the urease catalysis reaction produces ammonia and carbon dioxide, accelerating the directional movement of active swarms in urea compared with passive ones in the same conditions. The numerical analysis agrees with the experimental findings. Our findings are crucial for the potential biomedical applications of enzymatic nanomotor swarms, ranging from enhanced diffusion in bio-fluids and targeted delivery to cancer therapy.
JTD Keywords: Ammonia, Carbon dioxide, Catalysis, Computer simulation, Kinetics, Motion, Nanostructures, Urease, Viscosity
Oliver-Cervello, Lluis, Lopez-Gomez, Patricia, Martin-Gomez, Helena, Marion, Mahalia, Ginebra, Maria-Pau, Mas-Moruno, Carlos, (2024). Functionalization of Alginate Hydrogels with a Multifunctional Peptide Supports Mesenchymal Stem Cell Adhesion and Reduces Bacterial Colonization Chemistry-A European Journal 30, e202400855
Hydrogels with cell adhesive moieties stand out as promising materials to enhance tissue healing and regeneration. Nonetheless, bacterial infections of the implants represent an unmet major concern. In the present work, we developed an alginate hydrogel modified with a multifunctional peptide containing the RGD cell adhesive motif in combination with an antibacterial peptide derived from the 1-11 region of lactoferrin (LF). The RGD-LF branched peptide was successfully anchored to the alginate backbone by carbodiimide chemistry, as demonstrated by 1H NMR and fluorescence measurements. The functionalized hydrogel presented desirable physicochemical properties (porosity, swelling and rheological behavior) to develop biomaterials for tissue engineering. The viability of mesenchymal stem cells (MSCs) on the peptide-functionalized hydrogels was excellent, with values higher than 85 % at day 1, and higher than 95 % after 14 days in culture. Moreover, the biological characterization demonstrated the ability of the hydrogels to significantly enhance ALP activity of MSCs as well as to decrease bacterial colonization of both Gram-positive and Gram-negative models. Such results prove the potential of the functionalized hydrogels as novel biomaterials for tissue engineering, simultaneously displaying cell adhesive activity and the capacity to prevent bacterial contamination, a dual bioactivity commonly not found for these types of hydrogels. In this work we report on the functionalization of an alginate hydrogel with a tailor-made multifunctional peptide containing the cell adhesive RGD motif and the LF1-11 antibacterial peptide. Such novel multifunctional biomaterial ensures the viability of human mesenchymal stem cells, enhances ALP activity and decreases bacterial infections of both Gram-positive and Gram-negative models. image
JTD Keywords: Alginate hydrogel, Alginates, Anti-bacterial agents, Antimicrobial peptid, Antimicrobial peptide, Antimicrobial peptides, Arginyl-glycyl-aspartic acid, Biocompatible materials, Biofunctionalization, Bone, Cell adhesion, Cell survival, Composite hydrogels, Cross-linking, Hlf1-11 peptide, Human lactoferrin, Humans, Hydrogels, Immobilization, Mesenchymal stem cells, Multifunctional peptide, Oligopeptides, Peptides, Physical-properties, Scaffolds, Surfac, Tissue engineering
Vera, Daniel, Garcia-Diaz, Maria, Torras, Nuria, Castillo, Oscar, Illa, Xavi, Villa, Rosa, Alvarez, Mar, Martinez, Elena, (2024). A 3D bioprinted hydrogel gut-on-chip with integrated electrodes for transepithelial electrical resistance (TEER) measurements Biofabrication 16, 035008
Conventional gut-on-chip (GOC) models typically represent the epithelial layer of the gut tissue, neglecting other important components such as the stromal compartment and the extracellular matrix (ECM) that play crucial roles in maintaining intestinal barrier integrity and function. These models often employ hard, flat porous membranes for cell culture, thus failing to recapitulate the soft environment and complex 3D architecture of the intestinal mucosa. Alternatively, hydrogels have been recently introduced in GOCs as ECM analogs to support the co-culture of intestinal cells in in vivo-like configurations, and thus opening new opportunities in the organ-on-chip field. In this work, we present an innovative GOC device that includes a 3D bioprinted hydrogel channel replicating the intestinal villi architecture containing both the epithelial and stromal compartments of the gut mucosa. The bioprinted hydrogels successfully support both the encapsulation of fibroblasts and their co-culture with intestinal epithelial cells under physiological flow conditions. Moreover, we successfully integrated electrodes into the microfluidic system to monitor the barrier formation in real time via transepithelial electrical resistance measurements.
JTD Keywords: A-chip, Bioprinted, Caco-2, Cells, Culture, Gut-on-a-chip, Hydrogels, Impedance spectroscopy, Integrated electrodes, Intestinal barrier, Intestinal mucos, Model
Hafa, L, Breideband, L, Posada, LR, Torras, N, Martinez, E, Stelzer, EHK, Pampaloni, F, (2024). Light Sheet-Based Laser Patterning Bioprinting Produces Long-Term Viable Full-Thickness Skin Constructs Advanced Materials 36, e2306258
Tissue engineering holds great promise for biomedical research and healthcare, offering alternatives to animal models and enabling tissue regeneration and organ transplantation. Three-dimensional (3D) bioprinting stands out for its design flexibility and reproducibility. Here, we present an integrated fluorescent light sheet bioprinting and imaging system that combines high printing speed (0.66 mm3 /s) and resolution (9 μm) with light sheet-based imaging. This approach employs direct laser patterning and a static light sheet for confined voxel crosslinking in photocrosslinkable materials. The developed bioprinter enables real-time monitoring of hydrogel crosslinking using fluorescent recovery after photobleaching (FRAP) and brightfield imaging as well as in situ light sheet imaging of cells. Human fibroblasts encapsulated in a thiol-ene click chemistry-based hydrogel exhibited high viability (83% ± 4.34%) and functionality. Furthermore, full-thickness skin constructs displayed characteristics of both epidermal and dermal layers and remained viable for 41 days. The integrated approach demonstrates the capabilities of light sheet bioprinting, offering high speed, resolution, and real-time characterization. Future enhancements involving solid-state laser scanning devices such as acousto-optic deflectors and modulators will further enhance resolution and speed, opening new opportunities in light-based bioprinting and advancing tissue engineering. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.
JTD Keywords: cadherin, collagen, culture, differentiation, fluorescence microscopy, full-thickness skin model, hydrogels, light sheet bioprinter, light sheet fluorescence microscopy, proliferation, survival, tissue engineering, Animal, Animals, Biofabrication, Bioprinting, Cell culture, Crosslinking, Fluorescence, Fluorescence microscopy, Full-thickness skin model, Hair follicle, Human, Humans, Hydrogel, Hydrogels, Image resolution, Laser patterning, Light sheet, Light sheet bioprinter, Light sheet fluorescence microscopy, Molecular biology, Photobleaching, Printing, three-dimensional, Procedures, Reproducibility, Reproducibility of results, Skin model, Three dimensional printing, Tissue, Tissue engineering, Tissue regeneration, Tissue scaffolds, Tissues engineerings
Liu, M, Zhang, C, Gong, XM, Zhang, T, Lian, MM, Chew, EGY, Cardilla, A, Suzuki, K, Wang, HM, Yuan, Y, Li, Y, Naik, MY, Wang, YX, Zhou, BR, Soon, WZ, Aizawa, E, Li, P, Low, JH, Tandiono, M, Montagud, E, Moya-Rull, D, Esteban, CR, Luque, Y, Fang, ML, Khor, CC, Montserrat, N, Campistol, JM, Belmonte, JCI, Foo, JN, Xia, Y, (2024). Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo Cell Stem Cell 31, 52-70.e8
Human pluripotent stem cell -derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single -cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA -approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.
JTD Keywords: Adenylate kinase, Adult, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Autophagosome, Autophagy, Autophagy (cellular), Autosomal-dominant, Calcium homeostasis, Cilia, Cilium, Cohort analysis, Controlled study, Cyclic amp, Disease, Dominant polycystic kidney, Enzyme linked immunosorbent assay, Epithelium, Exon, Expression, Female, Food and drug administration, Framework, Generation, Growth, Hepatitis a virus cellular receptor 1, Human, Human cell, Humans, Immunohistochemistry, In vitro study, In vivo study, Kidney, Kidney organoid, Kidney polycystic disease, Male, Minoxidil, Mouse, Mutations, Nonhuman, Organoid, Organoids, Platelet derived growth factor beta receptor, Pluripotent stem-cells, Polycystic kidney diseases, Protein kinase lkb1, Renin, Sequestosome 1, Single cell analysis, Single cell rna seq, Small nuclear rna, Tunel assay, Upregulation, Western blotting, Whole exome sequencing
Bodrenko, I, Ceccarelli, M, Acosta-Gutierrez, S, (2023). The mechanism of an electrostatic nanofilter: overcoming entropy with electrostatics Physical Chemistry Chemical Physics 25, 26497-26506
General porins are nature's sieving machinery in the outer membrane of Gram-negative bacteria. Their unique hourglass-shaped architecture is highly conserved among different bacterial membrane proteins and other biological channels. These biological nanopores have been designed to protect the interior of the bacterial cell from leakage of toxic compounds while selectively allowing the entry of the molecules needed for cell growth and function. The mechanism of transport through porins is of utmost and direct interest for drug discovery, extending toward nanotechnology applications for blue energy, separations, and sequencing. Here we present a theoretical framework for analysing the filter of general porins in relation to translocating molecules with the aid of enhanced molecular simulations quantitatively. Using different electrostatic probes in the form of a series of related molecules, we describe the nature of this filter and how to finely tune permeability by exploiting electrostatic interactions between the pore and the translocating molecule. Eventually, we show how enhanced simulations constitute today a valid tool for characterising the mechanism and quantifying energetically the transport of molecules through nanopores. General porins are nature's sieving machinery in the outer membrane of Gram-negative bacteria. In the diffusive transport process of molecules, electrostatic interactions can help to decrease the entropic free energy barrier.
JTD Keywords: Channel, Diffusion barrier, Electric-field, Molecular-dynamics, Outer-membrane permeability, Permeation, Porins, Simulations, Translocation, Transport
Tejedera-Villafranca, A, Montolio, M, Ramón-Azcón, J, Fernández-Costa, JM, (2023). Mimicking sarcolemmal damage in vitro: a contractile 3D model of skeletal muscle for drug testing in Duchenne muscular dystrophy Biofabrication 15, 45024
Duchenne muscular dystrophy (DMD) is the most prevalent neuromuscular disease diagnosed in childhood. It is a progressive and wasting disease, characterized by a degeneration of skeletal and cardiac muscles caused by the lack of dystrophin protein. The absence of this crucial structural protein leads to sarcolemmal fragility, resulting in muscle fiber damage during contraction. Despite ongoing efforts, there is no cure available for DMD patients. One of the primary challenges is the limited efficacy of current preclinical tools, which fail in modeling the biological complexity of the disease. Human-based three-dimensional (3D) cell culture methods appear as a novel approach to accelerate preclinical research by enhancing the reproduction of pathophysiological processes in skeletal muscle. In this work, we developed a patient-derived functional 3D skeletal muscle model of DMD that reproduces the sarcolemmal damage found in the native DMD muscle. These bioengineered skeletal muscle tissues exhibit contractile functionality, as they responded to electrical pulse stimulation. Sustained contractile regimes induced the loss of myotube integrity, mirroring the pathological myotube breakdown inherent in DMD due to sarcolemmal instability. Moreover, damaged DMD tissues showed disease functional phenotypes, such as tetanic fatigue. We also evaluated the therapeutic effect of utrophin upregulator drug candidates on the functionality of the skeletal muscle tissues, thus providing deeper insight into the real impact of these treatments. Overall, our findings underscore the potential of bioengineered 3D skeletal muscle technology to advance DMD research and facilitate the development of novel therapies for DMD and related neuromuscular disorders.
JTD Keywords: 3d cell culture, disease modeling, drug testing, duchenne muscular dystrophy, sarcolemmal damage, skeletal muscle, 3d cell culture, Animal-models, Disease modeling, Dmso, Drug testing, Duchenne muscular dystrophy, Gene, Humans, Image, Mechanisms, Muscle fibers, skeletal, Muscle, skeletal, Muscular dystrophy, duchenne, Myocardium, Sarcolemmal damage, Skeletal muscle, Tissue engineering, Utrophin
Tampieri, F, Espona-Noguera, A, Labay, C, Ginebra, MP, Yusupov, M, Bogaerts, A, Canal, C, (2023). Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate Biomaterials Science 11, 4845-4858
The mutual interaction between reactive species generated by non-thermal plasma and biopolymers in solution causes oxidative modifications that can have an impact in biomedical applications.
JTD Keywords: atmospheric plasma, cellulose, dftb3, gas, oxidation, parameterization, simulations, water, Biopolymers, Hydrogen peroxide, Molecular dynamics simulation, Molecular-dynamics, Nitrites, Reactive oxygen species
van Aalen, EA, Rosier, BJHM, Jansen, T, Wouters, SFA, Vermathen, RT, van der Veer, HJ, Lozano, JY, Mughal, S, Fernández-Costa, J, Ramón-Azcón, J, den Toonder, JMJ, Merkx, M, (2023). Integrated Bioluminescent Immunoassays for High-Throughput Sampling and Continuous Monitoring of Cytokines Analytical Chemistry 95, 8922-8931
Immunoassays show great potential for the detection of low levels of cytokines, due to their high sensitivity and excellent specificity. There is a particular demand for biosensors that enable both high-throughput screening and continuous monitoring of clinically relevant cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα). To this end, we here introduce a novel bioluminescent immunoassay based on the ratiometric plug-and-play immunodiagnostics (RAPPID) platform, with an improved intrinsic signal-to-background and an >80-fold increase in the luminescent signal. The new dRAPPID assay, comprising a dimeric protein G adapter connected via a semiflexible linker, was applied to detect the secretion of IL-6 by breast carcinoma cells upon TNFα stimulation and the production of low concentrations of IL-6 (∼18 pM) in an endotoxin-stimulated human 3D muscle tissue model. Moreover, we integrated the dRAPPID assay in a newly developed microfluidic device for the simultaneous and continuous monitoring of changes in IL-6 and TNFα in the low-nanomolar range. The luminescence-based read-out and the homogeneous nature of the dRAPPID platform allowed for detection with a simple measurement setup, consisting of a digital camera and a light-sealed box. This permits the usage of the continuous dRAPPID monitoring chip at the point of need, without the requirement for complex or expensive detection techniques.
JTD Keywords: cells, code, elisa, il-6, inflammation, kits, pathogenesis, procalcitonin, release, Cytokines, Humans, Immunoassay, Immunologic tests, Interleukin-6, Tumor necrosis factor-alpha
Ferre-Torres, J, Noguera-Monteagudo, A, Lopez-Canosa, A, Romero-Arias, JR, Barrio, R, Castaño, O, Hernandez-Machado, A, (2023). Modelling of chemotactic sprouting endothelial cells through an extracellular matrix Frontiers In Bioengineering And Biotechnology 11, 1145550
Sprouting angiogenesis is a core biological process critical to vascular development. Its accurate simulation, relevant to multiple facets of human health, is of broad, interdisciplinary appeal. This study presents an in-silico model replicating a microfluidic assay where endothelial cells sprout into a biomimetic extracellular matrix, specifically, a large-pore, low-concentration fibrin-based porous hydrogel, influenced by chemotactic factors. We introduce a novel approach by incorporating the extracellular matrix and chemotactic factor effects into a unified term using a single parameter, primarily focusing on modelling sprouting dynamics and morphology. This continuous model naturally describes chemotactic-induced sprouting with no need for additional rules. In addition, we extended our base model to account for matrix sensing and degradation, crucial aspects of angiogenesis. We validate our model via a hybrid in-silico experimental method, comparing the model predictions with experimental results derived from the microfluidic setup. Our results underscore the intricate relationship between the extracellular matrix structure and angiogenic sprouting, proposing a promising method for predicting the influence of the extracellular matrix on angiogenesis.Copyright © 2023 Ferre-Torres, Noguera-Monteagudo, Lopez-Canosa, Romero-Arias, Barrio, Castaño and Hernandez-Machado.
JTD Keywords: angiogenesis, biomimmetic, chemotaxis, endothelial cells, filopodia, growth, in silico model, mathematical models, mechanisms, metalloproteinase, migration, morphogenesis, phase field, pore-size, simulation, Angiogenesis, Biomimmetic, Chemotaxis, Endothelial cells, Extracellular matrix, In silico model, Mathematical models, Phase field, Tip cells
Chausse, V, Casanova-Batlle, E, Canal, C, Ginebra, MP, Ciurana, J, Pegueroles, M, (2023). Solvent-cast direct-writing and electrospinning as a dual fabrication strategy for drug-eluting polymeric bioresorbable stents Additive Manufacturing 71, 103568
JTD Keywords: alignment, bioresorbable stents, cells, design, electrospinning, everolimus, impact, in-vitro, poly(l-lactic-co-e-caprolactone), proliferation, release, sirolimus, Scaffold topography, Solvent-cast direct-writing
Milenkovic, S, Wang, JJ, Acosta-Gutierrez, S, Winterhalter, M, Ceccarelli, M, Bodrenko, IV, (2023). How the physical properties of bacterial porins match environmental conditions Physical Chemistry Chemical Physics 25, 12712-12722
Despite the high homology of OmpF and OmpC, the internally folded loop responds differently to temperature increase.
JTD Keywords: diffusion, mechanism, molecules, nanopores, permeability, proteins, rules, simulations, transport, Membrane
Venugopal, A, Ruiz-Perez, L, Swamynathan, K, Kulkarni, C, Calò, A, Kumar, M, (2023). Caught in Action: Visualizing Dynamic Nanostructures Within Supramolecular Systems Chemistry Angewandte Chemie (International Ed. Print) 62, e202208681
Supramolecular systems chemistry has been an area of active research to develop nanomaterials with life-like functions. Progress in systems chemistry relies on our ability to probe the nanostructure formation in solution. Often visualizing the dynamics of nanostructures which transform over time is a formidable challenge. This necessitates a paradigm shift from dry sample imaging towards solution-based techniques. We review the application of state-of-the-art techniques for real-time, in situ visualization of dynamic self-assembly processes. We present how solution-based techniques namely optical super-resolution microscopy, solution-state atomic force microscopy, liquid-phase transmission electron microscopy, molecular dynamics simulations and other emerging techniques are revolutionizing our understanding of active and adaptive nanomaterials with life-like functions. This Review provides the visualization toolbox and futuristic vision to tap the potential of dynamic nanomaterials.© 2022 Wiley-VCH GmbH.
JTD Keywords: electron-microscopy, fluorescence microscopy, in-situ, mechanical-properties, molecular simulations, nanostructures, polymerization, polymers, stimulated-emission, super-resolution microscopy, supramolecular chemistry, systems chemistry, water, Atomic-force microscopy, Liquid tem, Nanostructures, Super-resolution microscopy, Supramolecular chemistry, Systems chemistry
Cañellas-Socias, A, Cortina, C, Hernando-Momblona, X, Palomo-Ponce, S, Mulholland, EJ, Turon, G, Mateo, L, Conti, S, Roman, O, Sevillano, M, Slebe, F, Stork, D, Caballé-Mestres, A, Berenguer-Llergo, A, Alvarez-Varela, A, Fenderico, N, Novellasdemunt, L, Jiménez-Gracia, L, Sipka, T, Bardia, L, Lorden, P, Colombelli, J, Heyn, H, Trepat, X, Tejpar, S, Sancho, E, Tauriello, DVF, Leedham, S, Attolini, CSO, Batlle, E, (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells Nature 611, 603-613
Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
JTD Keywords: colonization, defines, human colon, mutations, plasticity, retrieval, stem-cells, subtypes, underlie, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Article, Cancer, Cancer growth, Cancer immunotherapy, Cancer inhibition, Cancer recurrence, Cancer staging, Cell, Cell adhesion, Cell migration, Cell population, Cell surface receptor, Cohort analysis, Colorectal cancer, Colorectal neoplasms, Colorectal tumor, Comprehensive molecular characterization, Controlled study, Crispr-cas9 system, Cytoskeleton, Disease exacerbation, Disease progression, Dynamics, Emp1 gene, Epithelial membrane protein-1, Extracellular matrix, Flow cytometry, Fluorescence intensity, Gene expression, Genetics, Human, Human cell, Humans, Immune response, Immunofluorescence, In situ hybridization, Marker gene, Metastasis potential, Mice, Minimal residual disease, Mouse, Neoplasm proteins, Neoplasm recurrence, local, Neoplasm, residual, Nonhuman, Pathology, Phenotype, Prevention and control, Protein, Receptors, cell surface, Single cell rna seq, Tumor, Tumor protein, Tumor recurrence
Barbacena, P, Dominguez-Cejudo, M, Fonseca, CG, Gómez-González, M, Faure, LM, Zarkada, G, Pena, A, Pezzarossa, A, Ramalho, D, Giarratano, Y, Ouarné, M, Barata, D, Fortunato, IC, Misikova, LH, Mauldin, I, Carvalho, Y, Trepat, X, Roca-Cusachs, P, Eichmann, A, Bernabeu, MO, Franco, CA, (2022). Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retina Developmental Cell 57, 2321-2333
Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
JTD Keywords: activation, angiogenesis, dynamics, flow, forces, image, mechanisms, vinculin, Angiogenesis, Cell polarity, Fluid shear, Mechanobiology, Morphogenesis, Shear stress
Fontana-Escartin, A, Lanzalaco, S, Bertran, O, Aleman, C, (2022). Electrochemical multi-sensors obtained by applying an electric discharge treatment to 3D-printed poly(lactic acid) Applied Surface Science 597, 153623
Electrochemical sensors for real-time detection of several bioanalytes have been prepared by additive manufacturing, shaping non-conductive poly(lactic acid) (PLA) filaments, and applying a physical treatment to create excited species. The latter process, which consists of the application of power discharge of 100 W during 2 min in a chamber at a low pressure of O-2, converts electrochemically inert PLA into an electrochemically responsive material. The electric discharge caused the oxidation of the PLA surface as evidenced by the increment in the quantity of oxygenated species detected by FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). Indeed, changes in the surface chemical composition became more pronounced with increasing O-2 pressure. After demonstrating the performance of the chemically modified material as individual dopamine and glucose sensors, multiplexed detection has been achieved by measuring simultaneously the two voltammetric signals. This has been performed by collecting the signals in two different regions, a naked chemically modified PLA for dopamine detection and a chemically modified PLA region functionalized with Glucose Oxidase. These outcomes led to define a new paradigm for manufacturing electrodes for electrochemical sensors based on 3D printing without using conducting materials at any stage of the process.
JTD Keywords: Additive manu f a c turing, Carbon, Conductivity, Degradation, Dopamine, Dopamine detection, Glucose detection, Glucose sensors, Immobilization, Multiplexed detect i o n, Oxidase, Plasma treatment
Caballeria, E, Maier, M, Balcells-Oliveró, M, López-Pelayo, H, Oliveras, C, Ballester, BR, Verschure, PFMJ, Gual, A, (2022). Rehabilitation Gaming System for Alcohol-Related Cognitive Impairment: A Pilot Usability Study Alcohol And Alcoholism 57, 595-601
Aims: Cognitive impairment in patients with alcohol use disorder (AUD) is highly prevalent, and it negatively impacts treatment outcome. However, this condition is neither systematically assessed nor treated. Thus, we aimed to explore the usability of a virtual reality-based protocol ('Rehabilitation Gaming System', RGS) for patients with AUD. Methods: Twenty AUD patients (50% also cognitive impairment) underwent a single session of the RGS protocol (four cognitive training tasks, 10 minutes each). System Usability Scale (SUS) and Post-Study System Usability Questionnaire (PSSUQ) were applied to assess the RGS usability and patients' satisfaction with it. Also, the Perceived Competence Scale was administered to assess the patients' feelings of competence when using the training protocol. Comparisons of the responses to these questionnaires were performed between AUD patients with cognitive impairment and those without cognitive impairment. Results: RGS usability was very positively rated (median SUS score = 80, Interquartile Range, IQR = 68.13-86-88). No significant differences were found in the median SUS scores for any of the sociodemographic or clinical variables, excepting for gender (women median score = 85; IQR = 80-94.38 vs. men median score = 71.25; IQR = 61.25-89.25; P-value = 0.035). The quality of the information provided by the RGS training scenarios and the usability were positively rated (PSSUQ), and patients experienced high feelings of competence. Conclusions: The RGS has been found to be usable in the short term and patients with AUD stated to be satisfied with it. Future larger, randomized trials are needed to explore the effectiveness of this tool to help overcome the cognitive deficits in AUD patients. Short Summary: Although cognitive impairments are highly prevalent in alcohol use disorder (AUD), no long-term gold standard intervention has yet been identified. The Rehabilitation Gaming System (virtual reality-based cognitive training protocol) has shown short-term high usability in AUD. Its effectiveness in providing engaging, long-term cognitive rehabilitation in AUD should be further assessed.
JTD Keywords: Addiction, Brain-damage, Deficits, Impact, Neurocognitive impairment, Therapy
Tuveri, GM, Ceccarelli, M, Pira, A, Bodrenko, IV, (2022). The Optimal Permeation of Cyclic Boronates to Cross the Outer Membrane via the Porin Pathway Antibiotics 11, 840
We investigated the diffusion of three cyclic boronates formulated as beta-lactamase inhibitors through the porin OmpF to evaluate their potential to cross OM via the porin pathway. The three nonbeta-lactam molecules diffuse through the porin eyelet region with the same mechanism observed for beta-lactam molecules and diazobicyclooctan derivatives, with the electric dipole moment aligned with the transversal electric field. In particular, the BOH group can interact with both the basic ladder and the acidic loop L3, which is characteristic of the size-constricted region of this class of porins. On one hand, we confirm that the transport of small molecules through enterobacter porins has a common general mechanism; on the other, the class of cyclic boronate molecules does not seem to have particular difficulties in diffusing through enterobacter porins, thus representing a good scaffold for new anti-infectives targeting Gram-negative bacteria research.
JTD Keywords: beta-lactamase inhibitors, cyclic boronates, diffusion current, metadynamics, molecular dynamics simulations, permeation, Antibiotics, Beta-lactamase inhibitors, Cyclic boronates, Diffusion, Diffusion current, Discovery, Electric-field, Metadynamics, Molecular dynamics simulations, Molecular-dynamics simulations, Nanopores, Permeability, Permeation, Porins, Rules, Translocation
Palacios, LS, Scagliarini, A, Pagonabarraga, I, (2022). A lattice Boltzmann model for self-diffusiophoretic particles near and at liquid-liquid interfaces Journal Of Chemical Physics 156, 224105
We introduce a novel mesoscopic computational model based on a multiphase-multicomponent lattice Boltzmann method for the simulation of self-phoretic particles in the presence of liquid-liquid interfaces. Our model features fully resolved solvent hydrodynamics, and, thanks to its versatility, it can handle important aspects of the multiphysics of the problem, including particle wettability and differential solubility of the product in the two liquid phases. The method is extensively validated in simple numerical experiments, whose outcome is theoretically predictable, and then applied to the study of the behavior of active particles next to and trapped at interfaces. We show that their motion can be variously steered by tuning relevant control parameters, such as the phoretic mobilities, the contact angle, and the product solubility. Published under an exclusive license by AIP Publishing.
JTD Keywords: Colloids, Equation, Gas, Numerical simulations, Particulate suspensions
Rosales-Rojas, R, Zuniga-Bustos, M, Salas-Sepulveda, F, Galaz-Araya, C, Zamora, RA, Poblete, H, (2022). Self-Organization Dynamics of Collagen-like Peptides Crosslinking Is Driven by Rose-Bengal-Mediated Electrostatic Bridges Pharmaceutics 14, 1148
The present work focuses on the computational study of the structural micro-organization of hydrogels based on collagen-like peptides (CLPs) in complex with Rose Bengal (RB). In previous studies, these hydrogels computationally and experimentally demonstrated that when RB was activated by green light, it could generate forms of stable crosslinked structures capable of regenerating biological tissues such as the skin and cornea. Here, we focus on the structural and atomic interactions of two collagen-like peptides (collagen-like peptide I (CLPI), and collagen-like peptide II, (CLPII)) in the presence and absence of RB, highlighting the acquired three-dimensional organization and going deep into the stabilization effect caused by the dye. Our results suggest that the dye could generate a ternary ground-state complex between collagen-like peptide fibers, specifically with positively charged amino acids (Lys in CLPI and Arg in CLPII), thus stabilizing ordered three-dimensional structures. The discoveries generated in this study provide the structural and atomic bases for the subsequent rational development of new synthetic peptides with improved characteristics for applications in the regeneration of biological tissues during photochemical tissue bonding therapies.
JTD Keywords: collagen-like peptide, crosslinking, molecular dynamics, qm/mm simulations, rose bengal, Anastomosis, Collagen-like peptide, Crosslinking, Green light, Mm simulations, Molecular dynamics, Molecular-dynamics, Photochemical tissue bonding therapies, Qm, Rose bengal
Marti, D, Martin-Martinez, E, Torras, J, Betran, O, Turon, P, Aleman, C, (2022). In silico study of substrate chemistry effect on the tethering of engineered antibodies for SARS-CoV-2 detection: Amorphous silica vs gold Colloids And Surfaces B-Biointerfaces 213, 112400
The influence of the properties of different solid substrates on the tethering of two antibodies, IgG1-CR3022 and IgG1-S309, which were specifically engineered for the detection of SARS-CoV-2, has been examined at the molecular level using conventional and accelerated Molecular Dynamics (cMD and aMD, respectively). Two surfaces with very different properties and widely used in immunosensors for diagnosis, amorphous silica and the most stable facet of the face-centered cubic gold structure, have been considered. The effects of such surfaces on the structure and orientation of the immobilized antibodies have been determined by quantifying the tilt and hinge angles that describe the orientation and shape of the antibody, respectively, and the dihedrals that measure the relative position of the antibody arms with respect to the surface. Results show that the interactions with amorphous silica, which are mainly electrostatic due to the charged nature of the surface, help to preserve the orientation and structure of the antibodies, especially of the IgG1-CR3022, indicating that the primary sequence of those antibodies also plays some role. Instead, short-range van der Waals interactions with the inert gold surface cause a higher degree tilting and fraying of the antibodies with respect to amorphous silica. The interactions between the antibodies and the surface also affect the correlation among the different angles and dihedrals, which increases with their strength. Overall, results explain why amorphous silica substrates are frequently used to immobilize antibodies in immunosensors. © 2022 The Authors
JTD Keywords: amorphous silica, antibody immobilization, enzyme, gol d, gold, immobilization, immunosensor, molecu l a r dynamics, molecular dynamics, protein adsorption, sars-cov-2 immunosensor, simulations, spike protein, surface interactions, target, vaccine, Amorphous silica, Antibodies, Antibody engineering, Antibody immobilization, Antibody structure, Article, Chemical detection, Computer model, Controlled study, Dihedral angle, Gold, In-silico, Molecular dynamics, Molecular levels, Molecular-dynamics, Nonhuman, Property, Sars, Sars-cov-2 immunosensor, Severe acute respiratory syndrome coronavirus 2, Silica, Silico studies, Silicon dioxide, Solid substrates, Structure analysis, Substrate chemistry, Substrates, Van der waals forces, Virus detection
Espinoso, A, Andrzejak, RG, (2022). Phase irregularity: A conceptually simple and efficient approach to characterize electroencephalographic recordings from epilepsy patients Physical Review e 105, 34212
The severe neurological disorder epilepsy affects almost 1% of the world population. For patients who suffer from pharmacoresistant focal-onset epilepsy, electroencephalographic (EEG) recordings are essential for the localization of the brain area where seizures start. Apart from the visual inspection of the recordings, quantitative EEG signal analysis techniques proved to be useful for this purpose. Among other features, regularity versus irregularity and phase coherence versus phase independence allowed characterizing brain dynamics from the measured EEG signals. Can phase irregularities also characterize brain dynamics? To address this question, we use the univariate coefficient of phase velocity variation, defined as the ratio of phase velocity standard deviation and the mean phase velocity. Beyond that, as a bivariate measure we use the classical mean phase coherence to quantify the degree of phase locking. All phase-based measures are combined with surrogates to test null hypotheses about the dynamics underlying the signals. In the first part of our analysis, we use the Rössler model system to study our approach under controlled conditions. In the second part, we use the Bern-Barcelona EEG database which consists of focal and nonfocal signals extracted from seizure-free recordings. Focal signals are recorded from brain areas where the first seizure EEG signal changes can be detected, and nonfocal signals are recorded from areas that are not involved in the seizure at its onset. Our results show that focal signals have less phase variability and more phase coherence than nonfocal signals. Once combined with surrogates, the mean phase velocity proved to have the highest discriminative power between focal and nonfocal signals. In conclusion, conceptually simple and easy to compute phase-based measures can help to detect features induced by epilepsy from EEG signals. This holds not only for the classical mean phase coherence but even more so for univariate measures of phase irregularity. © 2022 American Physical Society.
JTD Keywords: brain, entropy, epileptogenic networks, functional connectivity, hilbert transform, seizure onset, surrogate data, synchronization, time-series, Biomedical signal processing, Brain areas, Brain dynamics, Dynamics, Electroencephalographic signals, Electroencephalography, Electrophysiology, Intracranial eeg signals, Localisation, Neurological disorders, Neurology, Phase based, Phase coherence, Signal detection, Simple++, Univariate, Velocity, World population
Dias, JMS, Estima, D, Punte, H, Klingner, A, Marques, L, Magdanz, V, Khalil, ISM, (2022). Modeling and Characterization of the Passive Bending Stiffness of Nanoparticle-Coated Sperm Cells using Magnetic Excitation Advanced Theory And Simulations 5, 2100438
Of all the various locomotion strategies in low- (Formula presented.), traveling-wave propulsion methods with an elastic tail are preferred because they can be developed using simple designs and fabrication procedures. The only intrinsic property of the elastic tail that governs the form and rate of wave propagation along its length is the bending stiffness. Such traveling wave motion is performed by spermatozoa, which possess a tail that is characterized by intrinsic variable stiffness along its length. In this paper, the passive bending stiffness of the magnetic nanoparticle-coated flagella of bull sperm cells is measured using a contactless electromagnetic-based excitation method. Numerical elasto-hydrodynamic models are first developed to predict the magnetic excitation and relaxation of nanoparticle-coated nonuniform flagella. Then solutions are provided for various groups of nonuniform flagella with disparate nanoparticle coatings that relate their bending stiffness to their decay rate after the magnetic field is removed and the flagellum restores its original configuration. The numerical models are verified experimentally, and capture the effect of the nanoparticle coating on the bending stiffness. It is also shown that electrostatic self-assembly enables arbitrarily magnetizable cellular segments with variable stiffness along the flagellum. The bending stiffness is found to depend on the number and location of the magnetized cellular segments. © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH.
JTD Keywords: cilia, flagella, flagellar propulsion, low reynolds numbers, magnetic, microswimmers, passive, sperm cell, Bending stiffness, Cells, Cellulars, Coatings, Decay (organic), Electric excitation, Excited states, Flagellar propulsion, Locomotion strategies, Low reynolds numbers, Magnetic, Magnetic excitations, Nanoparticle coatings, Passive, Propulsion methods, Self assembly, Simple++, Sperm cell, Sperm cells, Stiffness, Travelling waves, Variable stiffness, Wave propagation, Younǵs modulus
McGill, K, Sackley, C, Godwin, J, Gavaghan, D, Ali, M, Ballester, BR, Brady, MC, (2022). Using the Barthel Index and modified Rankin Scale as Outcome Measures for Stroke Rehabilitation Trials; A Comparison of Minimum Sample Size Requirements Journal Of Stroke & Cerebrovascular Diseases 31, 106229
Underpowered trials risk inaccurate results. Recruitment to stroke rehabilitation randomised controlled trials (RCTs) is often a challenge. Statistical simulations offer an important opportunity to explore the adequacy of sample sizes in the context of specific outcome measures. We aimed to examine and compare the adequacy of stroke rehabilitation RCT sample sizes using the Barthel Index (BI) or modified Rankin Scale (mRS) as primary outcomes.We conducted computer simulations using typical experimental event rates (EER) and control event rates (CER) based on individual participant data (IPD) from stroke rehabilitation RCTs. Event rates are the proportion of participants who experienced clinically relevant improvements in the RCT experimental and control groups. We examined minimum sample size requirements and estimated the number of participants required to achieve a number needed to treat within clinically acceptable boundaries for the BI and mRS.We secured 2350 IPD (18 RCTs). For a 90% chance of statistical accuracy on the BI a rehabilitation RCT would require 273 participants per randomised group. Accurate interpretation of effect sizes would require 1000s of participants per group. Simulations for the mRS were not possible as a clinically relevant improvement was not detected when using this outcome measure.Stroke rehabilitation RCTs with large sample sizes are required for accurate interpretation of effect sizes based on the BI. The mRS lacked sensitivity to detect change and thus may be unsuitable as a primary outcome in stroke rehabilitation trials.Copyright © 2021 Elsevier Inc. All rights reserved.
JTD Keywords:  , barthel index, design, increasing value, modified rankin scale, randomised controlled trials, recruitment, reducing waste, reliability, sample size calculations, simulations, stroke rehabilitation, Adult, Article, Barthel index, Calculation, Computer simulation, Controlled study, Effect size, Female, Human, Human experiment, Major clinical study, Male, Modified rankin scale, Numbers needed to treat, Outcome assessment, Randomised controlled trials, Randomized controlled trial, Randomized controlled-trials, Rankin scale, Recruitment, Rehabilitation, Sample size, Sample size calculations, Simulations, Stroke rehabilitation
Beltran, G, Navajas, D, García-Aznar, JM, (2022). Mechanical modeling of lung alveoli: From macroscopic behaviour to cell mechano-sensing at microscopic level Journal Of The Mechanical Behavior Of Biomedical Materials 126, 105043
The mechanical signals sensed by the alveolar cells through the changes in the local matrix stiffness of the extracellular matrix (ECM) are determinant for regulating cellular functions. Therefore, the study of the mechanical response of lung tissue becomes a fundamental aspect in order to further understand the mechanosensing signals perceived by the cells in the alveoli. This study is focused on the development of a finite element (FE) model of a decellularized rat lung tissue strip, which reproduces accurately the mechanical behaviour observed in the experiments by means of a tensile test. For simulating the complex structure of the lung parenchyma, which consists of a heterogeneous and non-uniform network of thin-walled alveoli, a 3D model based on a Voronoi tessellation is developed. This Voronoi-based model is considered very suitable for recreating the geometry of cellular materials with randomly distributed polygons like in the lung tissue. The material model used in the mechanical simulations of the lung tissue was characterized experimentally by means of AFM tests in order to evaluate the lung tissue stiffness on the micro scale. Thus, in this study, the micro (AFM test) and the macro scale (tensile test) mechanical behaviour are linked through the mechanical simulation with the 3D FE model based on Voronoi tessellation. Finally, a micro-mechanical FE-based model is generated from the Voronoi diagram for studying the stiffness sensed by the alveolar cells in function of two independent factors: the stretch level of the lung tissue and the geometrical position of the cells on the extracellular matrix (ECM), distinguishing between pneumocyte type I and type II. We conclude that the position of the cells within the alveolus has a great influence on the local stiffness perceived by the cells. Alveolar cells located at the corners of the alveolus, mainly type II pneumocytes, perceive a much higher stiffness than those located in the flat areas of the alveoli, which correspond to type I pneumocytes. However, the high stiffness, due to the macroscopic lung tissue stretch, affects both cells in a very similar form, thus no significant differences between them have been observed. © 2021 The Authors
JTD Keywords: rat, scaffolds, stiffness, Afm, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Biological organs, Cell function, Cells, Computational geometry, Cytology, Extracellular matrices, Extracellular matrix, Extracellular-matrix, Geometry, High stiffness, Human, Lung alveolus cell type 1, Lung alveolus cell type 2, Lung parenchyma, Lung tissue, Male, Mechanical behavior, Mechanical modeling, Mechanical simulations, Mechanosensing, Model-based opc, Nonhuman, Physical model, Rat, Rigidity, Stiffness, Stiffness matrix, Tensile testing, Thin walled structures, Three dimensional finite element analysis, Tissue, Type ii, Voronoi tessellations
Martí, D, Alemán, C, Ainsley, J, Ahumada, O, Torras, J, (2022). IgG1-b12–HIV-gp120 Interface in Solution: A Computational Study Journal Of Chemical Information And Modeling 62, 359-371
The use of broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) has been shown to be a promising therapeutic modality in the prevention of HIV infection. Understanding the b12-gp120 binding mechanism under physiological conditions may assist the development of more broadly effective antibodies. In this work, the main conformations and interactions between the receptor-binding domain (RBD) of spike glycoprotein gp120 of HIV-1 and the IgG1-b12 mAb are studied. Accelerated molecular dynamics (aMD) and ab initio hybrid molecular dynamics have been combined to determine the most persistent interactions between the most populated conformations of the antibody-antigen complex under physiological conditions. The results show the most persistent receptor-binding mapping in the conformations of the antibody-antigen interface in solution. The binding-free-energy decomposition reveals a small enhancement in the contribution played by the CDR-H3 region to the b12-gp120 interface compared to the crystal structure.
JTD Keywords: antibody, complex, functionals, gp120 envelope glycoprotein, hiv, immunodeficiency-virus, noncovalent interactions, simulations, software integration, Ab initio, Accelerated molecular dynamics, Accelerated molecular-dynamics, Antibodies, Antigens, Binding energy, Binding mechanisms, Computational studies, Crystal structure, Diseases, Free energy, Hiv infection, Human immunodeficiency virus, Molecular dynamics, Neutralizing antibodies, Physiological condition, Physiology, Receptor-binding domains, Therapeutic modality, Viruses
dos Santos, FP, Verschure, PFMJ, (2022). Excitatory-Inhibitory Homeostasis and Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex Frontiers In Systems Neuroscience 15, 806544
Maintaining a balance between excitatory and inhibitory activity is an essential feature of neural networks of the neocortex. In the face of perturbations in the levels of excitation to cortical neurons, synapses adjust to maintain excitatory-inhibitory (EI) balance. In this review, we summarize research on this EI homeostasis in the neocortex, using stroke as our case study, and in particular the loss of excitation to distant cortical regions after focal lesions. Widespread changes following a localized lesion, a phenomenon known as diaschisis, are not only related to excitability, but also observed with respect to functional connectivity. Here, we highlight the main findings regarding the evolution of excitability and functional cortical networks during the process of post-stroke recovery, and how both are related to functional recovery. We show that cortical reorganization at a global scale can be explained from the perspective of EI homeostasis. Indeed, recovery of functional networks is paralleled by increases in excitability across the cortex. These adaptive changes likely result from plasticity mechanisms such as synaptic scaling and are linked to EI homeostasis, providing a possible target for future therapeutic strategies in the process of rehabilitation. In addition, we address the difficulty of simultaneously studying these multiscale processes by presenting recent advances in large-scale modeling of the human cortex in the contexts of stroke and EI homeostasis, suggesting computational modeling as a powerful tool to tie the meso- and macro-scale processes of recovery in stroke patients. Copyright © 2022 Páscoa dos Santos and Verschure.
JTD Keywords: balanced excitation, canonical microcircuit, cerebral-cortex, cortical excitability, cortical reorganization, diaschisis, excitability, excitatory-inhibitory balance, functional networks, homeostatic plasticity, ischemic-stroke, neuronal avalanches, photothrombotic lesions, state functional connectivity, whole-brain models, Algorithm, Biological marker, Brain, Brain cell, Brain cortex, Brain function, Brain radiography, Cerebrovascular accident, Cortical reorganization, Diaschisis, Down regulation, Excitability, Excitatory-inhibitory balance, Fluorine magnetic resonance imaging, Functional networks, Homeostasis, Homeostatic plasticity, Human, Motor dysfunction, Neuromodulation, Plasticity, Pyramidal nerve cell, Review, Simulation, Stroke, Stroke patient, Theta-burst stimulation, Visual cortex
RIZZELO, L, DE MATTEIS, V, (2022). Identification of SARS-CoV-2 by Gold Nanoparticles Biocell 46, 2369-2380
The SARS-CoV-2 outbreaks highlighted the need for effective, reliable, fast, easy-to-do and cheap diagnostics procedures. We pragmatically experienced that an early positive-case detection, inevitably coupled with a mass vaccination campaign, is a milestone to control the COVID-19 pandemic. Gold nanoparticles (AuNPs) can indeed play a crucial role in this context, as their physicochemical, optics and electronics properties are being extensively used in photothermal therapy (PTT), radiation therapy (RT), drug delivery and diagnostic. AuNPs can be synthesized by several approaches to obtain different sizes and shapes that can be easily functionalized with many kinds of molecules such as antibodies, proteins, probes, and lipids. In addition, AuNPs showed high biocompatibility making them useful tool in medicine field. We thus reviewed here the most relevant evidence on AuNPs as effective way to detect the presence of SARS-CoV-2 antigens. We trust future diagnostic efforts must take this 'old-fashioned' nanotechnology tool into consideration for the development and commercialization of reliable and feasible detection kits.
JTD Keywords: Aggregation, Antibodies, Assay, Covid-19, Diagnosis, Enhanced raman-scattering, Gold nanoparticles, Immunoassay, Pandemic disease, Physicochemical properties, Rapid detection, Sars-cov-2, Sensors, Surface-plasmon resonance, Therapy
Sheehan, F, Sementa, D, Jain, A, Kumar, M, Tayarani-Najjaran, M, Kroiss, D, Ulijn, RV, (2021). Peptide-Based Supramolecular Systems Chemistry Chemical Reviews 121, 13869-13914
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
JTD Keywords: aromatic peptide, biological-properties, chemical control, conformational-analysis, electronic transport, mechanical-properties, perylene bisimide, pro-hyp sequences, residues determine, Self-assembling peptide
Castillo-Escario, Y, Kumru, H, Ferrer-Lluis, I, Vidal, J, Jané, R, (2021). Detection of Sleep-Disordered Breathing in Patients with Spinal Cord Injury Using a Smartphone Sensors 21, 7182
Patients with spinal cord injury (SCI) have an increased risk of sleep-disordered breathing (SDB), which can lead to serious comorbidities and impact patients’ recovery and quality of life. However, sleep tests are rarely performed on SCI patients, given their multiple health needs and the cost and complexity of diagnostic equipment. The objective of this study was to use a novel smartphone system as a simple non-invasive tool to monitor SDB in SCI patients. We recorded pulse oximetry, acoustic, and accelerometer data using a smartphone during overnight tests in 19 SCI patients and 19 able-bodied controls. Then, we analyzed these signals with automatic algorithms to detect desaturation, apnea, and hypopnea events and monitor sleep position. The apnea–hypopnea index (AHI) was significantly higher in SCI patients than controls (25 ± 15 vs. 9 ± 7, p < 0.001). We found that 63% of SCI patients had moderate-to-severe SDB (AHI ? 15) in contrast to 21% of control subjects. Most SCI patients slept predominantly in supine position, but an increased occurrence of events in supine position was only observed for eight patients. This study highlights the problem of SDB in SCI and provides simple cost-effective sleep monitoring tools to facilitate the detection, understanding, and management of SDB in SCI patients.
JTD Keywords: apnea syndrome, biomedical signal processing, individuals, mhealth, monitoring, nasal resistance, people, position, prevalence, questionnaire, sample, sleep apnea, sleep position, sleep-disordered breathing, smartphone, time, Apnea-hypopnea indices, Biomedical signal processing, Biomedical signals processing, Cost effectiveness, Diagnosis, Mhealth, Monitoring, Noninvasive medical procedures, Oximeters, Oxygen-saturation, Patient rehabilitation, Simple++, Sleep apnea, Sleep position, Sleep research, Sleep-disordered breathing, Smart phones, Smartphone, Smartphones, Spinal cord injury, Spinal cord injury patients
de Oliveira, LF, Braga, SCGN, Augusto, F, Poppi, RJ, (2021). Correlating comprehensive two-dimensional gas chromatography volatile profiles of chocolate with sensory analysis Brazilian Journal Of Analytical Chemistry 8, 131-140
The identification of key components relevant to sensory perception of quality from commercial chocolate samples was accomplished after chemometric processing of GC×GC-MS (Comprehensive Two-dimensional Gas Chromatography with Mass Spectrometric Detection) profiles corresponding to HS-SPME (Headspace Solid Phase Microextraction) extracts of the samples. Descriptive sensory evaluation of samples was carried out using Optimized Descriptive Profile (ODP) procedures, where sensory attributes of 24 commercial chocolate samples were used to classify them in two classes (low and high chocolate flavor). 2D Fisher Ratio analysis was applied to four-way chromatographic data tensors (1st dimension retention time 1tR × 2nd dimension retention time 2tR × m/z × sample), to identify the crucial areas on the chromatograms that resulted on ODP class separation on Principal Component Analysis (PCA) scores plot. Comparing the relevant sections of the chromatograms to the analysis of the corresponding mass spectra, it was possible to assess that most of the information regarding the sample main sensory attributes can be related to only 14 compounds (2,5-dimethylpyrazine, 2,6-dimethyl-4-heptanol, 1-octen-3-ol, trimethylpyrazine, β-pinene, o-cimene, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, benzaldehyde, 1,3,5-trimethylbenzene, 6-methyl-5-hepten-2-one, limonene, benzeneethanol and 1,1-dimethylbutylbenzene) among the complex blend of volatiles found on these extremely complex samples.
JTD Keywords: classification, cocoa, dark chocolate, feature-selection, fisher ratio, gcxgc-ms, impact, olfactometry, principal component analysis, sensorial analysis, Chocolate flavor, Fisher ratio, Flight mass-spectrometry, Gc×gc-ms, Principal component analysis, Sensorial analysis
Xu, DD, Hu, J, Pan, X, Sánchez, S, Yan, XH, Ma, X, (2021). Enzyme-Powered Liquid Metal Nanobots Endowed with Multiple Biomedical Functions Acs Nano 15, 11543-11554
Catalytically powered micro/nanobots (MNBs) can perform active movement by harnessing energy from in situ chemical reactions and show tremendous potential in biomedical applications. However, the development of imageable MNBs that are driven by bioavailable fuels and possess multiple therapeutic functions remains challenging. To resolve such issues, we herein propose enzyme (urease) powered liquid metal (LM) nanobots that are naturally of multiple therapeutic functions and imaging signals. The main body of the nanobot is composed of a biocompatible LM nanoparticle encapsulated by polydopamine (PDA). Urease enzyme needed for the powering and desired drug molecules, e.g., cefixime trihydrate antibiotic, are grafted on external surfaces of the PDA shell. Such a chemical composition endows the nanobots with dual-mode ultrasonic (US) and photoacoustic (PA) imaging signals and favorable photothermal effect. These LM nanobots exhibit positive chemotaxis and therefore can be collectively guided along a concentration gradient of urea for targeted transportation. When exposed to NIR light, the LM nanobots would deform and complete the function change from active drug carriers to photothermal reagents, to achieve synergetic antibacterial treatment by both photothermal and chemotherapeutic effects. The US and PA properties of the LM nanoparticle can be used to not only track and monitor the active movement of the nanobots in a microfluidic vessel model but also visualize their dynamics in the bladder of a living mouse in vivo. To conclude, the LM nanobots demonstrated herein represent a proof-of-concept therapeutic nanosystem with multiple biomedical functionalities, providing a feasible tool for preclinical studies and clinical trials of MNB-based imaging-guided therapy.
JTD Keywords: cell, chemo-photothermal therapy, chemotaxis, image tracking, liquid metal nanobots, nanomotors, tracking, Chemo-photothermal therapy, Chemotaxis, Image tracking, Liquid metal nanobots, Nanomotors
Abramov, A, Maiti, B, Keridou, I, Puiggalí, J, Reiser, O, Díaz, DD, (2021). A pH-Triggered Polymer Degradation or Drug Delivery System by Light-Mediated Cis/Trans Isomerization of o-Hydroxy Cinnamates Macromolecular Rapid Communications 42, 2100213
A new methodology for the pH-triggered degradation of polymers or for the release of drugs under visible light irradiation based on the cyclization of ortho-hydroxy-cinnamates (oHC) to coumarins is described. The key oHC structural motif can be readily incorporated into the rational design of novel photocleavable polymers via click chemistry. This main-chain moiety undergoes a fast photocleavage when irradiated with 455 nm light provided that a suitable base is added. A series of polyethylene glycol-alt-ortho-hydroxy cinnamate (polyethylene glycol (PEG)(n)-alt-oHC)-based polymers are synthesized and the time-dependent visible-light initiated cleavage of the photoactive monomer and polymer is investigated in solution by a variety of spectroscopic and chromatographic techniques. The photo-degradation behavior of the water-soluble poly(PEG(2000)-alt-oHC) is investigated within a broad pH range (pH = 2.1-11.8), demonstrating fast degradation at pH 11.8, while the stability of the polymer is greatly enhanced at pH 2.1. Moreover, the neat polymer shows long-term stability under daylight conditions, thus allowing its storage without special precautions. In addition, two water-soluble PEG-based drug-carrier molecules (mPEG(2000)-oHC-benzhydrol/phenol) are synthesized and used for drug delivery studies, monitoring the process by UV-vis spectroscopy in an ON/OFF intermittent manner.
JTD Keywords: coumarins, drug delivery, e/z-double bond isomerization, o-hydroxy cinnamates, polymer degradation, Aliphatic compounds, Antioxidant activity, Antitumor, Chromatographic techniques, Chromatography, Cis/trans isomerization, Controlled drug delivery, Coumarin derivatives, Coumarins, Drug delivery, Drug delivery system, E/z-double bond isomerization, Films, Hydrogels, Image enhancement, Light, Long term stability, O-hydroxy cinnamates, Particles, Photoactive monomers, Photodegradation, Polyethylene glycols, Polyethylenes, Polymer degradation, Responsive polymers, Salts, Structural motifs, Synthesis (chemical), Targeted drug delivery, Visible light photocatalysis, Visible-light irradiation
Cereta, AD, Oliveira, VR, Costa, IP, Afonso, JPR, Fonseca, AL, de Souza, ART, Silva, GAM, Mello, DACPG, de Oliveira, LVF, da Palma, RK, (2021). Emerging Cell-Based Therapies in Chronic Lung Diseases: What About Asthma? Frontiers In Pharmacology 12, 648506
Asthma is a widespread disease characterized by chronic airway inflammation. It causes substantial disability, impaired quality of life, and avoidable deaths around the world. The main treatment for asthmatic patients is the administration of corticosteroids, which improves the quality of life; however, prolonged use of corticosteroids interferes with extracellular matrix elements. Therefore, cell-based therapies are emerging as a novel therapeutic contribution to tissue regeneration for lung diseases. This study aimed to summarize the advancements in cell therapy involving mesenchymal stromal cells, extracellular vesicles, and immune cells such as T-cells in asthma. Our findings provide evidence that the use of mesenchymal stem cells, their derivatives, and immune cells such as T-cells are an initial milestone to understand how emergent cell-based therapies are effective to face the challenges in the development, progression, and management of asthma, thus improving the quality of life.
JTD Keywords: asthma treatments, cell-based therapies, chronic lung diseases, extracellular vesicles, immune cells, mesenchymal stromal cells, Asthma treatments, Cell-based therapies, Chronic lung diseases, Extracellular vesicles, Immune cells, Mesenchymal stromal cells
de la Serna, E, Arias-Alpízar, K, Borgheti-Cardoso, LN, Sanchez-Cano, A, Sulleiro, E, Zarzuela, F, Bosch-Nicolau, P, Salvador, F, Molina, I, Ramírez, M, Fernàndez-Busquets, X, Sánchez-Montalvá, A, Baldrich, E, (2021). Detection of Plasmodium falciparum malaria in 1 h using a simplified enzyme-linked immunosorbent assay Analytica Chimica Acta 1152, 338254
© 2021 Elsevier B.V. Malaria is a parasitic disease caused by protists of the genus Plasmodium, which are transmitted to humans through the bite of infected female Anopheles mosquitoes. Analytical methodologies and efficient drugs exist for the early detection and treatment of malaria, and yet this disease continues infecting millions of people and claiming several hundred thousand lives each year. One of the reasons behind this failure to control the disease is that the standard method for malaria diagnosis, microscopy, is time-consuming and requires trained personnel. Alternatively, rapid diagnostic tests, which have become common for point-of-care testing thanks to their simplicity of use, tend to be insufficiently sensitive and reliable, and PCR, which is sensitive, is too complex and expensive for massive population screening. In this work, we report a sensitive simplified ELISA for the quantitation of Plasmodium falciparum lactate dehydrogenase (Pf-LDH), which is capable of detecting malaria in 45–60 min. Assay development was founded in the selection of high-performance antibodies, implementation of a poly-horseradish peroxidase (polyHRP) signal amplifier, and optimization of whole-blood sample pre-treatment. The simplified ELISA achieved limits of detection (LOD) and quantification (LOQ) of 0.11 ng mL−1 and 0.37 ng mL−1, respectively, in lysed whole blood, and an LOD comparable to that of PCR in Plasmodium in vitro cultures (0.67 and 1.33 parasites μL−1 for ELISA and PCR, respectively). Accordingly, the developed immunoassay represents a simple and effective diagnostic tool for P. falciparum malaria, with a time-to-result of <60 min and sensitivity similar to the reference PCR, but easier to implement in low-resource settings.
JTD Keywords: malaria quantitative diagnosis, plasmodium culture, plasmodium ldh, polyhrp signal amplifier, simplified elisa, Malaria quantitative diagnosis, Plasmodium culture, Plasmodium ldh, Polyhrp signal amplifier, Simplified elisa
Vidal, E, Guillem-Marti, J, Ginebra, MP, Combes, C, Ruperez, E, Rodriguez, D, (2021). Multifunctional homogeneous calcium phosphate coatings: Toward antibacterial and cell adhesive titanium scaffolds Surface & Coatings Technology 405, 126557
Implants for orthopedic applications need to be biocompatible and bioactive, with mechanical properties similar to those of surrounding natural bone. Given this scenario titanium (Ti) scaffolds obtained by Direct Ink Writing technique offer the opportunity to manufacture customized structures with controlled porosity and mechanical properties. Considering that 3D Ti scaffolds have a significant surface area, it is necessary to develop strategies against the initial bacterial adhesion in order to prevent infection in the early stages of the implantation, while promoting cell adhesion to the scaffold. The challenge is not only achieving a balance between antibacterial activity and osseointegration, it is also to develop a homogeneous coating on the inner and outer surface of the scaffold. The purpose of this work was the development of a single-step electrodeposition process in order to uniformly cover Ti scaffolds with a layer of calcium phosphate (CaP) loaded with chlorhexidine digluconate (CHX). Scaffold characterization was assessed by scanning electron microscopy, Energy dispersive X-ray spectroscopy, X-ray diffraction, micro-Raman microscopy and compressive strength tests. Results determined that the surface of scaffolds was covered by plate-like and whisker-like calcium phosphate crystals, which main phases were octacalcium phosphate and brushite. Biological tests showed that the as-coated scaffolds reduced bacteria adhesion (73 +/- 3% for Staphylococcus aureus and 70 +/- 2% for Escherichia coli). In vitro cell studies and confocal analysis revealed the adhesion and spreading of osteoblast-like SaOS-2 on coated surfaces. Therefore, the proposed strategy can be a potential candidate in bone replacing surgeries.
JTD Keywords: Antibacterial, Bacterial, Behavior, Biocompatibility, Calcium phosphate coating, Chlorhexidine, Chlorhexidine digluconate, Deposition, Electrodeposition, Hydroxyapatite coatings, Implants, One-step pulse electrodeposition, Plasma-spray, Release, Surface, Titanium scaffolds
Conti, S, Kato, T, Park, D, Sahai, E, Trepat, X, Labernadie, A, (2021). CAFs and cancer cells co-migration in 3D spheroid invasion assay Crispr Knock-Ins In Organoids To Track Tumor Cell Subpopulations 2179, 243-256
© 2020, Springer Science+Business Media, LLC, part of Springer Nature. In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell–cell interactions and cell–matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.
JTD Keywords: 3d spheroid invasion, cancer associated fibroblasts, collective migration, dissemination, epithelial cancer cells, leader/follower cells, 3d spheroid invasion, Cancer associated fibroblasts, Cancer-associated fibroblasts, Cell culture techniques, Cell line, tumor, Cell movement, Cell tracking, Collective invasion, Collective migration, Epithelial cancer cells, Extracellular matrix, Humans, Imaging, three-dimensional, Leader/follower cells, Microscopy, fluorescence, Spheroids, cellular, Tumor cells, cultured
Selfa, IL, Gallo, M, Montserrat, N, Garreta, E, (2021). Directed Differentiation of Human Pluripotent Stem Cells for the Generation of High-Order Kidney Organoids Crispr Knock-Ins In Organoids To Track Tumor Cell Subpopulations 2258, 171-192
© 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature. Our understanding in the inherent properties of human pluripotent stem cells (hPSCs) have made possible the development of differentiation procedures to generate three-dimensional tissue-like cultures, so-called organoids. Here we detail a stepwise methodology to generate kidney organoids from hPSCs. This is achieved through direct differentiation of hPSCs in two-dimensional monolayer culture toward the posterior primitive streak fate, followed by induction of intermediate mesoderm-committed cells, which are further aggregated and cultured in three-dimensions to generate kidney organoids containing segmented nephron-like structures in a process that lasts 20 days. We also provide a concise description on how to assess renal commitment during the time course of kidney organoid generation. This includes the use of flow cytometry and immunocytochemistry analyses for the detection of specific renal differentiation markers.
JTD Keywords: 2d monolayer, 3d organotypic culture, differentiation, flow cytometry, human pluripotent stem cells, immunocytochemistry, intermediate mesoderm, kidney organoid, nephron progenitor cells, nephrons, primitive streak, 2d monolayer, 3d organotypic culture, Differentiation, Flow cytometry, Human pluripotent stem cells, Immunocytochemistry, Intermediate mesoderm, Kidney organoid, Nephron progenitor cells, Nephrons, Primitive streak, Tissue
Martí, D, Torras, J, Bertran, O, Turon, P, Alemán, C, (2021). Temperature effect on the SARS-CoV-2: A molecular dynamics study of the spike homotrimeric glycoprotein Computational And Structural Biotechnology Journal 19, 1848-1862
Rapid spread of SARS-CoV-2 virus have boosted the need of knowledge about inactivation mechanisms to minimize the impact of COVID-19 pandemic. Recent studies have shown that SARS-CoV-2 virus can be disabled by heating, the exposure time for total inactivation depending on the reached temperature (e.g. more than 45 min at 329 K or less than 5 min at 373 K. In spite of recent crystallographic structures, little is known about the molecular changes induced by the temperature. Here, we unravel the molecular basis of the effect of the temperature over the SARS-CoV-2 spike glycoprotein, which is a homotrimer with three identical monomers, by executing atomistic molecular dynamics (MD) simulations at 298, 310, 324, 338, 358 and 373 K. Furthermore, both the closed down and open up conformational states, which affect the accessibility of receptor binding domain, have been considered. Our results suggest that the spike homotrimer undergoes drastic changes in the topology of the hydrogen bonding interactions and important changes on the secondary structure of the receptor binding domain (RBD), while electrostatic interactions (i.e. salt bridges) are mainly preserved. The proposed inactivation mechanism has important implications for engineering new approaches to fight the SARS-CoV-2 coronavirus, as for example, cleaving or reorganizing the hydrogen bonds through chaotropic agents or nanoparticles with local surface resonant plasmon effect.
JTD Keywords: atomistic simulations, coronaviruses, denaturation, homotrimeric protein, inactivation, proteins, receptor binding domain, salt bridges, simulation, thermal inactivation, virus spike, Atomistic simulations, Homotrimeric protein, Receptor binding domain, Secondary-structure, Thermal inactivation, Virus spike
Eixarch, Herena, Calvo-Barreiro, Laura, Costa, Carme, Reverter-Vives, Gemma, Castillo, Mireia, Gil, Vanessa, Del Río, José Antonio, Montalban, Xavier, Espejo, Carmen, (2020). Inhibition of the BMP signaling pathway ameliorated established clinical symptoms of experimental autoimmune encephalomyelitis Neurotherapeutics 17, 1988–2003
Bone morphogenetic proteins (BMPs) are secreted growth factors that belong to the transforming growth factor beta superfamily. BMPs have been implicated in physiological processes, but they are also involved in many pathological conditions. Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS); however, its etiology remains elusive. Some evidence points to BMPs as important players in the pathogenesis of inflammatory and autoimmune disorders. In the present work, we studied the expression of BMP2, BMP4, BMP5, BMP6, BMP7, BMP type II receptor, and noggin in the immune system during different phases of experimental autoimmune encephalomyelitis (EAE). Major changes in the expression of BMPs took place in the initial phases of EAE. Indeed, those changes mainly affected BMP6 (whose expression was abrogated), BMP2, and BMP7 (whose expression was increased). In addition, we showed that in vivo inhibition of the BMP signaling pathway with small molecules ameliorated the already established clinical symptoms of EAE, as well as the CNS histopathological features. At the immune level, we observed an expansion of plasmacytoid dendritic cells (pDCs) in mice treated with small molecules that inhibit the BMP signaling pathway. pDCs could play an important role in promoting the expansion of antigen-specific regulatory T cells. Altogether, our data suggest a role for BMPs in early immune events that take place in myelin oligodendrocyte glycoprotein (MOG)-induced EAE. In addition, the clinical outcome of the disease was improved when the BMP signaling pathway was inhibited in mice that presented established EAE symptoms.
JTD Keywords: Bone morphogenetic protein, DMH1, Dorsomorphin, Experimental autoimmune encephalomyelitis, Immune response, Multiple sclerosis.
Chernigovskaya, T. V., Parina, I. S., Alekseeva, S. V., Konina, A. A., Urich, D. K., Mansurova, Y. O., Parin, S. B., (2019). Simultaneous interpreting: Characteristic of autonomic provision of extreme cognitive loads Sovremennye Tehnologii v Medicine 11, (1), 132-138
Simultaneous interpreting is one of the most comprehensive and energy-consuming types of cognitive activity. To work successfully, a simultaneous interpreter must have a specific functional state. The aim of our study was to find out the basic mechanisms of this functional state, the effect of the simultaneous interpreting on cognitive function changes, and the main factors influencing the degree of the regulatory systems strain. Materials and Methods. 33 individuals participated in the study: 22 linguists specially trained in simultaneous translation composed the experimental group and 11 language-qualified people having no skills of simultaneous translation represented the control group. In compliance with the study design, the measurements were performed under the conditions similar to the real work of simultaneous interpreters: The participants working in succession performed professional tasks: Shadowing in the native and foreign languages (German and English), simultaneous interpretation of the reports from the native language to the foreign, and vice versa. The interpreters were psychologically tested using ApWay.ru Web platform before and after the performance on the professional tasks: Computer campimetry, test for a simple sensorimotor activity, Stroop test, and test for emotional disadaptation level. Cardiointervalogram was telemetrically recorded during the entire experiment. Results. Some specific aspects of autonomic provision of simultaneous interpreting have been unraveled. A significantly greater tension of the autonomic regulation is manifested by the simultaneous interpreters compared to the control group. It was most prominent when translation was done from the foreign language. The total level of stress during the performance on the linguistic tasks appeared to be higher in the control group. In the simultaneous interpreters, in contrast to the control group, there was registered a high activity level of the sympathetic and parasympathetic systems and a marked integration of the cardiac rhythm regulation circuits over the entire period of performing the linguistic tasks. The psychological tests have demonstrated a significantly more confident cognitive control relative to the control group. Thus, a specific functional system has been formed in the simultaneous interpreters providing a successful interaction of various information images (or codes) and consolidation of autonomic and cognitive resources during the performance on professional tasks. Lack of the necessary skills and, consequently, of the task-oriented functional system in the participants of the control group resulted in the enhancement of the non-specific (less effective) stress response.
JTD Keywords: Autonomic provision of simultaneous interpreting, Cognitive activity, Cognitive control, Simultaneous interpreting
Pujals, S., Feiner-Gracia, N., Delcanale, P., Voets, I., Albertazzi, L., (2019). Super-resolution microscopy as a powerful tool to study complex synthetic materials Nature Reviews Chemistry 3, (2), 68-84
Understanding the relations between the formation, structure, dynamics and functionality of complex synthetic materials is one of the great challenges in chemistry and nanotechnology and represents the foundation for the rational design of novel materials for a variety of applications. Initially conceived to study biology below the diffraction limit, super-resolution microscopy (SRM) is emerging as a powerful tool for studying synthetic materials owing to its nanometric resolution, multicolour ability and minimal invasiveness. In this Review, we provide an overview of the pioneering studies that use SRM to visualize materials, highlighting exciting recent developments such as experiments in operando, wherein materials, such as biomaterials in a biological environment, are imaged in action. Moreover, the potential and the challenges of the different SRM methods for application in nanotechnology and (bio)materials science are discussed, aiming to guide researchers to select the best SRM approach for their specific purpose.
JTD Keywords: Bioinspired materials, Imaging techniques
Arqué, Xavier, Romero-Rivera, Adrian, Feixas, Ferran, Patiño, Tania, Osuna, Sílvia, Sánchez, Samuel, (2019). Intrinsic enzymatic properties modulate the self-propulsion of micromotors Nature Communications 10, (1), 2826
Bio-catalytic micro- and nanomotors self-propel by the enzymatic conversion of substrates into products. Despite the advances in the field, the fundamental aspects underlying enzyme-powered self-propulsion have rarely been studied. In this work, we select four enzymes (urease, acetylcholinesterase, glucose oxidase, and aldolase) to be attached on silica microcapsules and study how their turnover number and conformational dynamics affect the self-propulsion, combining both an experimental and molecular dynamics simulations approach. Urease and acetylcholinesterase, the enzymes with higher catalytic rates, are the only enzymes capable of producing active motion. Molecular dynamics simulations reveal that urease and acetylcholinesterase display the highest degree of flexibility near the active site, which could play a role on the catalytic process. We experimentally assess this hypothesis for urease micromotors through competitive inhibition (acetohydroxamic acid) and increasing enzyme rigidity (β-mercaptoethanol). We conclude that the conformational changes are a precondition of urease catalysis, which is essential to generate self-propulsion.
JTD Keywords: Biocatalysis, Immobilized enzymes, Molecular machines and motors
Sadowska, J. M., Wei, F., Guo, J., Guillem-Marti, J., Lin, Z., Ginebra, M. P., Xiao, Y., (2019). The effect of biomimetic calcium deficient hydroxyapatite and sintered β-tricalcium phosphate on osteoimmune reaction and osteogenesis Acta Biomaterialia 96, 605-618
Biomaterial implantation triggers inflammatory reactions. Understanding the effect of physicochemical features of biomaterials on the release of inflammatory cytokines from immune cells would be of great interest in view of designing bone graft materials to enhance the healing of bone defects. The present work investigated the interactions of two chemically and texturally different calcium phosphate (CaPs) substrates with macrophages, one of the main innate immune cells, and its further impact on osteogenic differentiation of bone forming cells. The behaviour of macrophages seeded on biomimetic calcium deficient hydroxyapatite (CDHA) and sintered β-tricalcium phosphate (β-TCP) was assessed in terms of the release of inflammatory cytokines and osteoclastogenic factors. The osteogenic differentiation of bone progenitor cells (bone marrow stromal cells (BMSCs) and osteoblastic cell line (SaOS-2)) were subsequently studied by incubating with the conditioned medium induced by macrophage-CaPs interaction in order to reveal the effect of immune cell reaction to CaPs on osteogenic differentiation. It was found that the incubation of macrophages with CaPs substrates caused a decrease of pro-inflammatory cytokines, more pronounced for β-TCP compared with CDHA showing significantly decreased IL-6, TNF-a, and iNOS. However, the macrophage-CDHA interaction resulted in a more favourable environment for osteogenic differentiation of osteoblasts with more collagen type I production and osteogenic genes (Runx2, BSP) expression, suggesting that osteogenic differentiation of bone cells is not only determined by the nature of biomaterials, but also significantly influenced by the inflammatory environment generated by the interaction of immune cells and biomaterials.
Statement of Significance: The field of osteoimmunology highlights the importance of the cross-talk between immune and bone cells for effective bone regeneration. This tight interaction opens the door to new strategies that encompass the development of smart cell-instructive biomaterials which performance covers the events from early inflammation to osteogenesis. The present work links the anti-inflammatory and osteoimmunomodulatory features of synthetic bone grafts to their chemistry and texture, focussing on the cross-talk between macrophages and two major orchestrators of bone healing, namely primary mesenchymal stem cells and osteoblasts. The results emphasize the importance of the microenvironment created through the interaction between the substrate and the immune cells as it can stimulate osteogenic events and subsequently foster bone healing.
JTD Keywords: Calcium phosphates, Immunomodulation, Inflammation, Osteogenesis, Osteoimmunomodulation
Lozano, H., Millán-Solsona, R., Fabregas, R., Gomila, G., (2019). Sizing single nanoscale objects from polarization forces Scientific Reports 9, (1), 14142
Sizing natural or engineered single nanoscale objects is fundamental in many areas of science and technology. To achieve it several advanced microscopic techniques have been developed, mostly based on electron and scanning probe microscopies. Still for soft and poorly adhered samples the existing techniques face important challenges. Here, we propose an alternative method to size single nanoscale objects based on the measurement of its electric polarization. The method is based on Electrostatic Force Microscopy measurements combined with a specifically designed multiparameter quantification algorithm, which gives the physical dimensions (height and width) of the nanoscale object. The proposed method is validated with ~50 nm diameter silver nanowires, and successfully applied to ~10 nm diameter bacterial polar flagella, an example of soft and poorly adhered nanoscale object. We show that an accuracy comparable to AFM topographic imaging can be achieved. The main advantage of the proposed method is that, being based on the measurement of long-range polarization forces, it can be applied without contacting the sample, what is key when considering poorly adhered and soft nanoscale objects. Potential applications of the proposed method to a wide range of nanoscale objects relevant in Material, Life Sciences and Nanomedicine is envisaged.
JTD Keywords: Characterization and analytical techniques, Imaging techniques
Herreros, Ivan, Miquel, Laia, Blithikioti, Chrysanthi, Nuño, Laura, Rubio Ballester, Belen, Grechuta, Klaudia, Gual, Antoni, Balcells-Oliveró, Mercè, Verschure, P., (2019). Motor adaptation impairment in chronic cannabis users assessed by a visuomotor rotation task Journal of Clinical Medicine 8, (7), 1049
Background—The cerebellum has been recently suggested as an important player in the addiction brain circuit. Cannabis is one of the most used drugs worldwide, and its long-term effects on the central nervous system are not fully understood. No valid clinical evaluations of cannabis impact on the brain are available today. The cerebellum is expected to be one of the brain structures that are highly affected by prolonged exposure to cannabis, due to its high density in endocannabinoid receptors. We aim to use a motor adaptation paradigm to indirectly assess cerebellar function in chronic cannabis users (CCUs). Methods—We used a visuomotor rotation (VMR) task that probes a putatively-cerebellar implicit motor adaptation process together with the learning and execution of an explicit aiming rule. We conducted a case-control study, recruiting 18 CCUs and 18 age-matched healthy controls. Our main measure was the angular aiming error. Results—Our results show that CCUs have impaired implicit motor adaptation, as they showed a smaller rate of adaptation compared with healthy controls (drift rate: 19.3 +/− 6.8° vs. 27.4 +/− 11.6°; t(26) = −2.1, p = 0.048, Cohen’s d = −0.8, 95% CI = (−1.7, −0.15)). Conclusions—We suggest that a visuomotor rotation task might be the first step towards developing a useful tool for the detection of alterations in implicit learning among cannabis users.
JTD Keywords: Cerebellum, Cannabis, Implicit motor learning, Motor adaptation, Visuomotor rotation
Mohammadi, M. H., Obregón, R., Ahadian, S., Ramón-Azcón, J., Radisic, M., (2017). Engineered muscle tissues for disease modeling and drug screening applications Current Pharmaceutical Design , 23, (20), 2991-3004
Animal models have been the main resources for drug discovery and prediction of drugs’ pharmacokinetic responses in the body. However, noticeable drawbacks associated with animal models include high cost, low reproducibility, low physiological similarity to humans, and ethical problems. Engineered tissue models have recently emerged as an alternative or substitute for animal models in drug discovery and testing and disease modeling. In this review, we focus on skeletal muscle and cardiac muscle tissues by first describing their characterization and physiology. Major fabrication technologies (i.e., electrospinning, bioprinting, dielectrophoresis, textile technology, and microfluidics) to make functional muscle tissues are then described. Finally, currently used muscle tissue models in drug screening are reviewed and discussed.
JTD Keywords: Cardiac muscle, Drug screening, Engineering muscle, Human pharmacological response, Physiological similarity, Skeletal muscle
Noguera-Ortega, Estela, Secanella-Fandos, Silvia, Eraña, Hasier, Gasión, Jofre, Rabanal, Rosa M., Luquin, Marina, Torrents, Eduard, Julián, Esther, (2016). Nonpathogenic Mycobacterium brumae inhibits bladder cancer growth in vitro, ex vivo, and in vivo European Urology Focus , 2, (1), 67-76
Background
Bacillus Calmette-Guérin (BCG) prevents tumour recurrence and progression in non–muscle-invasive bladder cancer (BC). However, common adverse events occur, including BCG infections.
Objective
To find a mycobacterium with similar or superior antitumour activity to BCG but with greater safety.
Design
In vitro, ex vivo, and in vivo comparisons of the antitumour efficacy of nonpathogenic mycobacteria and BCG.
Intervention
The in vitro antitumour activity of a broad set of mycobacteria was studied in seven different BC cell lines. The most efficacious was selected and its ex vivo capacity to activate immune cells and its in vivo antitumour activity in an orthotopic murine model of BC were investigated.
Outcome measurements and statistical analysis
Growth inhibition of BC cells was the primary outcome measurement. Parametric and nonparametric tests were use to analyse the in vitro results, and a Kaplan-Meier test was applied to measure survival in mycobacteria-treated tumour-bearing mice.
Results and limitations
Mycobacterium brumae is superior to BCG in inhibiting low-grade BC cell growth, and has similar effects to BCG against high-grade cells. M. brumae triggers an indirect antitumour response by activating macrophages and the cytotoxic activity of peripheral blood cells against BC cells. Although no significant differences were observed between BCG and M. brumae treatments in mice, M. brumae treatment prolonged survival in comparison to BCG treatment in tumour-bearing mice. In contrast to BCG, M. brumae does not persist intracellularly or in tumour-bearing mice, so the risk of infection is lower.
Conclusions
Our preclinical data suggest that M. brumae represents a safe and efficacious candidate as a therapeutic agent for non–muscle-invasive BC.
Patient summary
We investigated the antitumour activity of nonpathogenic mycobacteria in in vitro and in vivo models of non–muscle-invasive bladder cancer. We found that Mycobacterium brumae effectively inhibits bladder cancer growth and helps the host immune system to eradicate cancer cells, and is a promising agent for antitumour immunotherapy.
JTD Keywords: Animal models, Bacillus Calmette-Guérin, Cytokines, Immunomodulation, Immunotherapy, Mycobacteria, Urothelial cell line
Noguera-Ortega, E., Rabanal, R. M., Secanella-Fandos, S., Torrents, E., Luquin, M., Julián, E., (2016). Gamma-irradiated mycobacteria enhance survival in bladder tumor bearing mice although less efficaciously than live mycobacteria Journal of Urology , 195, (1), 198-205
Purpose
γ Irradiated Mycobacterium bovis bacillus Calmette-Guérin has shown in vitro and ex vivo antitumor activity. However, to our knowledge the potential antitumor capacity has not been demonstrated in vivo. We studied the in vivo potential of γ irradiated bacillus Calmette-Guérin and γ irradiated M. brumae, a saprophytic mycobacterium that was recently described as an immunotherapeutic agent.
Materials and Methods
The antitumor capacity of γ irradiated M. brumae was first investigated by analyzing the in vitro inhibition of bladder tumor cell proliferation and the ex vivo cytotoxic effect of M. brumae activated peripheral blood cells. The effect of γ irradiated M. brumae or bacillus Calmette-Guérin intravesical treatment was then compared to treatment with live mycobacteria in the orthotopic murine model of bladder cancer.
Results
Nonviable M. brumae showed a capacity to inhibit in vitro bladder cancer cell lines similar to that of live mycobacteria. However, its capacity to induce cytokine production was decreased compared to that of live M. brumae. γ Irradiated M. brumae could activate immune cells to inhibit tumor cell growth, although to a lesser extent than live mycobacteria. Finally, intravesical treatment with γ irradiated M. brumae or bacillus Calmette-Guérin significantly increased survival with respect to that of nontreated tumor bearing mice. Both γ irradiated mycobacteria showed lower survival rates than those of live mycobacteria but the minor efficacy of γ irradiated vs live mycobacteria was only significant for bacillus Calmette-Guérin.
Conclusions
Our results show that although γ irradiated mycobacteria is less efficacious than live mycobacteria, it induces an antitumor effect in vivo, avoiding the possibility of further mycobacterial infections.
JTD Keywords: BCG vaccine, Gamma rays, Immunotherapy, Mycobacterium, Urinary bladder neoplasms
Páez-Avilés, C., Juanola-Feliu, E., Punter-Villagrasa, J., Del Moral Zamora, B., Homs-Corbera, A., Colomer-Farrarons, J., Miribel-Català , P. L., Samitier, J., (2016). Combined dielectrophoresis and impedance systems for bacteria analysis in microfluidic on-chip platforms Sensors 16, (9), 1514
Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments.
JTD Keywords: Bacteria, Dielectrophoresis, Impedance, Microfluidics, On-chip
Alsaleh, S. M., Aviles, A. I., Sobrevilla, P., Casals, A., Hahn, J. K., (2015). Automatic and robust single-camera specular highlight removal in cardiac images Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 675-678
In computer-assisted beating heart surgeries, accurate tracking of the heart's motion is of huge importance and there is a continuous need to eliminate any source of error that might disturb the tracking process. One source of error is the specular reflection that appears on the glossy surface of the heart. In this paper, we propose a robust solution for the detection and removal of specular highlights. A hybrid color attributes and wavelet based edge projection approach is applied to accurately identify the affected regions. These regions are then recovered using a dynamic search-based inpainting with adaptive windowing. Experimental results demonstrate the precision and efficiency of the proposed method. Moreover, it has a real-time performance and can be generalized to various other applications.
JTD Keywords: Heart, Image color analysis, Image edge detection, Surgery, Tracking, Wavelet transforms
Oller-Moreno, S., Singla-Buxarrais, G., Jiménez-Soto, J. M., Pardo, Antonio, Garrido-Delgado, R., Arce, L., Marco, Santiago, (2015). Sliding window multi-curve resolution: Application to gas chromatography - Ion Mobility Spectrometry Sensors and Actuators B: Chemical 15th International Meeting on Chemical Sensors , Elsevier (Buenos Aires, Argentina) 217, 13-21
Abstract Blind Source Separation (BSS) techniques aim to extract a set of source signals from a measured mixture in an unsupervised manner. In the chemical instrumentation domain source signals typically refer to time-varying analyte concentrations, while the measured mixture is the set of observed spectra. Several techniques exist to perform BSS on Ion Mobility Spectrometry, being Simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) and Multivariate Curve Resolution (MCR) the most commonly used. The addition of a multi-capillary gas chromatography column using the ion mobility spectrometer as detector has been proposed in the past to increase chemical resolution. Short chromatography times lead to high levels of co-elution, and ion mobility spectra are key to resolve them. For the first time, BSS techniques are used to deconvolve samples of the gas chromatography - ion mobility spectrometry tandem. We propose a method to extract spectra and concentration profiles based on the application of MCR in a sliding window. Our results provide clear concentration profiles and pure spectra, resolving peaks that were not detected by the conventional use of MCR. The proposed technique could also be applied to other hyphenated instruments with similar strong co-elutions.
JTD Keywords: Blind Source Separation, Multivariate Curve Resolution, Ion Mobility Spectrometry, Gas Chromatography, Hyphenated instrumentation, SIMPLISMA, co-elution
Cuervo, A., Dans, P. D., Carrascosa, J. L., Orozco, M., Gomila, G., Fumagalli, L., (2014). Direct measurement of the dielectric polarization properties of DNA Proceedings of the National Academy of Sciences of the United States of America 111, (35), E3624-E3630
The electric polarizability of DNA, represented by the dielectric constant, is a key intrinsic property that modulates DNA interaction with effector proteins. Surprisingly, it has so far remained unknown owing to the lack of experimental tools able to access it. Here, we experimentally resolved it by detecting the ultraweak polarization forces of DNA inside single T7 bacteriophages particles using electrostatic force microscopy. In contrast to the common assumption of low-polarizable behavior like proteins (εr ~ 2–4), we found that the DNA dielectric constant is ~ 8, considerably higher than the value of ~ 3 found for capsid proteins. State-of-the-art molecular dynamic simulations confirm the experimental findings, which result in sensibly decreased DNA interaction free energy than normally predicted by Poisson–Boltzmann methods. Our findings reveal a property at the basis of DNA structure and functions that is needed for realistic theoretical descriptions, and illustrate the synergetic power of scanning probe microscopy and theoretical computation techniques.
JTD Keywords: Atomic force microscopy, Atomistic simulations, DNA packaging, DNA-ligand binding, Poisson-Boltzmann equation, capsid protein, DNA, double stranded DNA, amino acid composition, article, atomic force microscopy, bacteriophage, bacteriophage T7, dielectric constant, dipole, DNA binding, DNA packaging, DNA structure, electron microscopy, ligand binding, nonhuman, polarization, priority journal, protein analysis, protein DNA interaction, scanning probe microscopy, static electricity, virion, virus capsid, virus particle, atomic force microscopy, atomistic simulations, DNA packaging, DNA-ligand binding, Poisson-Boltzmann equation, Bacteriophage T7, Capsid, Cations, Dielectric Spectroscopy, DNA, DNA, Viral, DNA-Binding Proteins, Electrochemical Techniques, Ligands, Microscopy, Atomic Force, Models, Chemical, Nuclear Proteins
Tahirbegi, I. B., Mir, M., Schostek, S., Schurr, M., Samitier, J., (2014). In vivo ischemia monitoring array for endoscopic surgery Biosensors and Bioelectronics 61, 124-130
An array with all-solid-state, potentiometric, miniaturized sensors for pH and potassium was developed to be introduced into the stomach or other sectors of the digestive tract by means of flexible endoscopy. These sensors perform continuous and simultaneous measurement of extracellular pH and potassium. This detection seeks to sense ischemia in the gastric mucosa inside the stomach, an event indicative of local microvascular perfusion and tissue oxygenation status. Our array is proposed as a medical tool to identify the occurrence of the ischemia after gastrointestinal or gastroesophageal anastomosis. The stability and feasibility of the miniaturized working and reference electrodes integrated in the array were studied under in vitro conditions, and the behavior of the potassium and pH ion-selective membranes were optimized to work under acidic gastric conditions with high concentrations of HCl. The array was tested in vivo in pigs to measure the ischemia produced by clamping the blood flow into the stomach. Our results indicate that ischemic and reperfusion states can be sensed in vivo and that information on tissue damage can be collected by this sensor array. The device described here provides a miniaturized, inexpensive, and mass producible sensor array for detecting local ischemia caused by unfavorable anastomotic perfusion and will thus contribute to preventing anastomotic leakage and failure caused by tissue necrosis.
JTD Keywords: Endoscopy, Surgery, Tissue, Gastric anastomosis, Gastric conditions, Ion selective sensors, Ischemia, pH detection, Reference electrodes, Simultaneous measurement, Tissue oxygenation, Sensors
Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., Castaño, O., (2014). Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering Materials Science and Engineering: C 44, 183-190
In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold.
JTD Keywords: Bilayer fibrous scaffold, Ceramic nanoparticles, Electrospinning, Gelatin, Polycaprolactone, Biomechanics, Bone, Calcium phosphate, Cell culture, Electrospinning, Fourier transform infrared spectroscopy, Mechanical properties, Mineralogy, Nanoparticles, Phosphatases, Polycaprolactone, Scanning electron microscopy, X ray diffraction, Polycaprolactone, Alkaline phosphatase activity, Bone tissue engineering, Calcium phosphate nanoparticles, Ceramic nanoparticles, Fibrous scaffolds, Gelatin, Simulated body fluids, Wide-angle x-ray diffraction, Electrospuns, Scaffolds (biology), Electrospinning
Castillo-Fernandez, O., Rodriguez-Trujillo, R., Gomila, G., Samitier, J., (2014). High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation Microfluidics and Nanofluidics , 16, (1-2), 91-99
Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of up to ~500Â counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions.
JTD Keywords: Electronics, Impedance, Microcytometry, Microfluidics, Red blood cells (RBCs), White blood cells (WBCs)
Mir, M., Lugo, R., Tahirbegi, I. B., Samitier, J., (2014). Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications Sensors 14, (7), 11844-11854
Poly(vinylchloride) (PVC) is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors.
JTD Keywords: Biomedicine, Electrochemistry, Endoscope, Implantable device, Ion-selective electrode (ISE) sensor, Ischemia, pH detection, Biocompatibility, Chemical sensors, Electrochemistry, Electrodes, Electropolymerization, Endoscopy, Functional polymers, Implants (surgical), Ion selective electrodes, Medical applications, Polyvinyl chlorides, Stabilization, Biomedical applications, Biomedicine, Implantable devices, Ion selective sensors, Ischemia, Membrane instability, pH detection, Poly(3 ,4 ethylenedioxythiophene) (PEDOT), Ion selective membranes
Tahirbegi, I. B., Alvira, M., Mir, M., Samitier, J., (2014). Simple and fast method for fabrication of endoscopic implantable sensor arrays Sensors 14, (7), 11416-11426
Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope.
JTD Keywords: Chemical sensors, Cyclic voltammetry, Electrochemistry, Endoscopy, Fabrication, Implants (surgical), Microelectrodes, Needles, Nitrates, Scanning electron microscopy, Biomedicine, Fabricated sensors, Fabrication equipment, Implantable devices, Implantable sensors, Optical interferometry, Planar electrode, Roughness factor, Ion selective electrodes
Birhane, Y., Otero, J., Pérez-Murano, F., Fumagalli, L., Gomila, G., Bausells, J., (2014). Batch fabrication of insulated conductive scanning probe microscopy probes with reduced capacitive coupling Microelectronic Engineering , 119, 44-47
We report a novel fabrication process for the batch fabrication of insulated conductive scanning probe microscopy (SPM) probes for electrical and topographic characterization of soft samples in liquid media at the nanoscale. The whole SPM probe structure is insulated with a dielectric material except at the very tip end and at the contact pad area to minimize the leakage current in liquid. Additionally, the geometry of the conducting layer in the probe cantilever and substrate is engineered to reduce the parasitic capacitance coupling with the sample. The electrical characterization of the probes has shown that parasitic capacitances are significantly reduced as compared to fully metallized cantilevers.
JTD Keywords: Conductive scanning probe microscopy (C-SPM), EFM, SECM, SECM-AFM, SIM
Ziyatdinov, A., Diaz, E. Fernández, Chaudry, A., Marco, S., Persaud, K., Perera, A., (2013). A software tool for large-scale synthetic experiments based on polymeric sensor arrays Sensors and Actuators B: Chemical 177, 596-604
This manuscript introduces a software tool that allows for the design of synthetic experiments in machine olfaction. The proposed software package includes both, a virtual sensor array that reproduces the diversity and response of a polymer array and tools for data generation. The synthetic array of sensors allows for the generation of chemosensor data with a variety of characteristics: unlimited number of sensors, support of multicomponent gas mixtures and full parametric control of the noise in the system. The artificial sensor array is inspired from a reference database of seventeen polymeric sensors with concentration profiles for three analytes. The main features in the sensor data, like sensitivity, diversity, drift and sensor noise, are captured by a set of models under simplified assumptions. The generator of sensor signals can be used in applications related to test and benchmarking of signal processing methods, neuromorphic simulations in machine olfaction and educational tools. The software is implemented in R language and can be freely accessed.
JTD Keywords: Gas Sensor Array, Conducting Polymers, Electronic Nose, Sensor Simulation, Synthetic Dataset, Benchmark, Educational Tool
Caballero, D., Martinez, E., Bausells, J., Errachid, A., Samitier, J., (2012). Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface Analytica Chimica Acta 720, 43-48
In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si 3N 4) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si 3N 4-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO 2/Si 3N 4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10 -13-10 -7M were detected, showing a sensitivity of 0.128ΩμM -1 and a limit of detection of 10 -14M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins detected specifically, thus, establishing the basis and the potential applicability of the developed silicon nitride-based immunosensor for the detection of proteins in real and more complex samples.
JTD Keywords: Aldehyde, Electrochemical impedance spectroscopy, Human serum albumin, Immunosensor, Silicon nitride, Bovine serum albumins, Chemical reagents, Complex samples, Covalent binding, Detection capability, Electrochemical impedance, Electrochemical impedance spectroscopy measurements, Functionalizations, Human serum albumins, Impedimetric immunosensors, Label free, Limit of detection, Linear range, Protein concentrations, Silicon-based, Specific detection, Aldehydes
Valle-Delgado, J. J., Liepina, I., Lapidus, D., Sabaté, R., Ventura, S., Samitier, J., Fernàndez-Busquets, X., (2012). Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy Soft Matter 8, (4), 1234-1242
The self-assembly of peptides and proteins into amyloid fibrils of nanometric thickness and up to several micrometres in length, a phenomenon widely observed in biological systems, has recently aroused a growing interest in nanotechnology and nanomedicine. Here we have applied atomic force microscopy and single molecule force spectroscopy to study the amyloidogenesis of a peptide derived from human amylin and of its reverse sequence. The spontaneous formation of protofibrils and their orientation along well-defined directions on graphite and DMSO-coated graphite substrates make the studied peptides interesting candidates for nanotechnological applications. The measured binding forces between peptides correlate with the number of hydrogen bonds between individual peptides inside the fibril structure according to molecular dynamics simulations.
JTD Keywords: Amyloid fibril, Amyloidogenesis, Binding forces, Fibril structure, Graphite substrate, Molecular dynamics simulations, Nanometrics, Protofibrils, Single molecule force spectroscopy, Spontaneous formation, Atomic force microscopy, Atomic spectroscopy, Graphite, Hydrogen bonds, Medical nanotechnology, Molecular dynamics, Molecular physics, Self assembly, Thickness measurement, Peptides
Redondo-Morata, Lorena, Oncins, Gerard, Sanz, Fausto, (2012). Force spectroscopy reveals the effect of different ions in the nanomechanical behavior of phospholipid model membranes: The case of potassium cation Biophysical Journal , 102, (1), 66-74
How do metal cations affect the stability and structure of phospholipid bilayers? What role does ion binding play in the insertion of proteins and the overall mechanical stability of biological membranes? Investigators have used different theoretical and microscopic approaches to study the mechanical properties of lipid bilayers. Although they are crucial for such studies, molecular-dynamics simulations cannot yet span the complexity of biological membranes. In addition, there are still some experimental difficulties when it comes to testing the ion binding to lipid bilayers in an accurate way. Hence, there is a need to establish a new approach from the perspective of the nanometric scale, where most of the specific molecular phenomena take place. Atomic force microscopy has become an essential tool for examining the structure and behavior of lipid bilayers. In this work, we used force spectroscopy to quantitatively characterize nanomechanical resistance as a function of the electrolyte composition by means of a reliable molecular fingerprint that reveals itself as a repetitive jump in the approaching force curve. By systematically probing a set of bilayers of different composition immersed in electrolytes composed of a variety of monovalent and divalent metal cations, we were able to obtain a wealth of information showing that each ion makes an independent and important contribution to the gross mechanical resistance and its plastic properties. This work addresses the need to assess the effects of different ions on the structure of phospholipid membranes, and opens new avenues for characterizing the (nano)mechanical stability of membranes.
JTD Keywords: Molecular-dynamics simulation, Liquid expanded monolayers, Lipid-bilayers, Hofmeister series, Monovalent salt, Phosphatidylcholine, Microscopy, Binding, Surfaces, NaCl
Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204
This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.
JTD Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment
van Zanten, T. S., Garcia-Parajo, M. F., (2012). Super-resolution near-field optical microscopy Comprehensive Biophysics (ed. Egelman, E. H.), Elsevier (Desdren, Germany) Volume 2: Biophysical Techniques for Characterization of Cells, 144-164
Near-field optical microscopy is a technique not limited by the laws of diffraction that enables simultaneous high-resolution fluorescence and topographic measurements at the nanometer scale. This chapter highlights the intrinsic advantages of near-field optics in the study of cellular structures. The first part of the chapter lays the foundations of the near-field concept and technical implementation of near-field scanning optical microscopy (NSOM), whereas the second part of the chapter focuses on applications of NSOM to the study of model membranes and cellular structures on the plasma membrane. The last part of the chapter discusses further directions of near-field optics, including optical antennas and fluorescence correlation spectroscopy approaches in the near-field regime.
JTD Keywords: Biological membranes, Cell membrane nanoscale compartmentalization, Cellular nanodomains, Fluorescence correlation spectroscopy in reduced volumes, Immunoreceptor imaging, Lipid rafts, Near-field scanning optical microscopy, Optical nano-antennas, Shear force imaging, Single molecule detection, Super-resolution microscopy
Urban, Patricia, Estelrich, Joan, Cortés, Alfred, Fernàndez-Busquets, X., (2011). A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro Journal of Controlled Release 151, (2), 202-211
Current administration methods of antimalarial drugs deliver the free compound in the blood stream, where it can be unspecifically taken up by all cells, and not only by Plasmodium-infected red blood cells (pRBCs). Nanosized carriers have been receiving special attention with the aim of minimizing the side effects of malaria therapy by increasing drug bioavailability and selectivity. Liposome encapsulation has been assayed for the delivery of compounds against murine malaria, but there is a lack of cellular studies on the performance of targeted liposomes in specific cell recognition and on the efficacy of cargo delivery, and very little data on liposome-driven antimalarial drug targeting to human-infecting parasites. We have used fluorescence microscopy to assess in vitro the efficiency of liposomal nanocarriers for the targeted delivery of their contents to pRBCs. 200-nm liposomes loaded with quantum dots were covalently functionalized with oriented, specific half-antibodies against P. falciparum late form-infected pRBCs. In less than 90 min, liposomes dock to pRBC plasma membranes and release their cargo to the cell. 100.0% of late form-containing pRBCs and 0.0% of non-infected RBCs in P. falciparum cultures are recognized and permeated by the content of targeted immunoliposomes. Liposomes not functionalized with antibodies are also specifically directed to pRBCs, although with less affinity than immunoliposomes. In preliminary assays, the antimalarial drug chloroquine at a concentration of 2 nM, >= 10 times below its IC50 in solution, cleared 26.7 ± 1.8% of pRBCs when delivered inside targeted immunoliposomes.
JTD Keywords: Antimalarial chemotherapy, Chloroquine, Half-antibodies, Immunoliposomes, Malaria, Nanomedicine
Pomareda, Victor, Marco, Santiago, (2011). Chemical plume source localization with multiple mobile sensors using bayesian inference under background signals Olfaction and Electronic Nose: Proceedings of the 14th International Symposium on Olfaction and Electronic Nose AIP Conference Proceedings (ed. Perena Gouma, SUNY Stony Brook), AIP (New York City, USA) 1362, (1), 149-150
This work presents the estimation of a likelihood map for the location of a source of chemical plume using multiple mobile sensors and Bayesian Inference. Previously described methods use a single sensor and just binary detections (concentrations above or below a certain threshold). The main contribution of this work is to extend previous proposals to use concentration information while at the same time being robust against the presence of background signals. The algorithm has two parts. The first part, concerning Adaptive Background Estimation, uses robust statistics measurements to estimate the background level despite the intermittent presence of high concentrations due to plume statistics. The second part of the algorithm estimates likelihood functions for background and for condition plus plume. Then, the algorithm sequentially builds a likelihood probability map for the location of the source. The algorithm allows the use of multiple mobile sensors. The simulation results demonstrate that our algorithm estimates better the source location and is much more robust in the presence of false alarms.
JTD Keywords: Sensors, Inference mechanisms, Probability, Simulation
Garcia-Manyes, S., Redondo-Morata, L., Oncins, G., Sanz, F., (2010). Nanomechanics of lipid bilayers: Heads or tails? Journal of the American Chemical Society American Chemical Society 132, (37), 12874-12886
Understanding the effect of mechanical stress on membranes is of primary importance in biophysics. Here we use force spectroscopy AFM to quantitatively characterize the nanomechanical stability of supported lipid bilayers as a function of their chemical composition. The onset of plastic deformation reveals itself as a repetitive jump in the approaching force curve, which represents a molecular fingerprint for the bilayer mechanical stability. By systematically probing a set of chemically distinct supported lipid bilayers (SLBs), we first show that both the headgroup and tail have a decisive effect on their mechanical properties. While the mechanical stability of the probed SLBs linearly increases by 3.3 nN upon the introduction of each additional -CH2- in the chain, it exhibits a significant dependence on the phospholipid headgroup, ranging from 3 nN for DPPA to 66 nN for DPPG. Furthermore, we also quantify the reduction of the membrane mechanical stability as a function of the number of unsaturations and molecular branching in the chemical structure of the apolar tails. Finally, we demonstrate that, upon introduction of cholesterol and ergosterol, contrary to previous belief the mechanical stability of membranes not only increases linearly in the liquid phase (DLPC) but also for phospholipids present in the gel phase (DPPC). Our results are discussed in the framework of the continuum nucleation model. This work highlights the compelling effect of subtle variations in the chemical structure of phospholipid molecules on the membrane response when exposed to mechanical forces, a mechanism of common occurrence in nature.
JTD Keywords: Atomic-force microscopy, Molecular-dynamics simulation, Aqueous-electrolyte solutions, Supported planar membranes, Phospholipid-bilayers, Biological-membranes, Physical-properties, Fluid membranes, Model membranes, Chain-length
Valente, T., Gella, A., Fernàndez-Busquets, X., Unzeta, M., Durany, N., (2010). Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus Neurobiology of Disease , 37, (1), 67-76
It has been extensively reported that diabetes mellitus (DM) patients have a higher risk of developing Alzheimer's disease (AD). but a mechanistic connection between both pathologies has not been provided so far Carbohydrate-derived advanced glycation endproducts (AGEs) have been implicated in the chronic complications of DM and have been reported to play an important role in the pathogenesis of AD. The earliest histopathological manifestation of AD is the apparition of extracellular aggregates of the amyloid beta peptide (A beta). To investigate possible correlations between AGEs and A beta aggregates with both pathologies. we have performed an immuhistochemical study in human post-mortem samples of AD, AD with diabetes (ADD). diabetic and nondemented controls ADD brains showed increased number of A beta dense plaques and receptor for AGEs (RACE)-positive and Tau-positive cells, higher AGEs levels and major microglial activation, compared to AD brain. Our results indicate that ADD patients present a significant increase of cell damage through a RAGE-dependent mechanism, suggesting that AGEs may promote the generation of an oxidative stress vicious cycle, which can explain the severe progression of patients with both pathologies.
JTD Keywords: Abeta, Alzheimer's disease, Rage, Ages, Diabetes, Immunohistochemistry, Advanced glycation endproducts, Beta-amyloid peptide, End-products, Oxidative stress, Advanced glycosylation, Synaptic dysfunction, Cross-linking
Michiardi, A., Helary, G., Nguyen, P. C. T., Gamble, L. J., Anagnostou, F., Castner, D. G., Migonney, V., (2010). Bioactive polymer grafting onto titanium alloy surfaces Acta Biomaterialia 6, (2), 667-675
Bioactive polymers bearing sulfonate (styrene sodium sulfonate, NaSS) and carboxylate (methylacrylic acid, MA) groups were grafted onto Ti6Al4V alloy surfaces by a two-step procedure. The Ti alloy surfaces were first chemically oxidized in a piranha solution and then directly subjected to radical polymerization at 70 °C in the absence of oxygen. The grafted surfaces were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and the toluidine blue colorimetric method. Toluidine blue results showed 1-5 μg cm-2 of polymer was grafted onto the oxidized Ti surfaces. Grafting resulted in a decrease in the XPS Ti and O signals from the underlying Ti substrate and a corresponding increase in the XPS C and S signals from the polymer layer. The ToF-SIMS intensities of the S- and SO- ions correlated linearly with the XPS atomic percent S concentrations and the ToF-SIMS intensity of the TiO3H2- ion correlated linearly with the XPS atomic per cent Ti concentration. Thus, the ToF-SIMS S-, SO- and TiO3H2- intensities can be used to quantify the composition and amount of grafted polymer. ToF-SIMS also detected ions that were more characteristic of the polymer molecular structure (C6H4SO3- and C8H7SO3- from NaSS, C4H5O2- from MA), but the intensity of these peaks depended on the polymer thickness and composition. An in vitro cell culture test was carried out with human osteoblast-like cells to assess the influence of the grafted polymers on cell response. Cell adhesion after 30 min of incubation showed significant differences between the grafted and ungrafted surfaces. The NaSS grafted surfaces showed the highest degree of cell adhesion while the MA-NaSS grafted surfaces showed the lowest degree of cell adhesion. After 4 weeks in vivo in rabbit femoral bones, bone was observed to be in direct contact with all implants. The percentage of mineralized tissue around the implants was similar for NaSS grafted and non-grafted implants (59% and 57%). The MA-NaSS grafted implant exhibited a lower amount of mineralized tissue (47%).
JTD Keywords: Bioactive polymers, Osteointegration, Titanium alloy, ToF-SIMS, XPS
Auffarth, B., Lopez, M., Cerquides, J., (2010). Comparison of redundancy and relevance measures for feature selection in tissue classification of CT images Lecture Notes in Artificial Intelligence 10th Industrial Conference on Data Mining (ed. Perner, P.), Springer-Verlag Berlin (Berlin, Germany) 6171, 248-262
In this paper we report on a study on feature selection within the minimum-redundancy maximum-relevance framework. Features are ranked by their correlations to the target vector. These relevance scores are then integrated with correlations between features in order to obtain a set of relevant and least-redundant features. Applied measures of correlation or distributional similarity for redunancy and relevance include Kolmogorov-Smirnov (KS) test, Spearman correlations, Jensen-Shannon divergence, and the sign-test. We introduce a metric called "value difference metric" (VDM) and present a simple measure, which we call "fit criterion" (FC). We draw conclusions about the usefulness of different measures. While KS-test and sign-test provided useful information, Spearman correlations are not fit for comparison of data of different measurement intervals. VDM was very good in our experiments as both redundancy and relevance measure. Jensen-Shannon and the sign-test are good redundancy measure alternatives and FC is a good relevance measure alternative.
JTD Keywords: Distributional similarity, Divergence measure, Feature selection, Relevance and redundancy
Illa, X., Rodriguez-Trujillo, R., Ordeig, O., De Malsche, W., Homs-Corbera, A., Gardeniers, H., Desmet, G., Kutter, J. P., Samitier, J., Romano-Rodríguez, A., (2010). Simultaneous impedance and fluorescence detection of proteins in a cyclo olefin polymer chip containing a column with an ordered pillar array with integrated gold microelectrodes MicroTAS 2010 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences , UoG (Gorningen, The Netherlands) 2, 1280-1282
In this work, we report the detection of proteins by means of simultaneous fluorescence and impedance measurements in a cyclo olefin polymer (COP) chip containing an ordered pillar array column, used for reversed-phase liquid chromatography, with integrated microband gold electrodes at the end of the channel.
JTD Keywords: Cyclo olefin polymer, Gold microelectrodes, Impedance, Pillar array, Protein detection
Fiz, J. A., Morera Prat, J., Jané, R., (2009). Treatment of patients with simple snoring Archivos de Bronconeumología 45, (10), 508-515
Management of snoring is part of the treatment offered to patients with obstructive sleep apnea syndrome. In patients who do not have this syndrome, however, snoring should be treated according to the severity of the condition. General or specific therapeutic measures should be applied to snorers that have concomitant cardiovascular disease or unrefreshing sleep and in cases in which an individual's snoring disturbs his/her partner's sleep. The present review examines the treatments currently available for snorers and the current state of knowledge regarding each option. It will also focus on the possible indications of these treatments and evaluate their effectiveness.
JTD Keywords: Simple snoring, Treatment, General measures, Surgery
Fonollosa, J., Carmona, M., Santander, J., Fonseca, L., Moreno, M., Marco, S., (2009). Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques Sensors and Actuators A: Physical , 149, (1), 65-73
In the trend towards miniaturization, a detector module containing multiple IR sensor channels is being built and characterized. In its final form it contains thermopiles, narrow band filters and Fresnel lenses. An important feature of such module is the assembly by flip-chip of the IR filters on top of the thermopiles. The performance of the filter-thermopile ensemble has been assessed by physical simulation and experiments and it has been optimized by the use of an empirically validated model. It has been found that integration of filters (or lenses) too close to the IR detector may lead to degraded performance due to thermal coupling. The impact and extent of this degradation has been thoroughly explored, being the main parameter the distance between the IR sensor and the filter. To avoid such detrimental effects a possibility is to set the device in vacuum conditions, obtaining an improved output response and avoiding the influence of the filters. Another way is to increase the solder joint height. Beyond a certain height, the filter is considered to be isolated from the thermopile.
JTD Keywords: Assembly, Infrared sensor, Infrared filter, Fresnel lenses, FEM simulation, Optimization
Marco, S., Pomareda, V., Pardo, A., Kessler, M., Goebel, J., Mueller, G., (2009). Blind source separation for ion mobility spectra Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 551-553
Miniaturization is a powerful trend for smart chemical instrumentation in a diversity of applications.. It is know that miniaturization in IMS leads to a degradation of the system characteristics. For the present work, we are interested in signal processing solutions to mitigate limitations introduced by limited drift tube length that basically involve a loss of chemical selectivity. While blind source separation techniques (BSS) are popular in other domains, their application for smart chemical instrumentation is limited. However, in some conditions, basically linearity, BSS may fully recover the concentration time evolution and the pure spectra with few underlying hypothesis. This is extremely helpful in conditions where non-expected chemical interferents may appear, or unwanted perturbations may pollute the spectra. SIMPLISMA has been advocated by Harrington et al. in several papers. However, more modem methods of BSS for bilinear decomposition with the restriction of positiveness have appeared in the last decade. In order to explore and compare the performances of those methods a series of experiments were performed.
JTD Keywords: Ion Mobility Spectrometry (IMS), Blind Source Separation (BSS), Multivariate Analysis, SIMPLISMA, MCR, Non-Negative Matrix Factorization (NMF)
Sporer, C., Casal, L., Caballero, D., Samitier, J., Errachid, A., Perez-Garcia, L., (2009). Novel anionophores for biosensor applications: nano characterisation of SAMS based on amphiphilic imidazolium protophanes and cyclophanes on gold surfaces Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 757-764
Here we report on the results of surface deposition of the novel amphiphilic imidazolium heterocyclophanes and protophanes 1, 2, 3 onto gold electrodes by soft lithography and wet chemistry techniques. Depending on the specific functionalization conditions chosen, the surface properties and the pattern composition can vary widely. The formation of aggregates of monolayers or oligolayer structures and of rings with nano dimensioned wall widths has been investigated with Atomic Force Microscopy (AFM), Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Contact angle measurements.
JTD Keywords: Afm, Imidazolium anionophores, Microcontact printing, Tof-sims
Gavara, N., Roca-Cusachs, P., Sunyer, R., Farre, R., Navajas, D., (2008). Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton Biophysical Journal , 95, (1), 464-471
The mechanical properties of the living cell are intimately related to cell signaling biology through cytoskeletal tension. The tension borne by the cytoskeleton (CSK) is in part generated internally by the actomyosin machinery and externally by stretch. Here we studied how cytoskeletal tension is modified during stretch and the tensional changes undergone by the sites of cell-matrix interaction. To this end we developed a novel technique to map cell-matrix stresses during application of stretch. We found that cell-matrix stresses increased with imposition of stretch but dropped below baseline levels on stretch release. Inhibition of the actomyosin machinery resulted in a larger relative increase in CSK tension with stretch and in a smaller drop in tension after stretch release. Cell-matrix stress maps showed that the loci of cell adhesion initially bearing greater stress also exhibited larger drops in traction forces after stretch removal. Our results suggest that stretch partially disrupts the actin-myosin apparatus and the cytoskeletal structures that support the largest CSK tension. These findings indicate that cells use the mechanical energy injected by stretch to rapidly reorganize their structure and redistribute tension.
JTD Keywords: Cell Line, Computer Simulation, Cytoskeleton/ physiology, Elasticity, Epithelial Cells/ physiology, Extracellular Matrix/ physiology, Humans, Mechanotransduction, Cellular/ physiology, Models, Biological, Stress, Mechanical
Roca-Cusachs, P., Alcaraz, J., Sunyer, R., Samitier, J., Farre, R., Navajas, D., (2008). Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation Biophysical Journal , 94, (12), 4984-4995
Shape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.
JTD Keywords: Cell Line, Cell Nucleus/ physiology, Cell Proliferation, Cell Size, Computer Simulation, Endothelial Cells/ cytology/ physiology, G1 Phase/ physiology, Humans, Mechanotransduction, Cellular/ physiology, Models, Biological, Statistics as Topic
Navarro, M., Benetti, E. M., Zapotoczny, S., Planell, J. A., Vancso, G. J., (2008). Buried, covalently attached RGD peptide motifs in poly(methacrylic acid) brush layers: The effect of brush structure on cell adhesion Langmuir 24, (19), 10996-11002
Iniferter-mediated surface-initiated photopolymerization was used to graft poly(methacrylic acid) (PMAA) brush layers obtained from surface-attached iniferters in self-assembled monolayers to a gold surface. The tethered chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) motif. The modified brushes were extended by reinitiating the polymerization to obtain an additional layer of PMAA, thereby burying the peptide-functionalized segments inside the brush structure. Contact angle measurements and Fourier transform infrared (FTIR) spectroscopy were employed to characterize the wettability and the chemical properties of these platforms. Time of flight secondary ion mass spectroscopy (TOF-SIMS) measurements were performed to monitor the chemical composition of the polymer layer as a function of the distance to the gold surface and obtain information concerning the depth of the RGD motifs inside the brush structure. The brush thickness was evaluated as a function of the polymerization (i.e.. UV-irradiation) time with atomic force microscopy (AFM) and ellipsometry. Cell adhesion tests employing human osteoblasts were performed on substrates with the RGD peptides exposed at the surface as well as covered by a PMAA top brush layer. Immunofluorescence studies demonstrated a variation of the cell morphology as a function of the position of the peptide units along the grafted chains.
JTD Keywords: Ion mass-spectrometry, Transfer radical polymerization, Asymmetric diblock copolymers, Arg-gly-asp, Swelling behaviour, Endothelial-cells, Thin-films, fibronectin, Surfaces, SIMS
Udina, S., Carmona, M., Carles, G., Santander, J., Fonseca, L., Marco, S., (2008). A micromachined thermoelectric sensor for natural gas analysis: Thermal model and experimental results Sensors and Actuators B: Chemical 134, (2), 551-558
Natural gas may show significant changes in its chemical composition depending on its origin. Typically, natural gas analysis is carried out using process gas chromatography. However, other methods based on the evaluation of physical properties have recently been reported. Thermal conductivity sensors are currently used in the analysis of binary mixtures of dissimilar gases. In contrast, natural gas is a complex mixture of mainly hydrocarbons, plus other residual gases as carbon dioxide and nitrogen. In this work, the response of a micromachined sensor integrating a heater and a thermopile is studied, regarding its potential use for natural gas analysis. A finite element thermal model of the device is described, and thermal operation simulations as well as a preliminary sensitivity analysis are reported. Experimental data has been collected and compared with simulated data, showing very good agreement. Results show that small variations in the gas mixture composition can be clearly detected. The sensor appears as a good candidate to be included in low-cost natural gas property analysis and quality control systems.
JTD Keywords: Natural gas, Thermopile, MEMS, Thermal conductivity, Modeling, FEM simulation
Errachid, A., Mills, C. A., Pla, M., Lopez, M. J., Villanueva, G., Bausells, J., Crespo, E., Teixidor, F., Samitier, J., (2008). Focused ion beam production of nanoelectrode arrays Materials Science & Engineering C 5th Maghreb/Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors (MADICA 2006) (ed. -----), Elsevier Science (Mahdia, Tunisia) 28, (5-6), 777-780
We present a method for the production of nanoelectrodes using focussed ion beam techniques (FIB). The electrodes utilise nanometric holes milled in a silicon nitride based pasivation layer, followed by wet etching of a silicon oxide based pasivation layer, to expose an underlying gold electrode. After functionalisation using a surface assembled monolayer and an electrochemically grown polypyrrole, these gold nanoelectrodes have been tested, via cyclic voltammetry, in the detection of [Fe(CN)(6)](4-/3-) ions. The nanoelectrodes will be used to investigate the electrical properties of nanometric biological specimen.
JTD Keywords: Neutral carrier, Solid contact, Microelectrodes, Immobilization
Mills, C. A., Pla, M., Martin, C., Lee, M., Kuphal, M., Sisquella, X., Martinez, E., Errachid, A., Samitier, J., (2007). Structured thin organic active layers and their use in electrochemical biosensors Measurement & Control , 40, (3), 88-91