by Keyword: System
Fanlo-Ucar, Hugo, Picon-Pages, Pol, Herrera-Fernandez, Victor, ILL-Raga, Gerard, Munoz, Francisco J, (2024). The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology Antioxidants 13, 1208
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid beta-peptide (A beta) into oligomers and fibrils that cause synaptotoxicity and neuronal death. A beta exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on A beta production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to A beta and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of A beta in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
JTD Keywords: A-beta, Alzheimer's disease, Amyloid beta-peptide, Bace, Blood-brain-barrier, Central-nervous-system, Genome-wide association, Mitochondrial dysfunctio, Mouse model, Neurodegeneration, Nitric-oxide, Nitro-oxidative stress, Precursor protein, Reactive oxygen, Receptor-related protein-1
Witzdam, Lena, White, Tom, Rodriguez-Emmenegger, Cesar, (2024). Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings Macromolecular Bioscience 24, 2400152
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices. The activation of coagulation on the surface of blood-contacting medical devices often leads to thromboembolic complications. A concept for the next generation of hemocompatbile surfaces inspired by endothelium is proposed. This concept not only contribute to the fundamental understanding of hemocompatibility but also offer practical implications for the design and development of biomedical devices with enhanced biocompatibility and functionality. image
JTD Keywords: Antifouling coatings, Antifouling polymer brushes, Coagulation-factor-xii, Endothelium-inspired, Hemocompatibility, Hemocompatible surface coatings, Heparin-induced thrombocytopenia, Nitric-oxide release, Of-the-art, Peptide macrocycle inhibitor, Plasma contact system, Protein-adsorption, Self-assembled monolayers, Surface modificatio, Synthetic endotheliu
Rodriguez-Lejarraga, Paula, Martin-Iglesias, Sara, Moneo-Corcuera, Andrea, Colom, Adai, Redondo-Morata, Lorena, Giannotti, Marina I, Petrenko, Viktor, Monleon-Guinot, Irene, Mata, Manuel, Silvan, Unai, Lanceros-Mendez, Senentxu, (2024). The surface charge of electroactive materials governs cell behaviour through its effect on protein deposition Acta Biomaterialia 184, 201-209
The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies. (c) 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
JTD Keywords: Adhesion, Atomic-force microscope, Biomaterials, Collagen, Collagen fibril, Electroactive material, Energ, Nanofibers, Osteogenic differentiation, Polyvinylidene fluoride, Pvdf, Stimuli, Surface charge, Surface coating, Systems
Palma-Florez, S, Lagunas, A, Mir, M, (2024). Neurovascular unit on a chip: the relevance and maturity as an advanced in vitro model Neural Regeneration Research 19, 1165-1166
[No abstract available]
JTD Keywords: Alpha synuclein, Animal cell, Article, Astrocyte, Brain blood flow, Capillary endothelial cell, Cardiovascular system, Cell interaction, Coculture, Degenerative disease, Differential expression analysis, Endothelium cell, Entactin, Extracellular matrix, Fibronectin, Gene expression, Human, Human cell, Huntington chorea, Hydroxyapatite, In vitro study, Induced pluripotent stem cell, Laminin, Macrophage, Maturity, Microglia, Nervous system, Nervous system inflammation, Neuroprotection, Neurotoxicity, Nonhuman, Parkinson disease, Pericyte, Perivascular space, Personalized medicine, Shear stress, Smooth muscle cell, Three dimensional printing
Ortega, J Alberto, Soares de Aguiar, Gisele P, Chandravanshi, Palash, Levy, Natacha, Engel, Elisabeth, Alvarez, Zaida, (2024). Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1962
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants
JTD Keywords: Amyotrophic-lateral-sclerosis, Biologic scaffold, Central nervous system, Central-nervous-system, Chondroitin sulfate proteoglycans, Decellularization, Extracellular matrix, Motor-neurons, Neural disorders, Neural regeneratio, Perineuronal nets, Self-healing hydrogel, Spinal-cord-injury, Stem-cell, Vascular basement-membrane
Olaizola-Rodrigo, Claudia, Palma-Florez, Sujey, Randelovic, Teodora, Bayona, Clara, Ashrafi, Mehran, Samitier, Josep, Lagunas, Anna, Mir, Monica, Doblare, Manuel, Ochoa, Ignacio, Monge, Rosa, Olivan, Sara, (2024). Tuneable hydrogel patterns in pillarless microfluidic devices Lab On A Chip 24, 2094-2106
Organ-on-chip (OOC) technology has recently emerged as a powerful tool to mimic physiological or pathophysiological conditions through cell culture in microfluidic devices. One of its main goals is bypassing animal testing and encouraging more personalized medicine. The recent incorporation of hydrogels as 3D scaffolds into microfluidic devices has changed biomedical research since they provide a biomimetic extracellular matrix to recreate tissue architectures. However, this technology presents some drawbacks such as the necessity for physical structures as pillars to confine these hydrogels, as well as the difficulty in reaching different shapes and patterns to create convoluted gradients or more realistic biological structures. In addition, pillars can also interfere with the fluid flow, altering the local shear forces and, therefore, modifying the mechanical environment in the OOC model. In this work, we present a methodology based on a plasma surface treatment that allows building cell culture chambers with abutment-free patterns capable of producing precise shear stress distributions. Therefore, pillarless devices with arbitrary geometries are needed to obtain more versatile, reliable, and biomimetic experimental models. Through computational simulation studies, these shear stress changes are demonstrated in different designed and fabricated geometries. To prove the versatility of this new technique, a blood-brain barrier model has been recreated, achieving an uninterrupted endothelial barrier that emulates part of the neurovascular network of the brain. Finally, we developed a new technology that could avoid the limitations mentioned above, allowing the development of biomimetic OOC models with complex and adaptable geometries, with cell-to-cell contact if required, and where fluid flow and shear stress conditions could be controlled. A novel methodology utilizing plasma surface treatment enables the construction of cell culture chambers featuring abutment-free patterns, facilitating the precise distribution of shear stress.
JTD Keywords: Cells, Gradients, Systems
Chen, SQ, Prado-Morales, C, Sánchez-deAlcázar, D, Sánchez, S, (2024). Enzymatic micro/nanomotors in biomedicine: from single motors to swarms Journal Of Materials Chemistry b 12, 2711-2719
Micro/nanomotors (MNMs) have evolved from single self-propelled entities to versatile systems capable of performing one or multiple biomedical tasks. When single MNMs self-assemble into coordinated swarms, either under external control or triggered by chemical reactions, they offer advantages that individual MNMs cannot achieve. These benefits include intelligent multitasking and adaptability to changes in the surrounding environment. Here, we provide our perspective on the evolution of MNMs, beginning with the development of enzymatic MNMs since the first theoretical model was proposed in 2005. These enzymatic MNMs hold immense promise in biomedicine due to their advantages in biocompatibility and fuel availability. Subsequently, we introduce the design and application of single motors in biomedicine, followed by the control of MNM swarms and their biomedical applications. In the end, we propose viable solutions for advancing the development of MNM swarms and anticipate valuable insights into the creation of more intelligent and controllable MNM swarms for biomedical applications.; Micro/nanomotor swarms propelled by diverse mechanisms.
JTD Keywords: Active particles, Actuation, Behaviors, Biocompatibility, Biomedical applications, Coordination reactions, Design and application, Diffusion, External control, Medical applications, Micromotors, Motion, Nanomotors, Powered nanomotors, Propulsion, Self-assemble, Surrounding environment, Theoretical modeling, Versatile system, Viable solutions
Avalos-Padilla, Y, Fernandez-Busquets, X, (2024). Nanotherapeutics against malaria: A decade of advancements in experimental models Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1943
Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease
JTD Keywords: Adjuvant system, Antimalarial activities, Antimalarial agent, Antimalarial drug, Antimalarial drugs, Antimalarials, Artemisinin resistance, Causes of death, Child, Controlled drug delivery, Diseases, Drug delivery system, Drug delivery systems, Drug interactions, Drug side-effects, Drug-delivery, Experimental modelling, Heparan-sulfate, Human, Humans, In-vitro, Malaria, Malaria vaccine, Mannosylated liposomes, Medical nanotechnology, Models, theoretical, Nanocarriers, Nanomedicine, Nanotechnology, Parasite-, Parasitics, Plasmodium, Plasmodium-falciparum malaria, Red-blood-cells, Targeted delivery, Targeted drug delivery, Theoretical model, Therapeutic strategy
Blanco-Cabra, Nuria, Alcacer-Almansa, Julia, Admella, Joana, Arevalo-Jaimes, Betsy Veronica, Torrents, Eduard, (2024). Nanomedicine against biofilm infections: A roadmap of challenges and limitations Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1944
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
JTD Keywords: Anti-bacterial agents, Anti-infective agents, Antiinfective agent, Antimicrobial, Antimicrobials, Antimicrobials,bacteria,biofilm,infectious diseases,microorganism, Bacteria, Biofilm, Biofilm infections, Biofilms, Complex three dimensional structures, Diseases, Diverse range, Drug-delivery systems,in-vitro,cellular toxicity,nanoparticles,penetration,model,biocompatibility,perspectives,hyperthermia,diagnosi, Extracellular matrices, Global public health, Health risks, Infectious disease, Infectious diseases, Medical nanotechnology, Microbial biofilm, Microorganisms, Nanomedicine, Polymer, Polymers, Regulatory issues, Roadmap
Witzdam, L, Vosberg, B, Grosse-Berkenbusch, K, Stoppelkamp, S, Wendel, HP, Rodriguez-Emmenegger, C, (2024). Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting Macromolecular Bioscience 24, e2300321
Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.
JTD Keywords: adsorption, binding, c1-esterase-inhibitor, coatings, contact activation, factor-xii, fxii activation, hemocompatibility, hemocompatible surface modification, heparin, polymer brushes, system, thrombosis, Adsorption, Anticoagulation, Antifouling agent, Article, Beta-fxiia, Biocompatibility, Blood, Blood clotting, Blood clotting factor 12, Blood clotting factor 12a, Blood clotting factor 12a inhibitor, Blood coagulation, C1-esterase-inhibitor, Cell activation, Chemical activation, Coagulation, Coating (procedure), Complement component c1s inhibitor, Complement system, Controlled study, Dendrimers, Enzyme immobilization, Enzymes, Erythrocyte, Esters, Factor xii, Factor xii activation, Factor xiia, Fibrin deposition, Functional polymers, Fxii activation, Haemocompatibility, Hemocompatibility, Hemocompatible surface modification, Hemostasis, Heparin, Human, Hydrogel, Medical devices, Metabolism, Plasma kallikrein, Plasma protein, Plastic coatings, Platelet count, Polymer, Polymer brushes, Polymerization, Polymers, Property, Root cause, Surface plasmon resonance, Surface property, Surface reactions, Surface-modification, Thrombocyte adhesion, Β-fxiia
Simo, C, Serra-Casablancas, M, Hortelao, AC, Di Carlo, V, Guallar-Garrido, S, Plaza-Garcia, S, Rabanal, RM, Ramos-Cabrer, P, Yaguee, B, Aguado, L, Bardia, L, Tosi, S, Gomez-Vallejo, V, Martin, A, Patino, T, Julian, E, Colombelli, J, Llop, J, Sanchez, S, (2024). Urease-powered nanobots for radionuclide bladder cancer therapy Nature Nanotechnology 19, 554-564
Bladder cancer treatment via intravesical drug administration achieves reasonable survival rates but suffers from low therapeutic efficacy. To address the latter, self-propelled nanoparticles or nanobots have been proposed, taking advantage of their enhanced diffusion and mixing capabilities in urine when compared with conventional drugs or passive nanoparticles. However, the translational capabilities of nanobots in treating bladder cancer are underexplored. Here, we tested radiolabelled mesoporous silica-based urease-powered nanobots in an orthotopic mouse model of bladder cancer. In vivo and ex vivo results demonstrated enhanced nanobot accumulation at the tumour site, with an eightfold increase revealed by positron emission tomography in vivo. Label-free optical contrast based on polarization-dependent scattered light-sheet microscopy of cleared bladders confirmed tumour penetration by nanobots ex vivo. Treating tumour-bearing mice with intravesically administered radio-iodinated nanobots for radionuclide therapy resulted in a tumour size reduction of about 90%, positioning nanobots as efficient delivery nanosystems for bladder cancer therapy.© 2024. The Author(s).
JTD Keywords: cell, drug-delivery, nanomotors, tissue, Bladder cancers, Cancer therapy, Diseases, Drug administration, Drug delivery, Enhanced diffusion, Enhanced mixing, Ex-vivo, In-vivo, Mammals, Nanobots, Nanoparticles, Nanosystems, Oncology, Positron emission tomography, Radioisotopes, Silica, Survival rate, Therapeutic efficacy, Tumor penetration, Tumors
Wagner, AM, Kostina, NY, Xiao, Q, Klein, ML, Percec, V, Rodriguez-Emmenegger, C, (2024). Glycan-Driven Formation of Raft-Like Domains with Hierarchical Periodic Nanoarrays on Dendrimersome Synthetic Cells Biomacromolecules 25, 366-378
The accurate spatial segregation into distinct phases within cell membranes coordinates vital biochemical processes and functionalities in living organisms. One of nature's strategies to localize reactivity is the formation of dynamic raft domains. Most raft models rely on liquid-ordered L-0 phases in a liquid-disordered L-d phase lacking correlation and remaining static, often necessitating external agents for phase separation. Here, we introduce a synthetic system of bicomponent glycodendrimersomes coassembled from Janus dendrimers and Janus glycodendrimers (JGDs), where lactose-lactose interactions exclusively drive lateral organization. This mechanism results in modulated phases across two length scales, yielding raft-like microdomains featuring nanoarrays at the nanoscale. By varying the density of lactose and molecular architecture of JGDs, the nanoarray type and size, shape, and spacing of the domains were controlled. Our findings offer insight into the potential primordial origins of rudimentary raft domains and highlight the crucial role of glycans within the glycocalyx.
JTD Keywords: Article, Artificial cells, Atomic force microscopy, Bicomponents, Bilayer, Bilayer membrane, Biochemical functionality, Biochemical process, Biological-membranes, Cell component, Cell membrane, Cellular parameters, Chemical interaction, Chemical structure, Chemistry, Cytology, Defined janus glycodendrimers, Dehydration, Dendrimer, Dendrimers, Dilution, Dimer, External agents, Fourier transform, Giant vesicles, Glycan, Glycans, Glycocalyx, Glycodendrimers, Janus dendrimer, Janus glycodendrimer, Lactose, Lateral organization, Lectin, Lipid rafts, Living organisms, Membrane damage, Membrane microdomain, Membrane microdomains, Membrane structure, Metabolism, Modulated phases, Molecule, Monomer, Nanoarrays, Oligosaccharide, Organization, Periodicity, Phase separation, Phase-separation, Phospholipids, Polysaccharide, Polysaccharides, Raft like domain, Relative humidity, Spatial segregation, Structure analysis, Sugars, Synthetic systems, Tetramer, Unclassified drug, Unilamellar vesicles, Water
Molina, BG, Arnau, M, Sánchez, M, Alemán, C, (2024). Controlled dopamine release from cellulose-based conducting hydrogel European Polymer Journal 202, 112635
Very recently, the controlled release of dopamine (DA), a neurotransmitter whose deficiency is associated with Parkinson's disease, has been postulated as a good alternative to the oral administration of levodopa (L-Dopa), a dopamine precursor, to combat the effects of said disease. However, this is still a very little explored field and there are very few carriers that are capable of releasing DA, a small and water-soluble molecule, in an efficient and controlled manner. In this work, we report a carrier based on a conductive hydrogel capable of loading DA and releasing it progressively and efficiently (100 % release) in a period of five days by applying small electrical stimuli (-0.4 V) daily for a short time (1 min). The hydrogel (CMC/PEDOT), which is electrically active, has been prepared from sodium carboxymethylcellulose and poly(3,4-ethylenedioxythiophene) microparticles, using citric acid as a cross-linking agent. Furthermore, the results have shown that when relatively hydrophobic small molecules, such as chloramphenicol, are loaded, the electrostimulated release is significantly less efficient, demonstrating the usefulness of CMC/PEDOT as a carrier for neurotransmitters.
JTD Keywords: Amines, Carboxymethyl cellulose, Carboxymethylcellulose, Conducting hydrogels, Conducting polymers, Controlled release, Crosslinking, Dopamine, Drug-delivery system, Electrostimulation, Hydrogels, Joining, Levodopa, Loading, Molecules, Neurophysiology, Neurotransmitter release, Neurotransmitters release, Oral administration, Parkinson's disease, Parkinsons-disease, Poly(3,4-ethylenedioxythiophene), Release, Sodium, Transport, Water-soluble molecule
Jonkman, AH, Warnaar, RSP, Baccinelli, W, Carbon, NM, D'Cruz, RF, Doorduin, J, van Doorn, JLM, Elshof, J, Estrada-Petrocelli, L, Grasshoff, J, Heunks, LMA, Koopman, AA, Langer, D, Moore, CM, Silveira, JMN, Petersen, E, Poddighe, D, Ramsay, M, Rodrigues, A, Roesthuis, LH, Rossel, A, Torres, A, Duiverman, ML, Oppersma, E, (2024). Analysis and applications of respiratory surface EMG: report of a round table meeting Critical Care 28, 2
Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.
JTD Keywords: Acute respiratory failure, Artificial ventilation, Asthmatic-children, Breathing muscle, Clinical monitoring, Clinical practice, Clinical research, Consensus development, Data interpretation, Disease exacerbation, Drive, Electrode positioning, Electrode removal, Electromyography, Force, Home care, Human, Human diaphragm, Humans, Information processing, Inspiratory muscle training, Inspiratory muscles, Intensive care unit, Knowledge gap, Long term care, Mechanical ventilation, Medical procedures, Muscle contraction, Muscle fatigue, Muscle function, Muscle training, Muscle, skeletal, Muscle-activity, Noninvasive ventilation, Patient monitoring, Patient-ventilator asynchrony, Physiology, Prognosis, Quality of life, Reporting and data system, Respiratory failure, Respiratory muscles, Review, Severe exacerbations, Signal processing, Skeletal muscle, Standardization, Surface electromyography, Time factor
Fulgheri, F, Manca, ML, Fernàndez-Busquets, X, Manconi, M, (2023). Analysis of complementarities between nanomedicine and phytodrugs for the treatment of malarial infection Nanomedicine 18, 1681-1696
The use of nanocarriers in medicine, so-called nanomedicine, is one of the most innovative strategies for targeting drugs at the action site and increasing their activity index and effectiveness. Phytomedicine is the oldest traditional method used to treat human diseases and solve health problems. The recent literature on the treatment of malaria infections using nanodelivery systems and phytodrugs or supplements has been analyzed. For the first time, in the present review, a careful look at the considerable potential of nanomedicine in promoting phytotherapeutic efficacy was done, and its key role in addressing a translation through a significant reduction of the current burden of malaria in many parts of the world has been underlined.
JTD Keywords: antiplasmodial activity, bioavailability, chloroquine, combination therapy, discovery, drug-delivery, drug-delivery systems, nanocapsules, nanomedicine, natural molecules, pharmacokinetics, phytomedicine, plasmodium-falciparum, Artemisinin-based combination therapy, Drug-delivery systems, Nanomedicine, Natural molecules, Phytomedicine, Solid lipid nanoparticles
Smith, CS, Alvarez, Z, Qiu, RM, Sasselli, IR, Clemons, T, Ortega, JA, Vilela-Picos, M, Wellman, H, Kiskinis, E, Stupp, SI, (2023). Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber Acs Nano 17, 19887-19902
Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.
JTD Keywords: axon growth, axon guidance, cell-migration, colorectal-cancer, dcc, dopaminergic-neurons, force-field, functional recovery, netrin-1, neurite outgrowth, neuronal maturation, neurotrophic factor, neurotrophicfactor mimetic, synapsis, Axon growth, Axons, Cells, cultured, Central nervous system, Coarse-grained model, Nanofibers, Netrin-1, Neurogenesis, Neuronal maturation, Neurons, Neurotrophic factor mimetic, Peptide amphiphile, Synapsis
Quiroga, X, Walani, N, Disanza, A, Chavero, A, Mittens, A, Tebar, F, Trepat, X, Parton, RG, Geli, MI, Scita, G, Arroyo, M, Le Roux, AL, Roca-Cusachs, P, (2023). A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale Elife 12, e72316
As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nanoscale topography. Here, we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nanoscale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.© 2023, Quiroga et al.
JTD Keywords: arp2/3 complex, bar, bar proteins, cdc42, cells, domain, human, irsp53, membrane biophysics, mouse, proteins, rac, tension, Actin polymerization, Actins, Bar proteins, Cell biology, Cell membrane, Homeostasis, Human, Mechanobiology, Membrane biophysics, Mouse, Physics of living systems
Cuervo, R, Rodriguez-Lázaro, MA, Farré, R, Gozal, D, Solana, G, Otero, J, (2023). Low-cost and open-source neonatal incubator operated by an Arduino microcontroller Hardwarex 15, e00457
An unacceptably large number of newborn infants die in developing countries. For a considerable number of cases (particularly in preterm infants), morbidity and mortality can be reduced by simply maintaining newborn thermal homeostasis during the first weeks of life. Unfortunately, deaths caused by prematurity remain inordinately common in low- and middle-income countries (LMICs) due to reduced access to incubators in light of the high cost of commercially available devices. We herein describe and test a low-cost and easy-to-assemble neonatal incubator created with inexpensive materials readily available in LMICs. The incubator is based on an Arduino microcontroller. It maintains controlled temperature and relative humidity inside the main chamber while continuously measuring newborn weight progress. Moreover, the incubator has a tilting bed system and an additional independent safety temperature alarm. The performance of the novel low-cost neonatal incubator was evaluated and successfully passed the IEC 60601-2-19 standards. In the present work, we provide all the necessary technical information, which is distributed as open source. This will enable assembly of very low-cost (<250 €) and fully functional incubators in LMICs that should help reduce neonatal mortality.© 2023 The Authors. Published by Elsevier Ltd.
JTD Keywords: arduino, control systems, developing countries, low-cost, low-resource regions, noise, preterm infant, Arduino, Control systems, Developing countries, Low-cost, Low-resource regions, Mortality, Neonatal incubator, Preterm infant
del Moral, M, Loeck, M, Muntimadugu, E, Vives, G, Pham, V, Pfeifer, P, Battaglia, G, Muro, S, Andrianov, AK, (2023). Role of the Lactide:Glycolide Ratio in PLGA Nanoparticle Stability and Release under Lysosomal Conditions for Enzyme Replacement Therapy of Lysosomal Storage Disorders J Funct Biomater 14, 440
Prior studies demonstrated that encapsulation in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) enhanced the delivery of enzymes used for replacement therapy (ERT) of lysosomal storage disorders (LSDs). This study examined how the copolymer lactide:glycolide ratio impacts encapsulation, physicochemical characteristics, stability, and release under lysosomal conditions. Hyaluronidase, deficient in mucopolysaccharidosis IX, was encapsulated in NPs synthesized using 50:50, 60:40, or 75:25 lactide:glycolide copolymers. All NPs had diameters compatible with cellular transport (≤168 nm) and polydispersity indexes (≤0.16) and ζ-potentials (≤-35 mV) compatible with colloidal stability. Yet, their encapsulation efficiency varied, with 75:25 NPs and 60:40 NPs having the lowest and highest EE, respectively (15% vs. 28%). Under lysosomal conditions, the 50:50 copolymer degraded fastest (41% in 1 week), as expected, and the presence of a targeting antibody coat did not alter this result. Additionally, 60:40 NPs destabilized fastest (<1 week) because of their smaller diameter, and 75:25 NPs did not destabilize in 4 weeks. All formulations presented burst release under lysosomal conditions (56-78% of the original load within 30 min), with 50:50 and 60:40 NPs releasing an additional small fraction after week 1. This provided 4 weeks of sustained catalytic activity, sufficient to fully degrade a substrate. Altogether, the 60:40 NP formulation is preferred given its higher EE, and 50:50 NPs represent a valid alternative, while the highest stability of 75:25 NPs may impair lysosomes. These results can guide future studies aiming to translate PLGA NP-based ERT for this and other LSDs.
JTD Keywords: biodegradation, copolymer ratio, degradation, drug-delivery, emulsification, enzyme release, enzyme replacement therapy, hyaluronidase, mechanisms, microspheres, nanoparticle stability, poly(lactide-co-glycolide) nanoparticles, size, sphingomyelinase, transport, Central-nervous-system, Copolymer ratio, Enzyme release, Enzyme replacement therapy, Hyaluronidase, Lysosomal storage disorder, Nanoparticle stability, Poly(lactide-co-glycolide) nanoparticles
Qi, C, Gutierrez, SS, Lavriha, P, Othman, A, Lopez-Pigozzi, D, Bayraktar, E, Schuster, D, Picotti, P, Zamboni, N, Bortolozzi, M, Gervasio, FL, Korkhov, VM, (2023). Structure of the connexin-43 gap junction channel in a putative closed state Elife 12, RP87616
Gap junction channels (GJCs) mediate intercellular communication by connecting two neighbouring cells and enabling direct exchange of ions and small molecules. Cell coupling via connexin-43 (Cx43) GJCs is important in a wide range of cellular processes in health and disease (Churko and Laird, 2013; Liang et al., 2020; Poelzing and Rosenbaum, 2004), yet the structural basis of Cx43 function and regulation has not been determined until now. Here, we describe the structure of a human Cx43 GJC solved by cryo-EM and single particle analysis at 2.26 Å resolution. The pore region of Cx43 GJC features several lipid-like densities per Cx43 monomer, located close to a putative lateral access site at the monomer boundary. We found a previously undescribed conformation on the cytosolic side of the pore, formed by the N-terminal domain and the transmembrane helix 2 of Cx43 and stabilized by a small molecule. Structures of the Cx43 GJC and hemichannels (HCs) in nanodiscs reveal a similar gate arrangement. The features of the Cx43 GJC and HC cryo-EM maps and the channel properties revealed by molecular dynamics simulations suggest that the captured states of Cx43 are consistent with a closed state.© 2023, Qi, Acosta Gutierrez et al.
JTD Keywords: cryo-em, dehydroepiandrosterone dhea, expression, gap junction channel, gene, gja1 mutations, hemichannel, membrane protein, phenotype, protein, structure, system, visualization, Biochemistry, Chemical biology, Connexin-43, Cryo-em, Gap junction channel, Hemichannel, Human, Membrane protein, Molecular biophysics, Oculodentodigital dysplasia, Structural biology, Structure
Schierwagen, R, Gu, WY, Brieger, A, Brüne, B, Ciesek, S, Dikic, I, Dimmeler, S, Geisslinger, G, Greten, FR, Hermann, E, Hildt, E, Kempf, VAJ, Klein, S, Koch, I, Mühl, H, Müller, V, Peiffer, KH, Kestner, RI, Piiper, A, Rohde, G, Scholich, K, Schulz, MH, Storf, H, Toptan, T, Vasa-Nicotera, M, Vehreschild, MJGT, Weigert, A, Wild, PJ, Zeuzem, S, Engelmann, C, Schaefer, L, Welsch, C, Trebicka, J, (2023). Pathogenetic mechanisms and therapeutic approaches of acute-to-chronic liver failure American Journal Of Physiology-Cell Physiology 325, C129-C140
Liver cirrhosis is the end stage of all chronic liver diseases and contributes significantly to overall mortality of 2% globally. The age-standardized mortality from liver cirrhosis in Europe is between 10 and 20% and can be explained by not only the development of liver cancer but also the acute deterioration in the patient's overall condition. The development of complications including accumulation of fluid in the abdomen (ascites), bleeding in the gastrointestinal tract (variceal bleeding), bacterial infections, or a decrease in brain function (hepatic encephalopathy) define an acute decompensation that requires therapy and often leads to acute-on-chronic liver failure (ACLF) by different precipitating events. However, due to its complexity and organ-spanning nature, the pathogenesis of ACLF is poorly understood, and the common underlying mechanisms leading to the development of organ dysfunction or failure in ACLF are still elusive. Apart from general intensive care interventions, there are no specific therapy options for ACLF. Liver transplantation is often not possible in these patients due to contraindications and a lack of prioritization. In this review, we describe the framework of the ACLF-I project consortium funded by the Hessian Ministry of Higher Education, Research and the Arts (HMWK) based on existing findings and will provide answers to these open questions.
JTD Keywords: 12/15-lipoxygenase, combination, inflammation, interleukin-22, metabolism, mortality, organ failure, portal-hypertension, receptor, regeneration, systemic inflammation, systems medicine, translational hepatology, Decompensated cirrhosis, Organ failure, Systemic inflammation, Systems medicine, Translational hepatology
Levy, N, Kiskinis, E, Ortega, JA, Alvarez, Z, (2023). Effect of Age-specific Decellularized Extracellular Matrix on Neuronal Physiology and Repair (PP‐455) Tissue Engineering Part a 29, PP-455
Castano, O, Canosa, AL, Noguera, A, Torres, JF, Amodio, SP, Machado, AH, Engel, E, (2023). A versatile organ-on-a-chip model for the evaluation of proangiogenic biomaterials Tissue Engineering Part a 29, PP-377
Fernández-Garibay, X, Gómez-Florit, M, Dominguez, RMA, Gomes, ME, Fernández-Costa, JM, Ramón-Azcón, J, (2023). Xeno-free bioengineered human skeletal muscle tissues Tissue Engineering Part a 29, PP-435
Martinez-Torres, S, Mesquida-Veny, F, Del Rio, JA, Hervera, A, (2023). Injury-induced activation of the endocannabinoid system promotes axon regeneration Iscience 26, 106814
Regeneration after a peripheral nerve injury still remains a challenge, due to the limited regenerative potential of axons after injury. While the endocannabinoid system (ECS) has been widely studied for its neuroprotective and analgesic effects, its role in axonal regeneration and during the conditioning lesion remains unexplored. In this study, we observed that a peripheral nerve injury induces axonal regeneration through an increase in the endocannabinoid tone. We also enhanced the regenerative capacity of dorsal root ganglia (DRG) neurons through the inhibition of endocannabinoid degradative enzyme MAGL or a CB1R agonist. Our results suggest that the ECS, via CB1R and PI3K-pAkt pathway activation, plays an important role in promoting the intrinsic regenerative capacity of sensory neurons after injury.© 2023 The Author(s).
JTD Keywords: brain, gene-expression, lesion, nerve, receptors, targets, Clinical neuroscience, Drugs, Endogenous cannabinoid system, Molecular medicine
Liang, ZW, Nilsson, M, Kragh, KN, Hedal, I, Alcàcer-Almansa, J, Kiilerich, RO, Andersen, JB, Tolker-Nielsen, T, (2023). The role of individual exopolysaccharides in antibiotic tolerance of Pseudomonas aeruginosa aggregates Frontiers In Microbiology 14, 1187708
The bacterium Pseudomonas aeruginosa is involved in chronic infections of cystic fibrosis lungs and chronic wounds. In these infections the bacteria are present as aggregates suspended in host secretions. During the course of the infections there is a selection for mutants that overproduce exopolysaccharides, suggesting that the exopolysaccharides play a role in the persistence and antibiotic tolerance of the aggregated bacteria. Here, we investigated the role of individual P. aeruginosa exopolysaccharides in aggregate-associated antibiotic tolerance. We employed an aggregate-based antibiotic tolerance assay on a set of P. aeruginosa strains that were genetically engineered to over-produce a single, none, or all of the three exopolysaccharides Pel, Psl, and alginate. The antibiotic tolerance assays were conducted with the clinically relevant antibiotics tobramycin, ciprofloxacin and meropenem. Our study suggests that alginate plays a role in the tolerance of P. aeruginosa aggregates toward tobramycin and meropenem, but not ciprofloxacin. However, contrary to previous studies we did not observe a role for Psl or Pel in the tolerance of P. aeruginosa aggregates toward tobramycin, ciprofloxacin, and meropenem.Copyright © 2023 Liang, Nilsson, Kragh, Hedal, Alcàcer-Almansa, Kiilerich, Andersen and Tolker-Nielsen.
JTD Keywords: aggregates, antibiotic tolerance, biofilm formation, extracellular matrix, genome, growth, lungs, molecular-mechanisms, mutations, polysaccharide, pseudomonas aeruginosa, psl, system, Aggregates, Antibiotic tolerance, Biofilm, Extracellular matrix, Pseudomonas aeruginosa, Small-colony variants
Placci, M, Giannotti, MI, Muro, S, (2023). Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders Advanced Drug Delivery Reviews 197, 114683
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that consti-tute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their per-formance, and important items to consider for their clinical translation. Overall, polymeric nanocon-structs hold considerable promise to advance treatment for LSDs.(c) 2023 Elsevier B.V. All rights reserved.
JTD Keywords: cellular and animal models, enzyme replacement therapy, lysosomal storage disorders, nanoemulsions, nanoparticles, Beta-glucuronidase deficiency, Blood-brain-barrier, Cellular and animal models, Central-nervous-system, Drug delivery systems, Enzyme replacement therapy, Feline gm1 gangliosidosis, Human acid sphingomyelinase, Human alpha-galactosidase, Humans, Lysosomal storage diseases, Lysosomal storage disorders, Lysosomes, Mucopolysaccharidosis type-ii, Nanoemulsions, Nanoparticles, Neuronal ceroid-lipofuscinosis, Niemann-pick-disease, Pluripotent stem-cells, Polymer-based drug delivery systems, Polymers, Tissue distribution
Bouras, A, Gutierrez-Galvez, A, Burgués, J, Bouzid, Y, Pardo, A, Guiatni, M, Marco, S, (2023). Concentration map reconstruction for gas source location using nano quadcopters: Metal oxide semiconductor sensor implementation and indoor experiments validation Measurement 213, 112638
Garcia, L, Palma-Florez, S, Espinosa, V, Rokni, FS, Lagunas, A, Mir, M, García-Celma, MJ, Samitier, J, Rodríguez-Abreu, C, Grijalvo, S, (2023). Ferulic acid-loaded polymeric nanoparticles prepared from nano-emulsion templates facilitate internalisation across the blood?brain barrier in model membranes Nanoscale 15, 7929-7944
Fraire, JC, Guix, M, Hortelao, AC, Ruiz-González, N, Bakenecker, AC, Ramezani, P, Hinnekens, C, Sauvage, F, De Smedt, SC, Braeckmans, K, Sánchez, S, (2023). Light-Triggered Mechanical Disruption of Extracellular Barriers by Swarms of Enzyme-Powered Nanomotors for Enhanced Delivery Acs Nano 17, 7180-7193
Targeted drug delivery depends on the ability of nanocarriers to reach the target site, which requires the penetration of different biological barriers. Penetration is usually low and slow because of passive diffusion and steric hindrance. Nanomotors (NMs) have been suggested as the next generation of nanocarriers in drug delivery due to their autonomous motion and associated mixing hydrodynamics, especially when acting collectively as a swarm. Here, we explore the concept of enzyme-powered NMs designed as such that they can exert disruptive mechanical forces upon laser irradiation. The urease-powered motion and swarm behavior improve translational movement compared to passive diffusion of state-of-the-art nanocarriers, while optically triggered vapor nanobubbles can destroy biological barriers and reduce steric hindrance. We show that these motors, named Swarm 1, collectively displace through a microchannel blocked with type 1 collagen protein fibers (barrier model), accumulate onto the fibers, and disrupt them completely upon laser irradiation. We evaluate the disruption of the microenvironment induced by these NMs (Swarm 1) by quantifying the efficiency by which a second type of fluorescent NMs (Swarm 2) can move through the cleared microchannel and be taken up by HeLa cells at the other side of the channel. Experiments showed that the delivery efficiency of Swarm 2 NMs in a clean path was increased 12-fold in the presence of urea as fuel compared to when no fuel was added. When the path was blocked with the collagen fibers, delivery efficiency dropped considerably and only depicted a 10-fold enhancement after pretreatment of the collagen-filled channel with Swarm 1 NMs and laser irradiation. The synergistic effect of active motion (chemically propelled) and mechanical disruption (light-triggered nanobubbles) of a biological barrier represents a clear advantage for the improvement of therapies which currently fail due to inadequate passage of drug delivery carriers through biological barriers.
JTD Keywords: drug delivery, enzyme catalysis, nanoparticles, swarming, vapor nanobubbles, Drug carriers, Drug delivery, Drug delivery systems, Enzyme catalysis, Hela cells, Humans, Nanomotors, Nanoparticles, Swarming, Vapor nanobubbles
Roman-Alamo, L, Allaw, M, Avalos-Padilla, Y, Manca, ML, Manconi, M, Fulgheri, F, Fernandez-Lajo, J, Rivas, L, Vazquez, JA, Peris, JE, Roca-Gerones, X, Poonlaphdecha, S, Alcover, MM, Fisa, R, Riera, C, Fernandez-Busquets, X, (2023). In Vitro Evaluation of Aerosol Therapy with Pentamidine-Loaded Liposomes Coated with Chondroitin Sulfate or Heparin for the Treatment of Leishmaniasis Pharmaceutics 15, 1163
The second-line antileishmanial compound pentamidine is administered intramuscularly or, preferably, by intravenous infusion, with its use limited by severe adverse effects, including diabetes, severe hypoglycemia, myocarditis and renal toxicity. We sought to test the potential of phospholipid vesicles to improve the patient compliance and efficacy of this drug for the treatment of leishmaniasis by means of aerosol therapy. The targeting to macrophages of pentamidine-loaded liposomes coated with chondroitin sulfate or heparin increased about twofold (up to ca. 90%) relative to noncoated liposomes. The encapsulation of pentamidine in liposomes ameliorated its activity on the amastigote and promastigote forms of Leishmania infantum and Leishmania pifanoi, and it significantly reduced cytotoxicity on human umbilical endothelial cells, for which the concentration inhibiting 50% of cell viability was 144.2 ± 12.7 µM for pentamidine-containing heparin-coated liposomes vs. 59.3 ± 4.9 µM for free pentamidine. The deposition of liposome dispersions after nebulization was evaluated with the Next Generation Impactor, which mimics human airways. Approximately 53% of total initial pentamidine in solution reached the deeper stages of the impactor, with a median aerodynamic diameter of ~2.8 µm, supporting a partial deposition on the lung alveoli. Upon loading pentamidine in phospholipid vesicles, its deposition in the deeper stages significantly increased up to ~68%, and the median aerodynamic diameter decreased to a range between 1.4 and 1.8 µm, suggesting a better aptitude to reach the deeper lung airways in higher amounts. In all, nebulization of liposome-encapsulated pentamidine improved the bioavailability of this neglected drug by a patient-friendly delivery route amenable to self-administration, paving the way for the treatment of leishmaniasis and other infections where pentamidine is active.
JTD Keywords: aerosol therapy, delivery-systems, drug encapsulation, drugs, ex-vivo models, formulation, leishmania infantum, leishmania pifanoi, leishmaniasis, liposomes, macrophages, miltefosine, pentamidine, pharmacology, pulmonary absorption, visceral leishmaniasis, Aerosol therapy, Amphotericin-b treatment, Drug encapsulation, Leishmania infantum, Leishmania pifanoi, Leishmaniasis, Liposomes, Pentamidine
Schamberger, B, Ziege, R, Anselme, K, Ben Amar, M, Bykowski, M, Castro, APG, Cipitria, A, Coles, RA, Dimova, R, Eder, M, Ehrig, S, Escudero, LM, Evans, ME, Fernandes, PR, Fratzl, P, Geris, L, Gierlinger, N, Hannezo, E, Iglic, A, Kirkensgaard, JJK, Kollmannsberger, P, Kowalewska, L, Kurniawan, NA, Papantoniou, I, Pieuchot, L, Pires, THV, Renner, LD, Sageman-Furnas, AO, Schroder-Turk, GE, Sengupta, A, Sharma, VR, Tagua, A, Tomba, C, Trepat, X, Waters, SL, Yeo, EF, Roschger, A, Bidan, CM, Dunlop, JWC, (2023). Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales Advanced Materials 35, 2206110
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
JTD Keywords: biological systems, butterfly wing scales, cubic membranes, extracellular-matrix, geometry, mechanotransduction, membrane curvature, morphogenesis, neotissue growth, pattern-formation, soft materials, surface curvature, tissue-growth, Biological systems, Collective cell-migration, Surface curvature
Blanco-Fernandez, G, Blanco-Fernandez, B, Fernandez-Ferreiro, A, Otero-Espinar, FJ, (2023). Lipidic lyotropic liquid crystals: Insights on biomedical applications Advances In Colloid And Interface Science 313, 102867
Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engi-neering and molecular imaging) and route of administration is examined. Further discussion of the main limi-tations and perspectives of lipidic LLCs in biomedical applications are also provided.Statement of significance: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.
JTD Keywords: drug delivery, glycerol monooleate, imaging, liquid crystals, Cancer, Drug delivery, Drug-delivery-systems, Glycerol monooleate, Imaging, In-situ, Liquid crystals, Nano-carriers, Nanoparticles, Phase-behavior, Stratum-corneum, Sustained-release, Tissue engineering, Vegetable-oil, Water
Ortiz, C, Klein, S, Reul, WH, Magdaleno, F, Gröschl, S, Dietrich, P, Schierwagen, R, Uschner, FE, Torres, S, Hieber, C, Meier, C, Kraus, N, Tyc, O, Brol, M, Zeuzem, S, Welsch, C, Poglitsch, M, Hellerbrand, C, Alfonso-Prieto, M, Mira, F, Keller, UAD, Tetzner, A, Moore, A, Walther, T, Trebicka, J, (2023). Neprilysin-dependent neuropeptide Y cleavage in the liver promotes fibrosis by blocking NPY-receptor 1 Cell Reports 42, 112059
Development of liver fibrosis is paralleled by contraction of hepatic stellate cells (HSCs), the main profibrotic hepatic cells. Yet, little is known about the interplay of neprilysin (NEP) and its substrate neuropeptide Y (NPY), a potent enhancer of contraction, in liver fibrosis. We demonstrate that HSCs are the source of NEP. Importantly, NPY originates majorly from the splanchnic region and is cleaved by NEP in order to terminate contraction. Interestingly, NEP deficiency (Nep-/-) showed less fibrosis but portal hypertension upon liver injury in two different fibrosis models in mice. We demonstrate the incremental benefit of Nep-/- in addition to AT1R blocker (ARB) or ACE inhibitors for fibrosis and portal hypertension. Finally, oral administration of Entresto, a combination of ARB and NEP inhibitor, decreased hepatic fibrosis and portal pressure in mice. These results provide a mechanistic rationale for translation of NEP-AT1R-blockade in human liver fibrosis and portal hypertension.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
JTD Keywords: activation, cirrhosis, cirrhotic rats, cp: cell biology, expression, hepatic stellate cell, identification, inhibition, mechanisms, modulation, neprilysin, neuropeptide y, neuropeptide y receptor 1, portal hypertension, portal-hypertension, web server, Renin-angiotensin system
Venugopal, A, Ruiz-Perez, L, Swamynathan, K, Kulkarni, C, Calò, A, Kumar, M, (2023). Caught in Action: Visualizing Dynamic Nanostructures Within Supramolecular Systems Chemistry Angewandte Chemie (International Ed. Print) 62, e202208681
Supramolecular systems chemistry has been an area of active research to develop nanomaterials with life-like functions. Progress in systems chemistry relies on our ability to probe the nanostructure formation in solution. Often visualizing the dynamics of nanostructures which transform over time is a formidable challenge. This necessitates a paradigm shift from dry sample imaging towards solution-based techniques. We review the application of state-of-the-art techniques for real-time, in situ visualization of dynamic self-assembly processes. We present how solution-based techniques namely optical super-resolution microscopy, solution-state atomic force microscopy, liquid-phase transmission electron microscopy, molecular dynamics simulations and other emerging techniques are revolutionizing our understanding of active and adaptive nanomaterials with life-like functions. This Review provides the visualization toolbox and futuristic vision to tap the potential of dynamic nanomaterials.© 2022 Wiley-VCH GmbH.
JTD Keywords: electron-microscopy, fluorescence microscopy, in-situ, mechanical-properties, molecular simulations, nanostructures, polymerization, polymers, stimulated-emission, super-resolution microscopy, supramolecular chemistry, systems chemistry, water, Atomic-force microscopy, Liquid tem, Nanostructures, Super-resolution microscopy, Supramolecular chemistry, Systems chemistry
Dols-Perez, A, Fornaguera, C, Feiner-Gracia, N, Grijalvo, S, Solans, C, Gomila, G, (2023). Effect of surface functionalization and loading on the mechanical properties of soft polymeric nanoparticles prepared by nano-emulsion templating Colloids And Surfaces B-Biointerfaces 222, 113019
Drug and gene delivery systems based on polymeric nanoparticles offer a greater efficacy and a reduced toxicity compared to traditional formulations. Recent studies have evidenced that their internalization, biodistribution and efficacy can be affected, among other factors, by their mechanical properties. Here, we analyze by means of Atomic Force Microscopy force spectroscopy how composition, surface functionalization and loading affect the mechanics of nanoparticles. For this purpose, nanoparticles made of Poly(lactic-co-glycolic) (PLGA) and Ethyl cellulose (EC) with different functionalizations and loading were prepared by nano-emulsion templating using the Phase Inversion Composition method (PIC) to form the nano-emulsions. A multiparametric nanomechanical study involving the determination of the Young's modulus, maximum deformation and breakthrough force was carried out. The obtained results showed that composition, surface functionalization and loading affect the nanomechanical properties in a different way, thus requiring, in general, to consider the overall mechanical properties after the addition of a functionalization or loading. A graphical representation method has been proposed enabling to easily identify mechanically equivalent formulations, which is expected to be useful in the development of soft polymeric nanoparticles for pre-clinical and clinical use.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
JTD Keywords: afm, atomic-force microscopy, cell, delivery-systems, drug-delivery, emulsification approach, internalization, mechanics of nanoparticles, nanomedicine, nanoparticle functionalization, particles, protein corona, size, young?s modulus, Afm, Loaded plga nanoparticles, Mechanics of nanoparticles, Nanomedicine, Nanoparticle functionalization, Polymeric nanoparticles, Young’s modulus
Botet-Carreras, A, Marimon, MB, Millan-Solsona, R, Aubets, E, Ciudad, CJ, Noé, V, Montero, MT, Domènech, O, Borrell, JH, (2023). On the uptake of cationic liposomes by cells: From changes in elasticity to internalization Colloids And Surfaces B-Biointerfaces 221, 112968
In this study, we assessed the capacity of a previously reported engineered liposomal formulation, which had been tested against model membranes mimicking the lipid composition of the HeLa plasma membrane, to fuse and function as a nanocarrier in cells. We used atomic force microscopy to observe physicochemical changes on the cell surface and confocal microscopy to determine how the liposomes interact with cell membranes and released their load. In addition, we performed viability assays using methotrexate as an active drug to obtain proof of concept of the formulation´s capacity to function as a drug delivery-system. The interaction of engineered liposomes with living cells corroborates the information obtained using model membranes and supports the capacity of the engineered liposomal formulation to serve as a potential nanocarrier.Copyright © 2022 Elsevier B.V. All rights reserved.
JTD Keywords: atomic force microscopy, confocal microscopy, drug delivery system, filopodia, young ?s modulus, Atomic force microscopy, Confocal microscopy, Drug delivery system, Engineered liposomes, Filopodia, Young´s modulus
Badiola-Mateos, M, Osaki, T, Kamm, RD, Samitier, J, (2022). In vitro modelling of human proprioceptive sensory neurons in the neuromuscular system Scientific Reports 12, 21318
Proprioceptive sensory neurons (pSN) are an essential and undervalued part of the neuromuscular circuit. A protocol to differentiate healthy and amyotrophic lateral sclerosis (ALS) human neural stem cells (hNSC) into pSN, and their comparison with the motor neuron (MN) differentiation process from the same hNSC sources, facilitated the development of in vitro co-culture platforms. The obtained pSN spheroids cultured interact with human skeletal myocytes showing the formation of annulospiral wrapping-like structures between TrkC + neurons and a multinucleated muscle fibre, presenting synaptic bouton-like structures in the contact point. The comparative analysis of the genetic profile performed in healthy and sporadic ALS hNSC differentiated to pSN suggested that basal levels of ETV1, critical for motor feedback from pSN, were much lower for ALS samples and that the differences between healthy and ALS samples, suggest the involvement of pSN in ALS pathology development and progression.© 2022. The Author(s).
JTD Keywords: Amyotrophic-lateral-sclerosis,pluripotent stem-cells,peripheral nervous-system,stretch reflex arc,mechanosensory circuit,cellular-localization,molecular-cloning,motor-neurons,muscle,expressio
Cable, J, Arlotta, P, Parker, KK, Hughes, AJ, Goodwin, K, Mummery, CL, Kamm, RD, Engle, SJ, Tagle, DA, Boj, SF, Stanton, AE, Morishita, Y, Kemp, ML, Norfleet, DA, May, EE, Lu, A, Bashir, R, Feinberg, AW, Hull, SM, Gonzalez, AL, Blatchley, MR, Pulido, NM, Morizane, R, McDevitt, TC, Mishra, D, Mulero-Russe, A, (2022). Engineering multicellular living systems-A Keystone Symposia report Annals Of The New York Academy Of Sciences 1518, 183-195
The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".
JTD Keywords: computational, engineered living, engineered organs, multicellular, Brain organoids, Cell diversity, Computational, Dynamics, Engineered living, Engineered organs, Heart, Maturation, Model, Multicellular, Mycobacterium-tuberculosis, Quantitative-analysis, Systems, Tissue deformation
Cañellas-Socias, A, Cortina, C, Hernando-Momblona, X, Palomo-Ponce, S, Mulholland, EJ, Turon, G, Mateo, L, Conti, S, Roman, O, Sevillano, M, Slebe, F, Stork, D, Caballé-Mestres, A, Berenguer-Llergo, A, Alvarez-Varela, A, Fenderico, N, Novellasdemunt, L, Jiménez-Gracia, L, Sipka, T, Bardia, L, Lorden, P, Colombelli, J, Heyn, H, Trepat, X, Tejpar, S, Sancho, E, Tauriello, DVF, Leedham, S, Attolini, CSO, Batlle, E, (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells Nature 611, 603-613
Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
JTD Keywords: colonization, defines, human colon, mutations, plasticity, retrieval, stem-cells, subtypes, underlie, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Article, Cancer, Cancer growth, Cancer immunotherapy, Cancer inhibition, Cancer recurrence, Cancer staging, Cell, Cell adhesion, Cell migration, Cell population, Cell surface receptor, Cohort analysis, Colorectal cancer, Colorectal neoplasms, Colorectal tumor, Comprehensive molecular characterization, Controlled study, Crispr-cas9 system, Cytoskeleton, Disease exacerbation, Disease progression, Dynamics, Emp1 gene, Epithelial membrane protein-1, Extracellular matrix, Flow cytometry, Fluorescence intensity, Gene expression, Genetics, Human, Human cell, Humans, Immune response, Immunofluorescence, In situ hybridization, Marker gene, Metastasis potential, Mice, Minimal residual disease, Mouse, Neoplasm proteins, Neoplasm recurrence, local, Neoplasm, residual, Nonhuman, Pathology, Phenotype, Prevention and control, Protein, Receptors, cell surface, Single cell rna seq, Tumor, Tumor protein, Tumor recurrence
Quandt, J, Garay-Sarmiento, M, Witzdam, L, Englert, J, Rutsch, Y, Stöcker, C, Obstals, F, Grottke, O, Rodriguez-Emmenegger, C, (2022). Interactive Hemocompatible Nanocoating to Prevent SurfaceInduced Coagulation in Medical Devices Advanced Materials Interfaces 9, 2201055
JTD Keywords: anti-fxiia antibody, artificial surfaces, blood compatibility, complement activation, factor xii, fibrinolytic system, hemocompatible coatings, interactive hemocompatibility, poly(2-methacryloyloxyethyl phosphorylcholine), polyethylene oxide, polymer brushes, radical polymerization, sequential coimmobilization, Antifouling polymer brushes, Protein adsorption
Andrade, F, Roca-Melendres, MM, Llaguno, M, Hide, D, Raurell, I, Martell, M, Vijayakumar, S, Oliva, M, Schwartz, S, Duran-Lara, EF, Rafael, D, Abasolo, I, (2022). Smart and eco-friendly N-isopropylacrylamide and cellulose hydrogels as a safe dual-drug local cancer therapy approach Carbohydrate Polymers 295, 119859
Local cancer treatment by in situ injections of thermo-responsive hydrogels (HG) offers several advantages over conventional systemic anti-cancer treatments. In this work, a biodegradable and multicompartmental HG composed of N-isopropylacrylamide, cellulose, citric acid, and ceric ammonium nitrate was developed for the controlled release of hydrophilic (doxorubicin) and hydrophobic (niclosamide) drugs. The formulation presented ideal properties regarding thermo-responsiveness, rheological behavior, drug release profile, biocompatibility, and biological activity in colon and ovarian cancer cells. Cellulose was found to retard drugs release rate, being only 4 % of doxorubicin and 30 % of niclosamide released after 1 week. This low release was sufficient to cause cell death in both cell lines. Moreover, HG demonstrated a proper injectability, in situ prevalence, and safety profile in vivo. Overall, the HG properties, together with its natural and eco-friendly composition, create a safe and efficient platform for the local treatment of non-resectable tumors or tumors requiring pre-surgical adjuvant therapy.
JTD Keywords: biodegradable, cellulose, controlled-release formulation, drug delivery systems, hydrogel, thermo-responsiveness, Ammonium-nitrate, Biodegradable, Cancer treatment, Cellulose, Controlled-release formulation, Delivery, Drug delivery systems, Hydrogel, Reduce, Thermo-responsiveness
Mughal, S, Lopez-Munoz, GA, Fernandez-Costa, JM, Cortes-Resendiz, A, De Chiara, F, Ramon-Azcon, J, (2022). Organs-on-Chips: Trends and Challenges in Advanced Systems Integration Advanced Materials Interfaces 9,
Organ-on-chip platforms combined with high-throughput sensing technology allow bridging gaps in information presented by 2D cultures modeled on static microphysiological systems. While these platforms do not aim to replicate whole organ systems with all physiological nuances, they try to mimic relevant structural, physiological, and functional features of organoids and tissues to best model disease and/or healthy states. The advent of this platform has not only challenged animal testing but has also presented the opportunity to acquire real-time, high-throughput data about the pathophysiology of disease progression by employing biosensors. Biosensors allow monitoring of the release of relevant biomarkers and metabolites as a result of physicochemical stress. It, therefore, helps conduct quick lead validation to achieve personalized medicine objectives. The organ-on-chip industry is currently embarking on an exponential growth trajectory. Multiple pharmaceutical and biotechnology companies are adopting this technology to enable quick patient-specific data acquisition at substantially low costs.
JTD Keywords: A-chip, Biosensor, Biosensors, Cancer, Cells, Culture, Disease models, Epithelial electrical-resistance, Hydrogel, Microfabrication, Microphysiological systems, Models, Niches, Organ-on-a-chips, Platform
Admella, J, Torrents, E, (2022). A Straightforward Method for the Isolation and Cultivation of Galleria mellonella Hemocytes International Journal Of Molecular Sciences 23, 13483
Galleria mellonella is an alternative animal model of infection. The use of this species presents a wide range of advantages, as its maintenance and rearing are both easy and inexpensive. Moreover, its use is considered to be more ethically acceptable than other models, it is conveniently sized for manipulation, and its immune system has multiple similarities with mammalian immune systems. Hemocytes are immune cells that help encapsulate and eliminate pathogens and foreign particles. All of these reasons make this insect a promising animal model. However, cultivating G. mellonella hemocytes in vitro is not straightforward and it has many difficult challenges. Here, we present a methodologically optimized protocol to establish and maintain a G. mellonella hemocyte primary culture. These improvements open the door to easily and quickly study the toxicity of nanoparticles and the interactions of particles and materials in an in vitro environment.
JTD Keywords: cell culture, galleria mellonella, infection, nanoparticle, Bacteria, Cell culture, Galleria mellonella, Hemolin, Infection, Insect hemocytes, Larvae, Lepidoptera, Nanoparticle, Phagocytosis, Prophenoloxidase, Suspension, Systems
Blithikioti C, Miquel L, Paniello B, Nuño L, Gual A, Ballester BR, Fernandez A, Herreros I, Verschure P, Balcells-Olivero M, (2022). Chronic cannabis use affects cerebellum dependent visuomotor adaptation Journal Of Psychiatric Research 156, 8-15
Cannabis is one of the most commonly used substances in the world. However, its effects on human cognition are not yet fully understood. Although the cerebellum has the highest density of cannabinoid receptor type 1 (CB1R) in the human brain, literature on how cannabis use affects cerebellar-dependent learning is sparse. This study examined the effect of chronic cannabis use on sensorimotor adaptation, a cerebellar-mediated task, which has been suggested to depend on endocannabinoid signaling.Chronic cannabis users (n = 27) with no psychiatric comorbidities and healthy, cannabis-naïve controls (n = 25) were evaluated using a visuomotor rotation task. Cannabis users were re-tested after 1 month of abstinence (n = 13) to assess whether initial differences in performance would persist after cessation of use.Cannabis users showed lower adaptation rates compared to controls at the first time point. However, this difference in performance did not persist when participants were retested after one month of abstinence (n = 13). Healthy controls showed attenuated implicit learning in the late phase of the adaptation during re-exposure, which was not present in cannabis users. This explains the lack of between group differences in the second time point and suggests a potential alteration of synaptic plasticity required for cerebellar learning in cannabis users.Overall, our results suggest that chronic cannabis users show alterations in sensorimotor adaptation, likely due to a saturation of the endocannabinoid system after chronic cannabis use.Copyright © 2022 Elsevier Ltd. All rights reserved.
JTD Keywords: Addiction, Cannabis, Cerebellum, Endocannabinoid system, Visuomotor adaptation
Zamora, RA, López-Ortiz, M, Sales-Mateo, M, Hu, C, Croce, R, Maniyara, RA, Pruneri, V, Giannotti, MI, Gorostiza, P, (2022). Light- and Redox-Dependent Force Spectroscopy Reveals that the Interaction between Plastocyanin and Plant Photosystem I Is Favored when One Partner Is Ready for Electron Transfer Acs Nano 16, 15155-15164
Photosynthesis is a fundamental process that converts photons into chemical energy, driven by large protein complexes at the thylakoid membranes of plants, cyanobacteria, and algae. In plants, water-soluble plastocyanin (Pc) is responsible for shuttling electrons between cytochrome b6f complex and the photosystem I (PSI) complex in the photosynthetic electron transport chain (PETC). For an efficient turnover, a transient complex must form between PSI and Pc in the PETC, which implies a balance between specificity and binding strength. Here, we studied the binding frequency and the unbinding force between suitably oriented plant PSI and Pc under redox control using single molecule force spectroscopy (SMFS). The binding frequency (observation of binding-unbinding events) between PSI and Pc depends on their respective redox states. The interaction between PSI and Pc is independent of the redox state of PSI when Pc is reduced, and it is disfavored in the dark (reduced P700) when Pc is oxidized. The frequency of interaction between PSI and Pc is higher when at least one of the partners is in a redox state ready for electron transfer (ET), and the post-ET situation (PSIRed-PcOx) leads to lower binding. In addition, we show that the binding of ET-ready PcRed to PSI can be regulated externally by Mg2+ ions in solution.
JTD Keywords: architecture, binding-site, complexes, ferredoxin, force spectroscopy, induced structural-changes, interprotein electron transfer, light-dependent interaction, mg2+ concentration, photosystem i, plastocyanin, probe, recognition, reduction, Force spectroscopy, Interprotein electron transfer, Light-dependent interaction, Photosynthetic reaction-center, Photosystem i, Plastocyanin, Single molecule measurements
Solomon, M, Loeck, M, Silva-Abreu, M, Moscoso, R, Bautista, R, Vigo, M, Muro, S, (2022). Altered blood-brain barrier transport of nanotherapeutics in lysosomal storage diseases Journal Of Controlled Release 349, 1031-1044
Treatment of neurological lysosomal storage disorders (LSDs) are limited because of impermeability of the blood-brain barrier (BBB) to macromolecules. Nanoformulations targeting BBB transcytosis are being explored, but the status of these routes in LSDs is unknown. We studied nanocarriers (NCs) targeted to the transferrin receptor (TfR), ganglioside GM1 or ICAM1, associated to the clathrin, caveolar or cell adhesion molecule (CAM) routes, respectively. We used brain endothelial cells and mouse models of acid sphingomyelinase-deficient Niemann Pick disease (NPD), and postmortem LSD patients' brains, all compared to respective controls. NC transcytosis across brain endothelial cells and brain distribution in mice were affected, yet through different mechanisms. Reduced TfR and clathrin expression were found, along with decreased transcytosis in cells and mouse brain distribution. Caveolin-1 expression and GM1 transcytosis were also reduced, yet increased GM1 levels seemed to compensate, providing similar NC brain distribution in NPD vs. control mice. A tendency to lower NHE-1 levels was seen, but highly increased ICAM1 expression in cells and human brains correlated with increased transcytosis and brain distribution in mice. Thus, transcytosis-related alterations in NPD and likely other LSDs may impact therapeutic access to the brain, illustrating the need for these mechanistic studies.Copyright © 2022 Elsevier B.V. All rights reserved.
JTD Keywords: acid sphingomyelinase, antibody-affinity, blood -brain barrier, drug-delivery, icam-1-targeted nanocarriers, in-vivo, mediated endocytosis, model, neurological diseases, niemann-pick, targeted nanocarriers, trafficking, transcytosis pathways, Blood-brain barrier, Central-nervous-system, Lysosomal storage disorders, Neurological diseases, Targeted nanocarriers, Transcytosis pathways
Amil, AF, Ballester, BR, Maier, M, Verschure, PFMJ, (2022). Chronic use of cannabis might impair sensory error processing in the cerebellum through endocannabinoid dysregulation Addictive Behaviors 131, 107297
Chronic use of cannabis leads to both motor deficits and the downregulation of CB1 receptors (CB1R) in the cerebellum. In turn, cerebellar damage is often related to impairments in motor learning and control. Further, a recent motor learning task that measures cerebellar-dependent adaptation has been shown to distinguish well between healthy subjects and chronic cannabis users. Thus, the deteriorating effects of chronic cannabis use in motor performance point to cerebellar adaptation as a key process to explain such deficits. We review the literature relating chronic cannabis use, the endocannabinoid system in the cerebellum, and different forms of cerebellar-dependent motor learning, to suggest that CB1R downregulation leads to a generalized underestimation and misprocessing of the sensory errors driving synaptic updates in the cerebellar cortex. Further, we test our hypothesis with a computational model performing a motor adaptation task and reproduce the behavioral effect of decreased implicit adaptation that appears to be a sign of chronic cannabis use. Finally, we discuss the potential of our hypothesis to explain similar phenomena related to motor impairments following chronic alcohol dependency. © 2022
JTD Keywords: adaptation, addiction, alcohol-abuse, cerebellum, chronic cannabis use, cognition, deficits, endocannabinoid system, error processing, explicit, modulation, motor learning, release, synaptic plasticity, Adaptation, Adaptation, physiological, Alcoholism, Article, Behavioral science, Cannabinoid 1 receptor, Cannabis, Cannabis addiction, Cerebellum, Cerebellum cortex, Cerebellum disease, Chronic cannabis use, Computer model, Down regulation, Endocannabinoid, Endocannabinoid system, Endocannabinoids, Error processing, Hallucinogens, Human, Humans, Motor dysfunction, Motor learning, Nerve cell plasticity, Nonhuman, Physiology, Psychedelic agent, Purkinje-cells, Regulatory mechanism, Sensation, Sensory dysfunction, Sensory error processing impairment, Synaptic transmission, Task performance
Mesquida-Veny, F, Martinez-Torres, S, Del Rio, JA, Hervera, A, (2022). Nociception-Dependent CCL21 Induces Dorsal Root Ganglia Axonal Growth via CCR7-ERK Activation Frontiers In Immunology 13, 880647
While chemokines were originally described for their ability to induce cell migration, many studies show how these proteins also take part in many other cell functions, acting as adaptable messengers in the communication between a diversity of cell types. In the nervous system, chemokines participate both in physiological and pathological processes, and while their expression is often described on glial and immune cells, growing evidence describes the expression of chemokines and their receptors in neurons, highlighting their potential in auto- and paracrine signalling. In this study we analysed the role of nociception in the neuronal chemokinome, and in turn their role in axonal growth. We found that stimulating TRPV1(+) nociceptors induces a transient increase in CCL21. Interestingly we also found that CCL21 enhances neurite growth of large diameter proprioceptors in vitro. Consistent with this, we show that proprioceptors express the CCL21 receptor CCR7, and a CCR7 neutralizing antibody dose-dependently attenuates CCL21-induced neurite outgrowth. Mechanistically, we found that CCL21 binds locally to its receptor CCR7 at the growth cone, activating the downstream MEK-ERK pathway, that in turn activates N-WASP, triggering actin filament ramification in the growth cone, resulting in increased axonal growth.
JTD Keywords: axonal growth, ccl21, ccr7, mek-erk, Actin dynamics, Axonal growth, Ccl21, Ccr7, Cell-migration, Central-nervous-system, Chemokine, Ligands, Mek-erk, Microglia, Neurons, Neuropathic pain, Nociception, Phosphorylation, Regeneration
Jain, A, Calo, A, Barcelo, D, Kumar, M, (2022). Supramolecular systems chemistry through advanced analytical techniques Analytical And Bioanalytical Chemistry 414, 5105-5119
Supramolecular chemistry is the quintessential backbone of all biological processes. It encompasses a wide range from the metabolic network to the self-assembled cytoskeletal network. Combining the chemical diversity with the plethora of functional depth that biological systems possess is a daunting task for synthetic chemists to emulate. The only route for approaching such a challenge lies in understanding the complex and dynamic systems through advanced analytical techniques. The supramolecular complexity that can be successfully generated and analyzed is directly dependent on the analytical treatment of the system parameters. In this review, we illustrate advanced analytical techniques that have been used to investigate various supramolecular systems including complex mixtures, dynamic self-assembly, and functional nanomaterials. The underlying theme of such an overview is not only the exceeding detail with which traditional experiments can be probed but also the fact that complex experiments can now be attempted owing to the analytical techniques that can resolve an ensemble in astounding detail. Furthermore, the review critically analyzes the current state of the art analytical techniques and suggests the direction of future development. Finally, we envision that integrating multiple analytical methods into a common platform will open completely new possibilities for developing functional chemical systems.
JTD Keywords: analytical techniques, dynamic self-assembly, high-speed afm, liquid cell tem, Analytical technique, Analytical techniques, Biological process, Chemical analysis, Chemical diversity, Complex networks, Cytoskeletal network, Dynamic self-assembly, High-speed afm, Hydrogels, In-situ, Liquid cell tem, Metabolic network, Microscopy, Nanoscale, Proteins, Self assembly, Supramolecular chemistry, Supramolecular systems, System chemistry, Systems chemistry
Castagna, R, Kolarski, D, Durand-de Cuttoli, R, Maleeva, G, (2022). Orthogonal Control of Neuronal Circuits and Behavior Using Photopharmacology Journal Of Molecular Neuroscience 72, 1433-1442
Over the last decades, photopharmacology has gone far beyond its proof-of-concept stage to become a bona fide approach to study neural systems in vivo. Indeed, photopharmacological control has expanded over a wide range of endogenous targets, such as receptors, ion channels, transporters, kinases, lipids, and DNA transcription processes. In this review, we provide an overview of the recent progresses in the in vivo photopharmacological control of neuronal circuits and behavior. In particular, the use of small aquatic animals for the in vivo screening of photopharmacological compounds, the recent advances in optical modulation of complex behaviors in mice, and the development of adjacent techniques for light and drug delivery in vivo are described.
JTD Keywords: brain circuits, circadian rhythm, in vivo photomodulation, in vivo technology, neuronal receptors, Architecture, Azobenzene photoswitches, Brain circuits, Channels, Circadian rhythm, In vivo photomodulation, In vivo technology, Light, Modulator, Neuronal receptors, Optical control, Optogenetics, Pharmacology, Photopharmacology, Receptors, Systems
Lopez-Mengual, A, Segura-Feliu, M, Sunyer, R, Sanz-Fraile, H, Otero, J, Mesquida-Veny, F, Gil, V, Hervera, A, Ferrer, I, Soriano, J, Trepat, X, Farre, R, Navajas, D, del Rio, JA, (2022). Involvement of Mechanical Cues in the Migration of Cajal-Retzius Cells in the Marginal Zone During Neocortical Development Frontiers In Cell And Developmental Biology 10, 886110
Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the developing cortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.
JTD Keywords: atomic force microscopy, cajal-retzius cells, cortical development, marginal zone, mechanical cues, Atomic force microscopy, Cajal-retzius cells, Central-nervous-system, Cortical development, Cortical hem, Developing cerebral-cortex, Expression, Growth, Marginal zone, Mechanical cues, Mouse, Neuronal migration, Nogo receptor, Olfactory ensheathing cells, Tangential migration, Traction force microscopy
Madrid-Gambin, F, Gomez-Gomez, A, Busquets-Garcia, A, Haro, N, Marco, S, Mason, NL, Reckweg, JT, Mallaroni, P, Kloft, L, van Oorsouw, K, Toennes, SW, de la Torre, R, Ramaekers, JG, Van Oorsouw, K, Toennes, SW, De la Torre, R, Ramaekers, JG, Pozo, OJ, (2022). Metabolomics and integrated network analysis reveal roles of endocannabinoids and large neutral amino acid balance in the ayahuasca experience Biomedicine & Pharmacotherapy 149, 112845
There has been a renewed interest in the potential use of psychedelics for the treatment of psychiatric conditions. Nevertheless, little is known about the mechanism of action and molecular pathways influenced by ayahuasca use in humans. Therefore, for the first time, our study aims to investigate the human metabolomics signature after consumption of a psychedelic, ayahuasca, and its connection with both the psychedelic-induced subjective effects and the plasma concentrations of ayahuasca alkaloids. Plasma samples of 23 individuals were collected both before and after ayahuasca consumption. Samples were analysed through targeted metabolomics and further integrated with subjective ratings of the ayahuasca experience (i.e., using the 5-Dimension Altered States of Consciousness Rating Scale [ASC]), and plasma ayahuasca-alkaloids using integrated network analysis. Metabolic pathways enrichment analysis using diffusion algorithms for specific KEGG modules was performed on the metabolic output. Compared to baseline, the consumption of ayahuasca increased N-acyl-ethanolamine endocannabinoids, decreased 2-acyl-glycerol endocannabinoids, and altered several large-neutral amino acids (LNAAs). Integrated network results indicated that most of the LNAAs were inversely associated with 9 out of the 11 subscales of the ASC, except for tryptophan which was positively associated. Several endocannabinoids and hexosylceramides were directly associated with the ayahuasca alkaloids. Enrichment analysis confirmed dysregulation in several pathways involved in neurotransmission such as serotonin and dopamine synthesis. In conclusion, a crosstalk between the circulating LNAAs and the subjective effects is suggested, which is independent of the alkaloid concentrations and provides insights into the specific metabolic fingerprint and mechanism of action underlying ayahuasca experiences. © 2022 The Authors
JTD Keywords: anxiety, ayahuasca, dimethyltryptamine, integrative network analysis, metabolism, metabolomics, psychedelics, rats, subjective effects, system, tryptophan, Ayahuasca, Dimethyltryptamine, Integrative network analysis, Metabolomics, Psychedelics, Serotonin 5-ht2a, Subjective effects
Trebicka, J, (2022). Role of albumin in the treatment of decompensated liver cirrhosis Current Opinion In Gastroenterology 38, 200-205
Albumin has been used primarily as a plasma expander, since it leads to an increase in the circulating blood volume. Current generally recommended indications for albumin therapy in cirrhotic patients are the prevention of circulatory dysfunction after large-volume paracentesis, the prevention of hepatorenal syndrome (HRS) in patients with spontaneous bacterial peritonitis (SBP), and the management of HRS in combination with vasoconstrictors. Yet, new indications for albumin have been tested in the recent years and are outlined in this short review.New data show that albumin both supports the circulation and reduces systemic inflammation. In addition, to its oncotic function, it acts as an antioxidant, radical scavenger, and immune modulator. These nononcotic properties explain why long-term albumin administration in patients with decompensated cirrhosis may be useful in the prevention of associated complications (acute-on-chronic liver failure, infections). New data show that long-term albumin therapy in patients with cirrhosis and ascites improves survival, prevents complications, simplifies ascites management, and lowers hospitalization rates. The so-called disease-modifying effects of long-term albumin therapy may have a favorable effect on the course of the disease. Nevertheless, the optimal dosage and administration intervals have not yet been finally defined.Albumin therapy is effective in the indications already recommended by the guidelines. A possible extension of the indication for albumin administration in non-SBP infections and as long-term therapy is promising, but should be confirmed by further studies.Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
JTD Keywords: ascites, failure, hepatorenal syndrome, hospitalized-patients, hypothesis, infections, portal hypertension, spontaneous bacterial peritonitis, systemic inflammation, Acute-on-chronic liver failure, Human serum-albumin
Karkali, K, Tiwari, P, Singh, A, Tlili, S, Jorba, I, Navajas, D, Munoz, JJ, Saunders, TE, Martin-Blanco, E, (2022). Condensation of the Drosophila nerve cord is oscillatory and depends on coordinated mechanical interactions Developmental Cell 57, 867-+
During development, organs reach precise shapes and sizes. Organ morphology is not always obtained through growth; a classic counterexample is the condensation of the nervous system during Drosophila embryogenesis. The mechanics underlying such condensation remain poorly understood. Here, we characterize the condensation of the embryonic ventral nerve cord (VNC) at both subcellular and tissue scales. This analysis reveals that condensation is not a unidirectional continuous process but instead occurs through oscillatory contractions. The VNC mechanical properties spatially and temporally vary, and forces along its longitudinal axis are spatially heterogeneous. We demonstrate that the process of VNC condensation is dependent on the coordinated mechanical activities of neurons and glia. These outcomes are consistent with a viscoelastic model of condensation, which incorporates time delays and effective frictional interactions. In summary, we have defined the progressive mechanics driving VNC condensation, providing insights into how a highly viscous tissue can autonomously change shape and size.
JTD Keywords: actomyosin, central nervous system, drosophila, glia, mechanics, morphogenesis, neuron, ventral nerve cord, Actomyosin, Animals, Central nervous system, Collagen-iv, Contraction, Drosophila, Embryonic development, Forces, Gene, Glia, Glial-cells, Mechanics, Migration, Morphogenesis, Neuroglia, Neuron, Neurons, Quantification, System, Tissue, Ventral nerve cord, Viscolelastic model
Woythe, L, Madhikar, P, Feiner-Gracia, N, Storm, C, Albertazzi, L, (2022). A Single-Molecule View at Nanoparticle Targeting Selectivity: Correlating Ligand Functionality and Cell Receptor Density Acs Nano 16, 3785-3796
Antibody-functionalized nanoparticles (NPs) are commonly used to increase the targeting selectivity toward cells of interest. At a molecular level, the number of functional antibodies on the NP surface and the density of receptors on the target cell determine the targeting interaction. To rationally develop selective NPs, the single-molecule quantitation of both parameters is highly desirable. However, techniques able to count molecules with a nanometric resolution are scarce. Here, we developed a labeling approach to quantify the number of functional cetuximabs conjugated to NPs and the expression of epidermal growth factor receptors (EGFRs) in breast cancer cells using direct stochastic optical reconstruction microscopy (dSTORM). The single-molecule resolution of dSTORM allows quantifying molecules at the nanoscale, giving a detailed insight into the distributions of individual NP ligands and cell receptors. Additionally, we predicted the fraction of accessible antibody-conjugated NPs using a geometrical model, showing that the total number exceeds the accessible number of antibodies. Finally, we correlated the NP functionality, cell receptor density, and NP uptake to identify the highest cell uptake selectivity regimes. We conclude that single-molecule functionality mapping using dSTORM provides a molecular understanding of NP targeting, aiding the rational design of selective nanomedicines.
JTD Keywords: active targeting, active targeting dstorm, antibodies, dstorm, heterogeneity, multivalency, nanomedicine, nanoparticle functionality, size, super-resolution microscopy, surface, Active targeting, Antibodies, Cell membranes, Cell receptors, Cytology, Direct stochastic optical reconstruction microscopy, Dstorm, Heterogeneity, Ligands, Medical nanotechnology, Molecules, Nanomedicine, Nanoparticle functionality, Nanoparticle targeting, Nanoparticles, Optical reconstruction, Single molecule, Stochastic systems, Stochastics, Super-resolution microscopy, Superresolution microscopy
Aydin, O, Passaro, AP, Raman, R, Spellicy, SE, Weinberg, RP, Kamm, RD, Sample, M, Truskey, GA, Zartman, J, Dar, RD, Palacios, S, Wang, J, Tordoff, J, Montserrat, N, Bashir, R, Saif, MTA, Weiss, R, (2022). Principles for the design of multicellular engineered living systems Apl Bioengineering 6, 10903
Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell–cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the “black box” of living cells.
JTD Keywords: cell-fate specification, endothelial-cells, escherichia-coli, extracellular-matrix, gene-expression noise, nuclear hormone-receptors, pluripotent stem-cells, primitive endoderm, transcription factors, Artificial tissues, Assembly cells, Biological parts, Biological systems, Bioremediation, Blood-brain-barrier, Cell engineering, Cell/matrix communication, Design principles, Environmental technology, Functional modules, Fundamental design, Genetic circuits, Genetic engineering, Living machines, Living systems, Medical applications, Molecular biology, Synthetic biology
Dhiman, S, Andrian, T, Gonzalez, BS, Tholen, MME, Wang, YY, Albertazzi, L, (2022). Can super-resolution microscopy become a standard characterization technique for materials chemistry? Chemical Science 13, 2152-2166
The characterization of newly synthesized materials is a cornerstone of all chemistry and nanotechnology laboratories. For this purpose, a wide array of analytical techniques have been standardized and are used routinely by laboratories across the globe. With these methods we can understand the structure, dynamics and function of novel molecular architectures and their relations with the desired performance, guiding the development of the next generation of materials. Moreover, one of the challenges in materials chemistry is the lack of reproducibility due to improper publishing of the sample preparation protocol. In this context, the recent adoption of the reporting standard MIRIBEL (Minimum Information Reporting in Bio–Nano Experimental Literature) for material characterization and details of experimental protocols aims to provide complete, reproducible and reliable sample preparation for the scientific community. Thus, MIRIBEL should be immediately adopted in publications by scientific journals to overcome this challenge. Besides current standard spectroscopy and microscopy techniques, there is a constant development of novel technologies that aim to help chemists unveil the structure of complex materials. Among them super-resolution microscopy (SRM), an optical technique that bypasses the diffraction limit of light, has facilitated the study of synthetic materials with multicolor ability and minimal invasiveness at nanometric resolution. Although still in its infancy, the potential of SRM to unveil the structure, dynamics and function of complex synthetic architectures has been highlighted in pioneering reports during the last few years. Currently, SRM is a sophisticated technique with many challenges in sample preparation, data analysis, environmental control and automation, and moreover the instrumentation is still expensive. Therefore, SRM is currently limited to expert users and is not implemented in characterization routines. This perspective discusses the potential of SRM to transition from a niche technique to a standard routine method for material characterization. We propose a roadmap for the necessary developments required for this purpose based on a collaborative effort from scientists and engineers across disciplines.
JTD Keywords: blinking, fluorophore, intramolecular spirocyclization, localization, nanoparticles, resolution limit, reveals, single-molecule fluorescence, stimulated-emission, Characterization techniques, Diffraction, Distributed computer systems, Environmental management, Information reporting, Material chemistry, Materials characterization, Minimum information, Optical reconstruction microscopy, Optical resolving power, Sample preparation, Structure dynamics, Structure functions, Super-resolution microscopy, Synthesized materials
López-Ortiz, M, Zamora, RA, Giannotti, MI, Hu, C, Croce, R, Gorostiza, P, (2022). Distance and Potential Dependence of Charge Transport Through the Reaction Center of Individual Photosynthetic Complexes Small 18, 2104366
Charge separation and transport through the reaction center of photosystem I (PSI) is an essential part of the photosynthetic electron transport chain. A strategy is developed to immobilize and orient PSI complexes on gold electrodes allowing to probe the complex's electron acceptor side, the chlorophyll special pair P700. Electrochemical scanning tunneling microscopy (ECSTM) imaging and current-distance spectroscopy of single protein complex shows lateral size in agreement with its known dimensions, and a PSI apparent height that depends on the probe potential revealing a gating effect in protein conductance. In current-distance spectroscopy, it is observed that the distance-decay constant of the current between PSI and the ECSTM probe depends on the sample and probe electrode potentials. The longest charge exchange distance (lowest distance-decay constant ?) is observed at sample potential 0 mV/SSC (SSC: reference electrode silver/silver chloride) and probe potential 400 mV/SSC. These potentials correspond to hole injection into an electronic state that is available in the absence of illumination. It is proposed that a pair of tryptophan residues located at the interface between P700 and the solution and known to support the hydrophobic recognition of the PSI redox partner plastocyanin, may have an additional role as hole exchange mediator in charge transport through PSI.© 2021 Wiley-VCH GmbH.
JTD Keywords: azurin, current distance decay spectroscopy, cytochrome c(6), electrochemical scanning tunneling microscopy (ecstm), electrochemistry, photosystem i, photosystem-i, plastocyanin, protein electron transfer, recognition, single metalloprotein, single molecules, structural basis, tunneling spectroscopy, 'current, Amino acids, Charge transfer, Chlorine compounds, Current distance decay spectroscopy, Decay spectroscopies, Distance decay, Electrochemical scanning tunneling microscopy, Electrochemical scanning tunneling microscopy (ecstm), Electrodes, Electron transfer, Electron transport properties, Gold compounds, Photosystem i, Photosystems, Protein electron transfer, Protein electron-transfer, Proteins, Scanning tunneling microscopy, Silver halides, Single molecule, Single molecules
Freire, R, Mego, M, Oliveira, LF, Mas, S, Azpiroz, F, Marco, S, Pardo, A, (2022). Quantitative GC–TCD Measurements of Major Flatus Components: A Preliminary Analysis of the Diet Effect Sensors 22, 838
The impact of diet and digestive disorders in flatus composition remains largely unexplored. This is partially due to the lack of standardized sampling collection methods, and the easy atmospheric contamination. This paper describes a method to quantitatively determine the major gases in flatus and their application in a nutritional intervention. We describe how to direct sample flatus into Tedlar bags, and simultaneous analysis by gas chromatography–thermal conductivity detection (GC–TCD). Results are analyzed by univariate hypothesis testing and by multilevel principal component analysis. The reported methodology allows simultaneous determination of the five major gases with root mean measurement errors of 0.8% for oxygen (O2), 0.9% for nitrogen (N2), 0.14% for carbon dioxide (CO2), 0.11% for methane (CH4), and 0.26% for hydrogen (H2). The atmospheric contamination was limited to 0.86 (95% CI: [0.7–1.0])% for oxygen and 3.4 (95% CI: [1.4–5.3])% for nitrogen. As an illustration, the method has been successfully applied to measure the response to a nutritional intervention in a reduced crossover study in healthy subjects. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
JTD Keywords: breath, colonic microbiota, diet effect on flatus, disorders, evacuation, excretion, flatulence, hydrogen gas, major flatus gas components, multilevel principal component analysis, rectal gas collection, systems, volume, Atmospheric contamination, Carbon dioxide, Conductivity detection, Diet effect on flatus, Gas chromatography, Gas collections, Gas component, Gases, Major flatus gas component, Major flatus gas components, Multilevel principal component analyse, Multilevel principal component analysis, Multilevels, Nitrogen, Nutrition, Oxygen, Principal component analysis, Principal-component analysis, Rectal gas collection, Volatile organic-compounds
Gawish, R, Starkl, P, Pimenov, L, Hladik, A, Lakovits, K, Oberndorfer, F, Cronin, SJF, Ohradanova-Repic, A, Wirnsberger, G, Agerer, B, Endler, L, Capraz, T, Perthold, JW, Cikes, D, Koglgruber, R, Hagelkruys, A, Montserrat, N, Mirazimi, A, Boon, L, Stockinger, H, Bergthaler, A, Oostenbrink, C, Penninger, JM, Knapp, S, (2022). ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF-and IFNy-driven immunopathology Elife 11, e74623
Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cyto-kines IFN? and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo. © Gawish et al.
JTD Keywords: covid-19 mouse model, covid-19 therapy, cytokine storm, immunology, inflammation, mavie16, mouse, mouse-adapted sars-cov-2, program, recombinant soluble ace2, tmprss2, Adaptive immunity, Angiotensin converting enzyme 2, Angiotensin-converting enzyme 2, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Apoptosis, Article, Bagg albino mouse, Breathing rate, Bronchoalveolar lavage fluid, C57bl mouse, Cell composition, Cell infiltration, Controlled study, Coronavirus disease 2019, Coronavirus spike glycoprotein, Covid-19, Cytokeratin 18, Cytokine production, Dipeptidyl carboxypeptidase, Disease model, Disease models, animal, Disease severity, Drosophila-melanogaster, Enzyme linked immunosorbent assay, Expression vector, Flow cytometry, Gamma interferon, Gene editing, Gene expression, Gene mutation, Genetic engineering, Genetics, Glycosylation, High mobility group b1 protein, Histology, Histopathology, Immune response, Immunocompetent cell, Immunology, Immunopathology, Interferon-gamma, Interleukin 2, Metabolism, Mice, inbred balb c, Mice, inbred c57bl, Mouse-adapted sars-cov-2, Myeloperoxidase, Neuropilin 1, Nonhuman, Nucleocapsid protein, Pathogenicity, Peptidyl-dipeptidase a, Pyroptosis, Recombinant soluble ace2, Renin angiotensin aldosterone system, Rna extraction, Rna isolation, Sars-cov-2, Severe acute respiratory syndrome coronavirus 2, Spike glycoprotein, coronavirus, T lymphocyte activation, Trabecular meshwork, Tumor necrosis factor, Virology, Virus load, Virus replication, Virus transmission, Virus virulence
Burgués, J, Esclapez, MD, Doñate, S, Marco, S, (2021). RHINOS: A lightweight portable electronic nose for real-time odor quantification in wastewater treatment plants Iscience 24, 103371
Quantification of odor emissions in wastewater treatment plants (WWTPs) is key to minimize odor impact to surrounding communities. Odor measurements in WWTPs are usually performed via either expensive and discontinuous olfactometry hydrogen sulfide detectors or via fixed electronic noses. We propose a portable lightweight electronic nose specially designed for real-time odor monitoring in WWTPs using small drones. The so-called RHINOS e-nose allows odor measurements with high spatial resolution, and its accuracy is only slightly worse than that of dynamic olfactometry. The device has been calibrated using odor samples collected in a WWTP in Spain over a period of six months and validated in the same WWTP three weeks after calibration. The promising results obtained support the suitability of the proposed instrument to identify the odor sources having the highest emissions, which may give a useful indication to the plant managers as regards odor control and abatement.© 2021 The Author(s).
JTD Keywords: biofiltration, calibration transfer, chemical sensor arrays, chemistry, drift compensation, engineering, environmental chemical engineering, h2s, model, oxide gas sensors, removal, sensor, system, Chemistry, Engineering, Environmental chemical engineering, Sensor, Sensor system, Variable selection methods
Arboleda, A, Amado, L, Rodriguez, J, Naranjo, F, Giraldo, BF, (2021). A new protocol to compare successful versus failed patients using the electromyographic diaphragm signal in extubation process Conference Proceedings : ... Annual International Conference Of The Ieee Engineering In Medicine And Biology Society. Ieee Engineering In Medicine And Biology Society. Conference , 5646-5649
In clinical practice, when a patient is undergoing mechanical ventilation, it is important to identify the optimal moment for extubation, minimizing the risk of failure. However, this prediction remains a challenge in the clinical process. In this work, we propose a new protocol to study the extubation process, including the electromyographic diaphragm signal (diaEMG) recorded through 5-channels with surface electrodes around the diaphragm muscle. First channel corresponds to the electrode on the right. A total of 40 patients in process of withdrawal of mechanical ventilation, undergoing spontaneous breathing tests (SBT), were studied. According to the outcome of the SBT, the patients were classified into two groups: successful (SG: 19 patients) and failure (FG: 21 patients) groups. Parameters extracted from the envelope of each channel of diaEMG in time and frequency domain were studied. After analyzing all channels, the second presented maximum differences when comparing the two groups of patients, with parameters related to root mean square (p = 0.005), moving average (p = 0.001), and upward slope (p = 0.017). The third channel also presented maximum differences in parameters as the time between maximum peak (p = 0.004), and the skewness (p = 0.027). These results suggest that diaphragm EMG signal could contribute to increase the knowledge of the behaviour of respiratory system in these patients and improve the extubation process.Clinical Relevance - This establishes the characterization of success and failure patients in the extubation process. © 2021 IEEE.
JTD Keywords: classification, recognition, Airway extubation, Artificial ventilation, Clinical practices, Clinical process, Diaphragm, Diaphragm muscle, Diaphragms, Electrodes, Electromyographic, Extubation, Frequency domain analysis, Human, Humans, Maximum differences, Mechanical ventilation, New protocol, Respiration, artificial, Respiratory system, Risk of failure, Spontaneous breathing, Surface electrode, Surface emg signals, Thorax, Ventilation, Ventilator weaning
Villacampa, EG, Larsson, L, Mirzazadeh, R, Kvastad, L, Andersson, A, Mollbrink, A, Kokaraki, G, Monteil, V, Schultz, N, Appelberg, KS, Montserrat, N, Zhang, HB, Penninger, JM, Miesbach, W, Mirazimi, A, Carlson, J, Lundeberg, J, (2021). Genome-wide spatial expression profiling in formalin-fixed tissues Cell Genom 1, 100065
Formalin-fixed paraffin embedding (FFPE) is the most widespread long-term tissue preservation approach. Here, we report a procedure to perform genome-wide spatial analysis of mRNA in FFPE-fixed tissue sections, using well-established, commercially available methods for imaging and spatial barcoding using slides spotted with barcoded oligo(dT) probes to capture the 3' end of mRNA molecules in tissue sections. We applied this method for expression profiling and cell type mapping in coronal sections from the mouse brain to demonstrate the method's capability to delineate anatomical regions from a molecular perspective. We also profiled the spatial composition of transcriptomic signatures in two ovarian carcinosarcoma samples, exemplifying the method's potential to elucidate molecular mechanisms in heterogeneous clinical samples. Finally, we demonstrate the applicability of the assay to characterize human lung and kidney organoids and a human lung biopsy specimen infected with SARS-CoV-2. We anticipate that genome-wide spatial gene expression profiling in FFPE biospecimens will be used for retrospective analysis of biobank samples, which will facilitate longitudinal studies of biological processes and biomarker discovery.© 2021 The Authors.
JTD Keywords: colonic transit, gut, intestinal motility, ld score regression, metaanalysis, nervous-system, neurotrophic factor, population, severity, Covid-19, Ffpe, Genome-wide, Irritable-bowel-syndrome, Mouse brain, Organoids, Ovarian carcinosarcoma, Pfa, Sars-cov-2, Spatial transcriptomics, Visium
Andrian, T, Pujals, S, Albertazzi, L, (2021). Quantifying the effect of PEG architecture on nanoparticle ligand availability using DNA-PAINT Nanoscale Advances 3, 6876-6881
The importance of PEG architecture on nanoparticle (NP) functionality is known but still difficult to investigate, especially at a single particle level. Here, we apply DNA Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT), a super-resolution microscopy (SRM) technique, to study the surface functionality in poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) NPs with different PEG structures. We demonstrated how the length of the PEG spacer can influence the accessibility of surface chemical functionality, highlighting the importance of SRM techniques to support the rational design of functionalized NPs.
JTD Keywords: chain-length, density, plga, surface, systems, Chain-length, Density, Dna, Microscopy technique, Nanoparticles, Nanoscale topography, Paint, Peg spacers, Plga, Poly lactide-co-glycolide, Poly-lactide-co-glycolide, Polyethylene glycols, Polylactide-co-glycolide, Single-particle, Super-resolution microscopy, Superresolution microscopy, Surface, Surface chemicals, Surface functionalities, Systems
Junior, C, Narciso, M, Marhuenda, E, Almendros, I, Farre, R, Navajas, D, Otero, J, Gavara, N, (2021). Baseline stiffness modulates the non-linear response to stretch of the extracellular matrix in pulmonary fibrosis International Journal Of Molecular Sciences 22, 12928
Pulmonary fibrosis (PF) is a progressive disease that disrupts the mechanical homeostasis of the lung extracellular matrix (ECM). These effects are particularly relevant in the lung context, given the dynamic nature of cyclic stretch that the ECM is continuously subjected to during breathing. This work uses an in vivo model of pulmonary fibrosis to characterize the macro-and micromechanical properties of lung ECM subjected to stretch. To that aim, we have compared the micromechanical properties of fibrotic ECM in baseline and under stretch conditions, using a novel combination of Atomic Force Microscopy (AFM) and a stretchable membrane-based chip. At the macroscale, fibrotic ECM displayed strain-hardening, with a stiffness one order of magnitude higher than its healthy counterpart. Conversely, at the microscale, we found a switch in the stretch-induced mechanical behaviour of the lung ECM from strain-hardening at physiological ECM stiffnesses to strain-softening at fibrotic ECM stiffnesses. Similarly, we observed solidification of healthy ECM versus fluidization of fibrotic ECM in response to stretch. Our results suggest that the mechanical behaviour of fibrotic ECM under stretch involves a potential built-in mechanotransduction mechanism that may slow down the progression of PF by steering resident fibroblasts away from a pro-fibrotic profile. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
JTD Keywords: atomic force microscopy, extracellular matrix, fibrosis, mechanics, mechanosensing, strain, system, viscoelasticity, Atomic force microscopy, Extracellular matrix, Fibrosis, Lung fibrosis, Mechanosensing
Nashimoto, Y, Abe, M, Fujii, R, Taira, N, Ida, H, Takahashi, Y, Ino, K, Ramon-Azcon, J, Shiku, H, (2021). Topography and Permeability Analyses of Vasculature-on-a-Chip Using Scanning Probe Microscopies Advanced Healthcare Materials 10, 2101186
Microphysiological systems (MPS) or organs-on-chips (OoC) can emulate the physiological functions of organs in vitro and are effective tools for determining human drug responses in preclinical studies. However, the analysis of MPS has relied heavily on optical tools, resulting in difficulties in real-time and high spatial resolution imaging of the target cell functions. In this study, the role of scanning probe microscopy (SPM) as an analytical tool for MPS is evaluated. An access hole is made in a typical MPS system with stacked microchannels to insert SPM probes into the system. For the first study, a simple vascular model composed of only endothelial cells is prepared for SPM analysis. Changes in permeability and local chemical flux are quantitatively evaluated during the construction of the vascular system. The morphological changes in the endothelial cells after flow stimulation are imaged at the single-cell level for topographical analysis. Finally, the possibility of adapting the permeability and topographical analysis using SPM for the intestinal vascular system is further evaluated. It is believed that this study will pave the way for an in situ permeability assay and structural analysis of MPS using SPM.
JTD Keywords: cell, electrochemical microscopy, membrane-permeability, microphysiological systems, organs-chips, platform, scanning electrochemical microscopy, scanning ion conductance microscopy, scanning probe microscopy, shear-stress, surface-topography, Ion conductance microscopy, Microphysiological systems, Organs-chips, Scanning electrochemical microscopy, Scanning ion conductance microscopy, Scanning probe microscopy
Pérez-Rafael, S, Ivanova, K, Stefanov, I, Puiggalí, J, del Valle, LJ, Todorova, K, Dimitrov, P, Hinojosa-Caballero, D, Tzanov, T, (2021). Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment Acta Biomaterialia 134, 131-143
Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management. Statement of significance: Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load.
JTD Keywords: catechol, chronic wounds, dressing materials, inhibition, mechanism, nano-enabled hydrogels, polyphenols, promogran, self-assembling, silver-lignin nanoparticles, systems, tannins, Chronic wounds, Degradation, Dressing materials, Nano-enabled hydrogels, Self-assembling, Silver-lignin nanoparticles, Thiolated hyaluronic acid
Soblechero-Martín, P, Albiasu-Arteta, E, Anton-Martinez, A, de la Puente-ovejero, L, Garcia-Jimenez, I, González-Iglesias, G, Larrañaga-Aiestaran, I, López-Martínez, A, Poyatos-García, J, Ruiz-Del-Yerro, E, Gonzalez, F, Arechavala-Gomeza, V, (2021). Duchenne muscular dystrophy cell culture models created by CRISPR/Cas9 gene editing and their application in drug screening Scientific Reports 11, 18188
Gene editing methods are an attractive therapeutic option for Duchenne muscular dystrophy, and they have an immediate application in the generation of research models. To generate myoblast cultures that could be useful in in vitro drug screening, we have optimised a CRISPR/Cas9 gene edition protocol. We have successfully used it in wild type immortalised myoblasts to delete exon 52 of the dystrophin gene, modelling a common Duchenne muscular dystrophy mutation; and in patient’s immortalised cultures we have deleted an inhibitory microRNA target region of the utrophin UTR, leading to utrophin upregulation. We have characterised these cultures by demonstrating, respectively, inhibition of dystrophin expression and overexpression of utrophin, and evaluating the expression of myogenic factors (Myf5 and MyH3) and components of the dystrophin associated glycoprotein complex (α-sarcoglycan and β-dystroglycan). To demonstrate their use in the assessment of DMD treatments, we have performed exon skipping on the DMDΔ52-Model and have used the unedited DMD cultures/ DMD-UTRN-Model combo to assess utrophin overexpression after drug treatment. While the practical use of DMDΔ52-Model is limited to the validation to our gene editing protocol, DMD-UTRN-Model presents a possible therapeutic gene edition target as well as a useful positive control in the screening of utrophin overexpression drugs.
JTD Keywords: expression, in-vitro, mouse model, muscle, mutations, phenotype, quantification, sarcolemma, therapy, 3' untranslated regions, Cells, cultured, Crispr-cas systems, Cytoskeletal proteins, Drug discovery, Dystroglycans, Dystrophin, Gene editing, Hek293 cells, Humans, Muscular dystrophy, duchenne, Myoblasts, Myogenic regulatory factor 5, Primary cell culture, Sarcoglycans, Utrophin, Utrophin up-regulation
Rial-Hermida, MI, Rey-Rico, A, Blanco-Fernandez, B, Carballo-Pedrares, N, Byrne, EM, Mano, JF, (2021). Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules Acs Biomaterials Science & Engineering 7, 4102-4127
A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields. © 2021 American Chemical Society.
JTD Keywords: biodegradable dextran hydrogels, biotherapeutics, bone morphogenetic protein-2, carrageenan-based hydrogels, chitosan-based hydrogels, controlled delivery, controlled-release, cross-linked hydrogels, growth-factor delivery, hydrogels, in-vitro characterization, polysaccharides, self-healing hydrogel, stimuli-responsiveness, tissue engineering, Antibodies, Bioactivity, Biodegradability, Biomedical fields, Biomolecules, Biotherapeutics, Chemical modification, Circular economy, Controlled delivery, Controlled drug delivery, Delivery systems, Drug delivery system, Functional polymers, Hyaluronic-acid hydrogels, Hydrogels, Industrial processs, Polysaccharides, Recent progress, Renewable sources, Stimuli-responsiveness, Targeted drug delivery, Tissue engineering, Waste management
Konka, J, Espanol, M, Bosch, BM, de Oliveira, E, Ginebra, MP, (2021). Maturation of biomimetic hydroxyapatite in physiological fluids: a physicochemical and proteomic study Materials Today Bio 12, 100137
Biomimetic calcium-deficient hydroxyapatite (CDHA) as a bioactive material exhibits exceptional intrinsic osteoinductive and osteogenic properties because of its nanostructure and composition, which promote a favorable microenvironment. Its high reactivity has been hypothesized to play a relevant role in the in vivo performance, mediated by the interaction with the biological fluids, which is amplified by its high specific surface area. Paradoxically, this high reactivity is also behind the in vitro cytotoxicity of this material, especially pro-nounced in static conditions. The present work explores the structural and physicochemical changes that CDHA undergoes in contact with physiological fluids and to investigate its interaction with proteins. Calcium-deficient hydroxyapatite discs with different micro/nanostructures, coarse (C) and fine (F), were exposed to cell-free complete culture medium over extended periods of time: 1, 7, 14, 21, 28, and 50 days. Precipitate formation was not observed in any of the materials in contact with the physiological fluid, which would indicate that the ionic exchanges were linked to incorporation into the crystal structure of CDHA or in the hydrated layer. In fact, CDHA experienced a maturation process, with a progressive increase in crystallinity and the Ca/P ratio, accompanied by an uptake of Mg and a B-type carbonation process, with a gradual propagation into the core of the samples. However, the reactivity of biomimetic hydroxyapatite was highly dependent on the specific surface area and was amplified in nanosized needle-like crystal structures (F), whereas in coarse specimens the ionic exchanges were restricted to the surface, with low penetration in the material bulk. In addition to showing a higher protein adsorption on F substrates, the proteomics study revealed the existence of protein selectivity to-ward F or C microstructures, as well as the capability of CDHA, and more remarkably of F-CDHA, to concentrate specific proteins from the culture medium. Finally, a substantial improvement in the material's ability to support cell proliferation was observed after the CDHA maturation process.
JTD Keywords: calcium phosphates, ion exchange, nanostructure, protein adsorption, Biological-systems, Biomaterials, Biomimetic hydroxyapatites, Biomimetics, Bone-formation, Calcium deficient hydroxyapatite, Calcium phosphate, Calcium phosphates, Cell proliferation, Crystal structure, Crystallinity, Crystals structures, Culture medium, Growth, High reactivity, Hydroxyapatite, In-vitro, Ion exchange, Ionic exchange, Molecular biology, Nanocrystalline apatites, Nanostructure, Nanostructures, Octacalcium phosphate, Physicochemical studies, Physiological fluids, Physiology, Protein adsorption, Proteins, Proteomic studies, Raman spectroscopy, Serum-albumin, Specific surface area
Barbero-Castillo, A, Riefolo, F, Matera, C, Caldas-Martínez, S, Mateos-Aparicio, P, Weinert, JF, Garrido-Charles, A, Claro, E, Sanchez-Vives, MV, Gorostiza, P, (2021). Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist Advanced Science 8, 2005027
The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.
JTD Keywords: brain states, light-mediated control, muscarinic acetylcholine receptors, neuromodulation, Activation, Alternating/direct currents, Basal forebrain, Brain, Brain states, Clinical research, Clinical translation, Controlled drug delivery, Cortex, Forebrain cholinergic system, Genetic manipulations, Higher frequencies, Hz oscillation, Light‐, Light-mediated control, Mediated control, Muscarinic acetylcholine receptors, Muscarinic agonists, Muscarinic receptor, Neurology, Neuromodulation, Neurons, Noradrenergic modulation, Parvalbumin-positive interneurons, Photopharmacology, Receptor-binding, Slow, Spatiotemporal control, Spatiotemporal patterns
Abramov, A, Maiti, B, Keridou, I, Puiggalí, J, Reiser, O, Díaz, DD, (2021). A pH-Triggered Polymer Degradation or Drug Delivery System by Light-Mediated Cis/Trans Isomerization of o-Hydroxy Cinnamates Macromolecular Rapid Communications 42, 2100213
A new methodology for the pH-triggered degradation of polymers or for the release of drugs under visible light irradiation based on the cyclization of ortho-hydroxy-cinnamates (oHC) to coumarins is described. The key oHC structural motif can be readily incorporated into the rational design of novel photocleavable polymers via click chemistry. This main-chain moiety undergoes a fast photocleavage when irradiated with 455 nm light provided that a suitable base is added. A series of polyethylene glycol-alt-ortho-hydroxy cinnamate (polyethylene glycol (PEG)(n)-alt-oHC)-based polymers are synthesized and the time-dependent visible-light initiated cleavage of the photoactive monomer and polymer is investigated in solution by a variety of spectroscopic and chromatographic techniques. The photo-degradation behavior of the water-soluble poly(PEG(2000)-alt-oHC) is investigated within a broad pH range (pH = 2.1-11.8), demonstrating fast degradation at pH 11.8, while the stability of the polymer is greatly enhanced at pH 2.1. Moreover, the neat polymer shows long-term stability under daylight conditions, thus allowing its storage without special precautions. In addition, two water-soluble PEG-based drug-carrier molecules (mPEG(2000)-oHC-benzhydrol/phenol) are synthesized and used for drug delivery studies, monitoring the process by UV-vis spectroscopy in an ON/OFF intermittent manner.
JTD Keywords: coumarins, drug delivery, e/z-double bond isomerization, o-hydroxy cinnamates, polymer degradation, Aliphatic compounds, Antioxidant activity, Antitumor, Chromatographic techniques, Chromatography, Cis/trans isomerization, Controlled drug delivery, Coumarin derivatives, Coumarins, Drug delivery, Drug delivery system, E/z-double bond isomerization, Films, Hydrogels, Image enhancement, Light, Long term stability, O-hydroxy cinnamates, Particles, Photoactive monomers, Photodegradation, Polyethylene glycols, Polyethylenes, Polymer degradation, Responsive polymers, Salts, Structural motifs, Synthesis (chemical), Targeted drug delivery, Visible light photocatalysis, Visible-light irradiation
Santos-Pata, D, Amil, AF, Raikov, IG, Rennó-Costa, C, Mura, A, Soltesz, I, Verschure, PFMJ, (2021). Epistemic Autonomy: Self-supervised Learning in the Mammalian Hippocampus Trends In Cognitive Sciences 25, 582-595
Biological cognition is based on the ability to autonomously acquire knowledge, or epistemic autonomy. Such self-supervision is largely absent in artificial neural networks (ANN) because they depend on externally set learning criteria. Yet training ANN using error backpropagation has created the current revolution in artificial intelligence, raising the question of whether the epistemic autonomy displayed in biological cognition can be achieved with error backpropagation-based learning. We present evidence suggesting that the entorhinal–hippocampal complex combines epistemic autonomy with error backpropagation. Specifically, we propose that the hippocampus minimizes the error between its input and output signals through a modulatory counter-current inhibitory network. We further discuss the computational emulation of this principle and analyze it in the context of autonomous cognitive systems. © 2021 Elsevier Ltd
JTD Keywords: computational model, dentate gyrus, error backpropagation, granule cells, grid cells, hippocampus, inhibition, input, neural-networks, neurons, transformation, Artificial intelligence, Artificial neural network, Back propagation, Backpropagation, Brain, Cognitive systems, Counter current, Error back-propagation, Error backpropagation, Errors, Expressing interneurons, Hippocampal complex, Hippocampus, Human experiment, Input and outputs, Learning, Mammal, Mammalian hippocampus, Mammals, Neural networks, Nonhuman, Review, Self-supervised learning
Lopez-Canosa, Adrian, Perez-Amodio, Soledad, Yanac-Huertas, Eduardo, Ordono, Jesus, Rodriguez-Trujillo, Romen, Samitier, Josep, Castano, Oscar, Engel, Elisabeth, (2021). A microphysiological system combining electrospun fibers and electrical stimulation for the maturation of highly anisotropic cardiac tissue Biofabrication 13, 35047
The creation of cardiac tissue models for preclinical testing is still a non-solved problem in drug discovery, due to the limitations related to thein vitroreplication of cardiac tissue complexity. Among these limitations, the difficulty of mimicking the functional properties of the myocardium due to the immaturity of the used cells hampers the obtention of reliable results that could be translated into human patients.In vivomodels are the current gold standard to test new treatments, although it is widely acknowledged that the used animals are unable to fully recapitulate human physiology, which often leads to failures during clinical trials. In the present work, we present a microfluidic platform that aims to provide a range of signaling cues to immature cardiac cells to drive them towards an adult phenotype. The device combines topographical electrospun nanofibers with electrical stimulation in a microfabricated system. We validated our platform using a co-culture of neonatal mouse cardiomyocytes and cardiac fibroblasts, showing that it allows us to control the degree of anisotropy of the cardiac tissue inside the microdevice in a cost-effective way. Moreover, a 3D computational model of the electrical field was created and validated to demonstrate that our platform is able to closely match the distribution obtained with the gold standard (planar electrode technology) using inexpensive rod-shaped biocompatible stainless-steel electrodes. The functionality of the electrical stimulation was shown to induce a higher expression of the tight junction protein Cx-43, as well as the upregulation of several key genes involved in conductive and structural cardiac properties. These results validate our platform as a powerful tool for the tissue engineering community due to its low cost, high imaging compatibility, versatility, and high-throughput configuration capabilities.
JTD Keywords: bioreactor, cardiac tissue engineering, cardiomyocytes, electrospinning, fabrication, fibroblasts, heart-on-a-chip, heart-tissue, in vitro models, myocardium, orientation, platform, scaffolds, Cardiac tissue engineering, Electrospinning, Field stimulation, Heart-on-a-chip, In vitro models, Microphysiological system
Mares, AG, Pacassoni, G, Marti, JS, Pujals, S, Albertazzi, L, (2021). Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology Plos One 16, e0251821
Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.
JTD Keywords: controlled-release, doxorubicin, encapsulation, functional nanoparticles, nanoprecipitation, pharmacokinetics, polymeric nanoparticles, shape, surface-chemistry, Breast neoplasms, Drug carriers, Drug delivery systems, Female, Humans, In-vitro, Mcf-7 cells, Microfluidics, Nanoparticles, Polyesters, Polyethylene glycol-poly(lactide-co-glycolide), Polyethylene glycols, Polymers
Mallafré-Muro, C, Llambrich, M, Cumeras, R, Pardo, A, Brezmes, J, Marco, S, Gumà, J, (2021). Comprehensive volatilome and metabolome signatures of colorectal cancer in urine: A systematic review and meta‐analysis Cancers 13, 2534
To increase compliance with colorectal cancer screening programs and to reduce the recommended screening age, cheaper and easy non‐invasiveness alternatives to the fecal immunochemical test should be provided. Following the PRISMA procedure of studies that evaluated the metabolome and volatilome signatures of colorectal cancer in human urine samples, an exhaustive search in PubMed, Web of Science, and Scopus found 28 studies that met the required criteria. There were no restrictions on the query for the type of study, leading to not only colorectal cancer samples versus control comparison but also polyps versus control and prospective studies of surgical effects, CRC staging and comparisons of CRC with other cancers. With this systematic review, we identified up to 244 compounds in urine samples (3 shared compounds between the volatilome and metabolome), and 10 of them were relevant in more than three articles. In the meta-analysis, nine studies met the criteria for inclusion, and the results combining the case‐control and the pre‐/post‐surgery groups, eleven compounds were found to be relevant. Four upregulated metabolites were identified, 3‐hydroxybutyric acid, L‐dopa, L‐histidinol, and N1, N12‐ diacetylspermine and seven downregulated compounds were identified, pyruvic acid, hydroquinone, tartaric acid, and hippuric acid as metabolites and butyraldehyde, ether, and 1,1,6‐ trimethyl‐1,2‐dihydronaphthalene as volatiles.
JTD Keywords: biomarkers, breast, chromatography, colorectal cancer, diagnosis, markers, meta-analysis, metabolomics, metabonomics, n-1,n-12-diacetylspermine, nucleosides, systematic review, urine, validation, volatilomics, Colorectal cancer, Early-stage, Metabolomics, Meta‐analysis, Systematic review, Urine, Volatilomics
González-Piñero, M, Páez-Avilés, C, Juanola-Feliu, E, Samitier, J, (2021). Cross-fertilization of knowledge and technologies in collaborative research projects Journal Of Knowledge Management 25, 34-59
Purpose: This paper aims to explore how the cross-fertilization of knowledge and technologies in EU-funded research projects, including serious games and gamification, is influenced by the following variables: multidisciplinarity, knowledge base and organizations (number and diversity). The interrelation of actors and projects form a network of innovation. The largest contribution to cross-fertilization comes from the multidisciplinary nature of projects and the previous knowledge and technology of actors. The analysis draws on the understanding of how consortia perform as an innovation network, what their outcomes are and what capabilities are needed to reap value. Design/methodology/approach: All the research projects including serious games and/or gamification, funded by the EU-Horizon 2020 work programme, have been analyzed to test the hypotheses in this paper. The study sample covers the period between 2014 and 2016 (June), selecting the 87 research projects that comprised 519 organizations as coordinators and participants, and 597 observations – because more organizations participate in more than one project. The data were complemented by documentary and external database analysis. Findings: To create cross-fertilization of knowledge and technologies, the following emphasis should be placed on projects: partners concern various disciplines; partners have an extensive knowledge base for generating novel combinations and added-value technologies; there is a diverse typology of partners with unique knowledge and skills; and there is a limited number of organizations not too closely connected to provide cross-fertilization. Research limitations/implications: First, the database sample covers a period of 30 months. The authors’ attention was focused on this period because H2020 prioritized for the first time the serious games and gamification with two specific calls (ICT-21–14 and ICT-24–16) and, second, for the explosion of projects including these technologies in the past years (Adkins, 2017). These facts can be understood as a way to push the research to higher technology readiness levels (TRLs) and introducing the end-user in the co-creation and co-development along the value chain. Second, an additional limitation makes reference to the European focus of the projects, missing strong regional initiatives not identified and studied. Originality/value: This paper has attempted to explore and define theoretically and empirically the characteristics found in the cross-fertilization of collaborative research projects, emphasizing which variables, and how, need to be stimulated to benefit more multidisciplinary consortia and accelerate the process of innovation. © 2021, Manel González-Piñero, Cristina Páez-Avilés, Esteve Juanola-Feliu and Josep Samitier.
JTD Keywords: absorptive-capacity, business model, cross-fertilization of knowledge, diversity, front-end, impact, innovation systems, knowledge management, management research, science, social networks, team, technology, Cross-fertilization of knowledge, Innovation, Knowledge management, Management research, Research-and-development, Technology
Santos-Pata, D, Amil, AF, Raikov, IG, Rennó-Costa, C, Mura, A, Soltesz, I, Verschure, PFMJ, (2021). Entorhinal mismatch: A model of self-supervised learning in the hippocampus Iscience 24, 102364
The hippocampal formation displays a wide range of physiological responses to different spatial manipulations of the environment. However, very few attempts have been made to identify core computational principles underlying those hippocampal responses. Here, we capitalize on the observation that the entorhinal-hippocampal complex (EHC) forms a closed loop and projects inhibitory signals “countercurrent” to the trisynaptic pathway to build a self-supervised model that learns to reconstruct its own inputs by error backpropagation. The EHC is then abstracted as an autoencoder, with the hidden layers acting as an information bottleneck. With the inputs mimicking the firing activity of lateral and medial entorhinal cells, our model is shown to generate place cells and to respond to environmental manipulations as observed in rodent experiments. Altogether, we propose that the hippocampus builds conjunctive compressed representations of the environment by learning to reconstruct its own entorhinal inputs via gradient descent.
JTD Keywords: cognitive neuroscience, grid cells, long-term, networks, neural networks, novelty, oscillations, pattern separation, region, representation, working-memory, Cognitive neuroscience, Neural networks, Rat dentate gyrus, Systems neuroscience
Blaya, D, Pose, E, Coll, M, Lozano, JJ, Graupera, I, Schierwagen, R, Jansen, C, Castro, P, Fernandez, S, Sidorova, J, Vasa-Nicotera, M, Sola, E, Caballeria, J, Trebicka, J, Gines, P, Sancho-Bru, P, (2021). Profiling circulating microRNAs in patients with cirrhosis and acute-on-chronic liver failure Jhep Rep 3, 100233
Background & Aims: MicroRNAs (miRNAs) circulate in several body fluids and can be useful biomarkers. The aim of this study was to identify blood-circulating miRNAs associated with cirrhosis progression and acute-on-chronic liver failure (ACLF). Methods: Using high-throughput screening of 754 miRNAs, serum samples from 45 patients with compensated cirrhosis, decompensated cirrhosis, or ACLF were compared with those from healthy individuals (n = 15). miRNA levels were correlated with clinical parameters, organ failure, and disease progression and outcome. Dysregulated miRNAs were evaluated in portal and hepatic vein samples (n = 33), liver tissues (n = 17), and peripheral blood mononuclear cells (PBMCs) (n = 16). Results: miRNA screening analysis revealed that circulating miRNAs are dysregulated in cirrhosis progression, with 51 miRNAs being differentially expressed among all groups of patients. Unsupervised clustering and principal component analysis indicated that the main differences in miRNA expression occurred at decompensation, showing similar levels in patients with decompensated cirrhosis and those with ACLF. Of 43 selected miRNAs examined for differences among groups, 10 were differentially expressed according to disease progression. Moreover, 20 circulating miRNAs were correlated with model for end-stage liver disease and Child-Pugh scores. Notably, 11 dysregulated miRNAs were associated with kidney or liver failure, encephalopathy, bacterial infection, and poor outcomes. The most severely dysregulated miRNAs (i.e. miR-146a5p, miR-26a-5p, and miR-191-5p) were further evaluated in portal and hepatic vein blood and liver tissue, but showed no differences. However, PBMCs from patients with cirrhosis showed significant downregulation of miR-26 and miR-146a, suggesting a extrahepatic origin of some circulating miRNAs. Conclusions: This study is a repository of circulating miRNA data following cirrhosis progression and ACLF. Circulating miRNAs were profoundly dysregulated during the progression of chronic liver disease, were associated with failure of several organs and could have prognostic utility. Lay summary: Circulating miRNAs are small molecules in the blood that can be used to identify or predict a clinical condition. Our study aimed to identify miRNAs for use as biomarkers in patients with cirrhosis or acute-on-chronic liver failure. Several miRNAs were found to be dysregulated during the progression of disease, and some were also related to organ failure and disease-related outcomes. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL).
JTD Keywords: aclf, acute-on-chronic liver failure, alt, alanine aminotransferase, ast, aspartate aminotransferase, biomarkers, chronic liver disease, cxcl10, c-x-c motif chemokine ligand 10, ef clif, european foundation for the study of chronic liver failure, foxo, forkhead box o, inr, international normalised ratio, ldh, lactate dehydrogenase, liver decompensation, mapk, mitogen-activated protein kinase, meld, model for end-stage liver disease, nash, non-alcoholic steatohepatitis, non-coding rnas, pbmcs, peripheral blood mononuclear cells, pca, principal component analysis, tgf, transforming growth factor, tips, transjugular intrahepatic portosystemic shunt, Biomarkers, Chronic liver disease, Expression, Liver decompensation, Markers, Mir-146a, Non-coding rnas, Qpcr, quantitative pcr
Trebicka, J, Bork, P, Krag, A, Arumugam, M, (2021). Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure Nature Reviews Gastroenterology & Hepatology 18, 167-180
© 2020, Springer Nature Limited. The human gut microbiome has emerged as a major player in human health and disease. The liver, as the first organ to encounter microbial products that cross the gut epithelial barrier, is affected by the gut microbiome in many ways. Thus, the gut microbiome might play a major part in the development of liver diseases. The common end stage of liver disease is decompensated cirrhosis and the further development towards acute-on-chronic liver failure (ACLF). These conditions have high short-term mortality. There is evidence that translocation of components of the gut microbiota, facilitated by different pathogenic mechanisms such as increased gut epithelial permeability and portal hypertension, is an important driver of decompensation by induction of systemic inflammation, and thereby also ACLF. Elucidating the role of the gut microbiome in the aetiology of decompensated cirrhosis and ACLF deserves further investigation and improvement; and might be the basis for development of diagnostic and therapeutic strategies. In this Review, we focus on the possible pathogenic, diagnostic and therapeutic role of the gut microbiome in decompensation of cirrhosis and progression to ACLF.
JTD Keywords: albumin, decreases intestinal permeability, hepatic-encephalopathy, portal-vein thrombosis, rifaximin improves, secondary bile-acids, systemic inflammation, translocation, venous-pressure gradient, Spontaneous bacterial peritonitis
Ebrahimi, N, Bi, CH, Cappelleri, DJ, Ciuti, G, Conn, AT, Faivre, D, Habibi, N, Hosovsky, A, Iacovacci, V, Khalil, ISM, Magdanz, V, Misra, S, Pawashe, C, Rashidifar, R, Soto-Rodriguez, PED, Fekete, Z, Jafari, A, (2021). Magnetic Actuation Methods in Bio/Soft Robotics Advanced Functional Materials 31, 2005137
© 2020 Wiley-VCH GmbH In recent years, magnetism has gained an enormous amount of interest among researchers for actuating different sizes and types of bio/soft robots, which can be via an electromagnetic-coil system, or a system of moving permanent magnets. Different actuation strategies are used in robots with magnetic actuation having a number of advantages in possible realization of microscale robots such as bioinspired microrobots, tetherless microrobots, cellular microrobots, or even normal size soft robots such as electromagnetic soft robots and medical robots. This review provides a summary of recent research in magnetically actuated bio/soft robots, discussing fabrication processes and actuation methods together with relevant applications in biomedical area and discusses future prospects of this way of actuation for possible improvements in performance of different types of bio/soft robots.
JTD Keywords: capsule endoscope, controlled propulsion, conventional gastroscopy, digital microfluidics, guided capsule, liquid-metal, magnetic drug delivery, magnetic microrobots, magnetically guided capsule endoscopy, magnetotactic bacteria, nanoscribe ip-dip, navigation system, Gallium-indium egain, Magnetic bioinspired micromanipulation, Magnetic drug delivery, Magnetic microrobots, Magnetically guided capsule endoscopy, Magnetotactic bacteria
López-Ortiz, M, Zamora, RA, Antinori, ME, Gorostiza, P, Remesh, V, van Hulst, NF, Hu, C, Croce, R, (2021). Fast Photo-Chrono-Amperometry of Photosynthetic Complexes for Biosensors and Electron Transport Studies Acs Sensors 6, 581-587
© 2021 American Chemical Society. Photosynthetic reactions in plants, algae, and cyanobacteria are driven by photosystem I and photosystem II complexes, which specifically reduce or oxidize partner redox biomolecules. Photosynthetic complexes can also bind synthetic organic molecules, which inhibit their photoactivity and can be used both to study the electron transport chain and as herbicides and algicides. Thus, their development, characterization, and sensing bears fundamental and applied interest. Substantial efforts have been devoted to developing photosensors based on photosystem II to detect compounds that bind to the plastoquinone sites of this complex. In comparison, photosystem I based sensors have received less attention and could be used to identify novel substances displaying phytotoxic effects, including those obtained from natural product extracts. We have developed a robust procedure to functionalize gold electrodes with photo- and redox-active photosystem I complexes based on transparent gold and a thiolate self-assembled monolayer, and we have obtained reproducible electrochemical photoresponses. Chronoamperometric recordings have allowed us to measure photocurrents in the presence of the viologen derivative paraquat at concentrations below 100 nM under lock-in operation and a sensor dynamic range spanning six orders of magnitude up to 100 mM. We have modeled their time course to identify the main electrochemical processes and limiting steps in the electron transport chain. Our results allow us to isolate the contributions from photosystem I and the redox mediator, and evaluate photocurrent features (spectral and power dependence, fast transient kinetics) that could be used as a sensing signal to detect other inhibitors and modulators of photosystem I activity.
JTD Keywords: biosensor, herbicide, kinetic model, paraquat, photo-chrono-amperometry, photosystem i, self-assembled monolayer, transparent gold microelectrode, Biosensor, Herbicide, Kinetic model, Paraquat, Photo-chrono-amperometry, Photosystem i, Self-assembled monolayer, Transparent gold microelectrode
Seuma, M, Faure, AJ, Badia, M, Lehner, B, Bolognesi, B, (2021). The genetic landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer's disease mutations Elife 10, e63364
Plaques of the amyloid beta (A beta) peptide are a pathological hallmark of Alzheimer's disease (AD), the most common form of dementia. Mutations in A beta also cause familial forms of AD (fAD). Here, we use deep mutational scanning to quantify the effects of >14,000 mutations on the aggregation of A beta. The resulting genetic landscape reveals mechanistic insights into fibril nucleation, including the importance of charge and gatekeeper residues in the disordered region outside of the amyloid core in preventing nucleation. Strikingly, unlike computational predictors and previous measurements, the empirical nucleation scores accurately identify all known dominant fAD mutations in A beta, genetically validating that the mechanism of nucleation in a cell-based assay is likely to be very similar to the mechanism that causes the human disease. These results provide the first comprehensive atlas of how mutations alter the formation of any amyloid fibril and a resource for the interpretation of genetic variation in A beta.
JTD Keywords: aggregation, kinetics, oligomers, onset, rates, state, Aggregation, Alzheimer disease, Alzheimer's, Amyloid, Amyloid beta-peptides, Computational biology, Deep mutagenesis, Dna mutational analysis, Genetics, Genomics, High-throughput nucleotide sequencing, Kinetics, Mutation, Nucleation, Oligomers, Onset, Plasmids, Precursor protein, Rates, S. cerevisiae, Saccharomyces cerevisiae, State, Systems biology
Wiers, RW, Verschure, P, (2021). Curing the broken brain model of addiction: Neurorehabilitation from a systems perspective Addictive Behaviors 112, 106602
© 2020 The Author(s) The dominant biomedical perspective on addictions has been that they are chronic brain diseases. While we acknowledge that the brains of people with addictions differ from those without, we argue that the “broken brain” model of addiction has important limitations. We propose that a systems-level perspective more effectively captures the integrated architecture of the embodied and situated human mind and brain in relation to the development of addictions. This more dynamic conceptualization places addiction in the broader context of the addicted brain that drives behavior, where the addicted brain is the substrate of the addicted mind, that in turn is situated in a physical and socio-cultural environment. From this perspective, neurorehabilitation should shift from a “broken-brain” to a systems theoretical framework, which includes high-level concepts related to the physical and social environment, motivation, self-image, and the meaning of alternative activities, which in turn will dynamically influence subsequent brain adaptations. We call this integrated approach system-oriented neurorehabilitation. We illustrate our proposal by showing the link between addiction and the architecture of the embodied brain, including a systems-level perspective on classical conditioning, which has been successfully translated into neurorehabilitation. Central to this example is the notion that the human brain makes predictions on future states as well as expected (or counterfactual) errors, in the context of its goals. We advocate system-oriented neurorehabilitation of addiction where the patients' goals are central in targeted, personalized assessment and intervention.
JTD Keywords: addiction, brain disease model, neurorehabilitation, Addiction, Brain disease model, Neurorehabilitation, Systems approach
Ben Hamouda, S, Vargas, A, Boivin, R, Miglino, MA, da Palma, RK, Lavoie, JP, (2021). Recellularization of Bronchial Extracellular Matrix With Primary Bronchial Smooth Muscle Cells Journal Of Equine Veterinary Science 96, 103313
© 2020 Elsevier Inc. Severe asthma is associated with an increased airway smooth muscle (ASM) mass and altered composition of the extracellular matrix (ECM). Studies have indicated that ECM-ASM cell interactions contribute to this remodeling and its limited reversibility with current therapy. Three-dimensional matrices allow the study of complex cellular responses to different stimuli in an almost natural environment. Our goal was to obtain acellular bronchial matrices and then develop a recellularization protocol with ASM cells. We studied equine bronchi as horses spontaneously develop a human asthma-like disease. The bronchi were decellularized using Triton/Sodium Deoxycholate. The obtained scaffolds retained their anatomical and histological properties. Using immunohistochemistry and a semi-quantitative score to compare native bronchi to scaffolds revealed no significant variation for matrixial proteins. DNA quantification and electrophoresis revealed that most DNA was 29.6 ng/mg of tissue ± 5.6, with remaining fragments of less than 100 bp. Primary ASM cells were seeded on the scaffolds. Histological analysis of the recellularizations showed that ASM cells migrated and proliferated primarily in the decellularized smooth muscle matrix, suggesting a chemotactic effect of the scaffolds. This is the first report of primary ASM cells preferentially repopulating the smooth muscle matrix layer in bronchial matrices. This protocol is now being used to study the molecular interactions occurring between the asthmatic ECMs and ASM to identify effectors of asthmatic bronchial remodeling.
JTD Keywords: 2d, airway smooth muscle cells, asthma, decellularization, disease, elastin, extracellular matrix, lung scaffolds, migration, peptide, recellularization, tissues, Airway smooth muscle cells, Asthma, Culture-systems, Decellularization, Extracellular matrix, Recellularization
Burgués, Javier, Marco, Santiago, (2020). Environmental chemical sensing using small drones: A review Science of The Total Environment 748, 141172
Recent advances in miniaturization of chemical instrumentation and in low-cost small drones are catalyzing exponential growth in the use of such platforms for environmental chemical sensing applications. The versatility of chemically sensitive drones is reflected by their rapid adoption in scientific, industrial, and regulatory domains, such as in atmospheric research studies, industrial emission monitoring, and in enforcement of environmental regulations. As a result of this interdisciplinarity, progress to date has been reported across a broad spread of scientific and non-scientific databases, including scientific journals, press releases, company websites, and field reports. The aim of this paper is to assemble all of these pieces of information into a comprehensive, structured and updated review of the field of chemical sensing using small drones. We exhaustively review current and emerging applications of this technology, as well as sensing platforms and algorithms developed by research groups and companies for tasks such as gas concentration mapping, source localization, and flux estimation. We conclude with a discussion of the most pressing technological and regulatory limitations in current practice, and how these could be addressed by future research.
JTD Keywords: Unmanned aircraft systems, Remotely piloted aircraft systems, Chemical sensors, Gas sensors, Environmental monitoring, Industrial emission monitoring
Brugada-Vilà , P., Cascante, A., Lázaro, M. Á., Castells-Sala, C., Fornaguera, C., Rovira-Rigau, M., Albertazzi, L., Borros, S., Fillat, C., (2020). Oligopeptide-modified poly(beta-amino ester)s-coated AdNuPARmE1A: Boosting the efficacy of intravenously administered therapeutic adenoviruses Theranostics 10, (6), 2744-2758
Oncolytic adenoviruses are used as agents for the treatment of cancer. However, their potential is limited due to the high seroprevalence of anti-adenovirus neutralizing antibodies (nAbs) within the population and the rapid liver sequestration when systemically administered. To overcome these challenges, we explored using nanoparticle formulation to boost the efficacy of systemic oncolytic adenovirus administration. Methods: Adenovirus were conjugated with PEGylated oligopeptide-modified poly(β-amino ester)s (OM-pBAEs). The resulting coated viral formulation was characterized in terms of surface charge, size, aggregation state and morphology and tested for anti-adenovirus nAbs evasion and activity in cancer cells. In vivo pharmacokinetics, biodistribution, tumor targeting, and immunogenicity studies were performed. The antitumor efficacy of the oncolytic adenovirus AdNuPARmE1A coated with OM-pBAEs (SAG101) in the presence of nAbs was evaluated in pancreatic ductal adenocarcinoma (PDAC) mouse models. Toxicity of the coated formulation was analyzed in vivo in immunocompetent mice. Results: OM-pBAEs conjugated to adenovirus and generated discrete nanoparticles with a neutral charge and an optimal size. The polymeric coating with the reporter AdGFPLuc (CPEG) showed enhanced transduction and evasion of antibody neutralization in vitro. Moreover, systemic intravenous administration of the formulation showed improved blood circulation and reduced liver sequestration, substantially avoiding activation of nAb production. OM-pBAEs coating of the oncolytic adenovirus AdNuPARmE1A (SAG101) improved its oncolytic activity in vitro and enhanced antitumor efficacy in PDAC mouse models. The coated formulation protected virions from neutralization by nAbs, as antitumor efficacy was preserved in their presence but was completely lost in mice that received the non-formulated AdNuPARmE1A. Finally, coated-AdNuPARmE1A showed reduced toxicity when high doses of the formulation were administered. Conclusions: The developed technology represents a promising improvement for future clinical cancer therapy using oncolytic adenoviruses.
JTD Keywords: Oncolytic adenovirus, Pancreatic cancer, Poly(β-amino ester)s, Polymer-coated viral vectors, Systemic delivery
Palacio, F., Fonollosa, J., Burgués, J., Gomez, J. M., Marco, S., (2020). Pulsed-temperature metal oxide gas sensors for microwatt power consumption IEEE Access 8, 70938-70946
Metal Oxide (MOX) gas sensors rely on chemical reactions that occur efficiently at high temperatures, resulting in too-demanding power requirements for certain applications. Operating the sensor under a Pulsed-Temperature Operation (PTO), by which the sensor heater is switched ON and OFF periodically, is a common practice to reduce the power consumption. However, the sensor performance is degraded as the OFF periods become larger. Other research works studied, generally, PTO schemes applying waveforms to the heater with time periods of seconds and duty cycles above 20%. Here, instead, we explore the behaviour of PTO sensors working under aggressive schemes, reaching power savings of 99% and beyond with respect to continuous heater stimulation. Using sensor sensitivity and the limit of detection, we evaluated four Ultra Low Power (ULP) sensors under different PTO schemes exposed to ammonia, ethylene, and acetaldehyde. Results show that it is possible to operate the sensors with total power consumption in the range of microwatts. Despite the aggressive power reduction, sensor sensitivity suffers only a moderate decline and the limit of detection may degrade up to a factor five. This is, however, gas-dependent and should be explored on a case-by-case basis since, for example, the same degradation has not been observed for ammonia. Finally, the run-in time, i.e., the time required to get a stable response immediately after switching on the sensor, increases when reducing the power consumption, from 10 minutes to values in the range of 10–20 hours for power consumptions smaller than 200 microwatts.
JTD Keywords: Robot sensing systems, Temperature sensors, Heating systems, Gas detectors, Power demand, Sensitivity, Electronic nose, gas sensors, low-power operation, machine olfaction, pulsed-temperature operation, temperature modulation
Praktiknjo, M., Simón-Talero, M., Römer, J., Roccarina, D., Martínez, J., Lampichler, K., Baiges, A., Low, G., Llop, E., Maurer, M. H., Zipprich, A., Triolo, M., Maleux, G., Fialla, A. D., Dam, C., Vidal-González, J., Majumdar, A., Picón, C., Toth, D., Darnell, A., Abraldes, J. G., López, M., Jansen, C., Chang, J., Schierwagen, R., Uschner, F., Kukuk, G., Meyer, C., Thomas, D., Wolter, K., Strassburg, C. P., Laleman, W., La Mura, V., Ripoll, C., Berzigotti, A., Calleja, J. L., Tandon, P., Hernandez-Gea, V., Reiberger, T., Albillos, A., Tsochatzis, E. A., Krag, A., Genescà , J., Trebicka, J., (2020). Total area of spontaneous portosystemic shunts independently predicts hepatic encephalopathy and mortality in liver cirrhosis Journal of Hepatology 72, (6), 1140-1150
Background & Aims: Spontaneous portosystemic shunts (SPSS) frequently develop in liver cirrhosis. Recent data suggested that the presence of a single large SPSS is associated with complications, especially overt hepatic encephalopathy (oHE). However, the presence of >1 SPSS is common. This study evaluates the impact of total cross-sectional SPSS area (TSA) on outcomes in patients with liver cirrhosis.
Methods: In this retrospective international multicentric study, CT scans of 908 cirrhotic patients with SPSS were evaluated for TSA. Clinical and laboratory data were recorded. Each detected SPSS radius was measured and TSA calculated. One-year survival was the primary endpoint and acute decompensation (oHE, variceal bleeding, ascites) was the secondary endpoint.
Results: A total of 301 patients (169 male) were included in the training cohort. Thirty percent of all patients presented with >1 SPSS. A TSA cut-off of 83 mm2 was used to classify patients with small or large TSA (S-/L-TSA). Patients with L-TSA presented with higher model for end-stage liver disease score (11 vs. 14) and more commonly had a history of oHE (12% vs. 21%, p <0.05). During follow-up, patients with L-TSA experienced more oHE episodes (33% vs. 47%, p <0.05) and had lower 1-year survival than those with S-TSA (84% vs. 69%, p <0.001). Multivariate analysis identified L-TSA (hazard ratio 1.66; 95% CI 1.02–2.70, p <0.05) as an independent predictor of mortality. An independent multicentric validation cohort of 607 patients confirmed that patients with L-TSA had lower 1-year survival (77% vs. 64%, p <0.001) and more oHE development (35% vs. 49%, p <0.001) than those with S-TSA.
Conclusion: This study suggests that TSA >83 mm2 increases the risk for oHE and mortality in patients with cirrhosis. Our results support the clinical use of TSA/SPSS for risk stratification and decision-making in the management of patients with cirrhosis.
Lay summary: The prevalence of spontaneous portosystemic shunts (SPSS) is higher in patients with more advanced chronic liver disease. The presence of more than 1 SPSS is common in advanced chronic liver disease and is associated with the development of hepatic encephalopathy. This study shows that total cross-sectional SPSS area (rather than diameter of the single largest SPSS) predicts survival in patients with advanced chronic liver disease. Our results support the clinical use of total cross-sectional SPSS area for risk stratification and decision-making in the management of SPSS.
JTD Keywords: ACLF, Acute decompensation, Acute-on-chronic liver failure, Ascites, Cirrhosis, Computed tomography, Hepatic encephalopathy, Liver, Portal hypertension, Spontaneous portosystemic shunt, SPSS, TIPS
Wang, S., Hu, Y., Burgués, J., Marco, S., Liu, S.-L., (2020). Prediction of gas concentration using gated recurrent neural networks 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) , IEEE (Genova, Italy) , 178-182
Low-cost gas sensors allow for large-scale spatial monitoring of air quality in the environment. However they require calibration before deployment. Methods such as multivariate regression techniques have been applied towards sensor calibration. In this work, we propose instead, the use of deep learning methods, particularly, recurrent neural networks for predicting the gas concentrations based on the outputs of these sensors. This paper presents a first study of using Gated Recurrent Unit (GRU) neural network models for gas concentration prediction. The GRU networks achieve on average, a 44.69% and a 25.17% RMSE improvement in concentration prediction on a gas dataset when compared with Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models respectively. With the current advances in deep network hardware accelerators, these networks can be combined with the sensors for a compact embedded system suitable for edge applications.
JTD Keywords: Robot sensing systems, Predictive models, Logic gates, Gas detectors, Training, Temperature measurement, Support vector machines
Vouloutsi, Vasiliki, Mura, Anna, Tauber, F., Speck, T., Prescott, T. J., Verschure, P., (2020). Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings , Springer, Cham (Lausanne, Switzerland) 12413, 1-428
This book constitutes the proceedings of the )th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2020, held in Freiburg, Germany, in July 2020. Due to COVID-19 pandemic the conference was held virtually. The 32 full and 7 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.
JTD Keywords: Artificial intelligence, Soft robotics, Biomimetics, Insect navigation, Synthetic nervous system, Computer vision, Bio-inspired materials, Visual homing, Locomotion+, Image processing, Intelligent robots, Human-robot interaction, Machine learning, Snake robot, Mobile robots, Robotic systems, Drosophila, Robots, Sensors, Signal processing
Bolognesi, Benedetta, Faure, Andre J., Seuma, Mireia, Schmiedel, Jörrn M., Tartaglia, Gian Gaetano, Lehner, Ben, (2019). The mutational landscape of a prion-like domain Nature Communications 10, (1), 4162
Insoluble protein aggregates are the hallmarks of many neurodegenerative diseases. For example, aggregates of TDP-43 occur in nearly all cases of amyotrophic lateral sclerosis (ALS). However, whether aggregates cause cellular toxicity is still not clear, even in simpler cellular systems. We reasoned that deep mutagenesis might be a powerful approach to disentangle the relationship between aggregation and toxicity. We generated >50,000 mutations in the prion-like domain (PRD) of TDP-43 and quantified their toxicity in yeast cells. Surprisingly, mutations that increase hydrophobicity and aggregation strongly decrease toxicity. In contrast, toxic variants promote the formation of dynamic liquid-like condensates. Mutations have their strongest effects in a hotspot that genetic interactions reveal to be structured in vivo, illustrating how mutagenesis can probe the in vivo structures of unstructured proteins. Our results show that aggregation of TDP-43 is not harmful but protects cells, most likely by titrating the protein away from a toxic liquid-like phase.
JTD Keywords: Computational biology and bioinformatics, Genomics, Mechanisms of disease, Neurodegeneration, Systems biology
Lehmann, J., Praktiknjo, M., Nielsen, M. J., Schierwagen, R., Meyer, C., Thomas, D., Violi, F., Strassburg, C. P., Bendtsen, F., Moller, S., Krag, A., Karsdal, M. A., Leeming, D. J., Trebicka, J., (2019). Collagen type IV remodelling gender-specifically predicts mortality in decompensated cirrhosis Liver International 39, (5), 885-893
Background & Aims: Remodelling of extracellular matrix is crucial in progressive liver fibrosis. Collagen type III desposition has been shown in acute decompensation. Extratracellular matrix is compiled of deposition of various components. The role of basement membrane collagen type IV in advanced cirrhosis and acute decompensation is unclear and investigated in this study. Methods: Patients with decompensated cirrhosis from the prospective NEPTUN cohort (ClinicalTrials.gov Identifier: NCT03628807), who underwent transjugular intrahepatic portosystemic shunt procedure were included. Clinical and laboratory parameters, PRO-C4 and C4M levels were measured in blood samples from portal and hepatic veins just before transjugular intrahepatic portosystemic shunt placement. Results: Levels of C4M and PRO-C4 are significantly lower in patients with massive ascites and impaired renal sodium excretion. C4M and PRO-C4 show gender-specific profiles with significantly lower levels in females compared to males. Females with higher C4M levels show higher mortality. By contrast, males with higher C4M levels show lower mortality. In multivariate Cox regression analysis, C4M is an independent predictor of survival in female patients. Conclusion: This study shows that markers of collagen type IV remodelling do not accumulate in severe renal dysfunction. Although collagen type IV degradation markers derive from the liver, portal venous C4M levels are relevant for survival. Moreover, it demonstrates that circulating C4M shows gender-specific profiles, which can independently predict survival in female patients with decompensated cirrhosis.
JTD Keywords: ACLF, Acute decompensation, Acute-on-chronic liver failure, Cirrhosis, Collagen type IV, Extracellular matrix remodelling, Gender, Liver, Portal hypertension, Transjugular intrahepatic portosystemic shunt
Alvarez-Silva, C., Schierwagen, R., Pohlmann, A., Magdaleno, F., Uschner, F. E., Ryan, P., Vehreschild, M. J. G. T., Claria, J., Latz, E., Lelouvier, B., Arumugam, M., Trebicka, J., (2019). Compartmentalization of immune response and microbial translocation in decompensated cirrhosis Frontiers in Immunology 10, 69
Background: Acquired dysfunctional immunity in cirrhosis predisposes patients to frequent bacterial infections, especially spontaneous bacterial peritonitis (SBP), leading to systemic inflammation that is associated with poor outcome. But systemic inflammation can also be found in the absence of a confirmed infection. Detection of bacterial DNA has been investigated as a marker of SBP and as a predictor of prognosis. Data is, however, contradictory. Here we investigated whether levels of IL-6 and IL-8 putatively produced by myeloid cells in ascites are associated with systemic inflammation and whether inflammation depends on the presence of specific bacterial DNA.
Methods and Materials: We enrolled 33 patients with decompensated liver cirrhosis from whom we collected paired samples of blood and ascites. IL-6 and IL-8 were measured in serum samples of all patients using ELISA. In a subset of 10 representative patients, bacterial DNA was extracted from ascites and whole blood, followed by 16S rRNA gene amplicon sequencing.
Results: There were significantly higher levels of IL-6 in ascites fluid compared to blood samples in all patients. Interestingly, IL-6 levels in blood correlated tightly with disease severity and surrogates of systemic inflammation, while IL-6 levels in ascites did not. Moreover, patients with higher blood CRP levels showed greater SBP prevalence compared to patients with lower levels, despite similar positive culture results. Bacterial richness was also significantly higher in ascites compared to the corresponding patient blood. We identified differences in microbial composition and diversity between ascites and blood, but no tight relationship with surrogates of systemic inflammation could be observed.
Discussion: In decompensated cirrhosis, markers of systemic inflammation and microbiota composition seem to be dysregulated in ascites and blood. While a relationship between systemic inflammation and microbiota composition seems to exist in blood, this is not the case for ascites in our hands. These data may suggest compartmentalization of the immune response and interaction of the latter with the microbiota especially in the blood compartment.
JTD Keywords: Acute-on-chronic liver failure, Ascites, Cirrhosis, Cytokines, Microbiome, Myeloid cells, Systemic inflammation
Calvo, M., Le Rolle, V., Romero, D., Béhar, N., Gomis, P., Mabo, P., Hernández, A. I., (2019). Recursive model identification for the analysis of the autonomic response to exercise testing in Brugada syndrome Artificial Intelligence in Medicine 97, 98-104
This paper proposes the integration and analysis of a closed-loop model of the baroreflex and cardiovascular systems, focused on a time-varying estimation of the autonomic modulation of heart rate in Brugada syndrome (BS), during exercise and subsequent recovery. Patient-specific models of 44 BS patients at different levels of risk (symptomatic and asymptomatic) were identified through a recursive evolutionary algorithm. After parameter identification, a close match between experimental and simulated signals (mean error = 0.81%) was observed. The model-based estimation of vagal and sympathetic contributions were consistent with physiological knowledge, enabling to observe the expected autonomic changes induced by exercise testing. In particular, symptomatic patients presented a significantly higher parasympathetic activity during exercise, and an autonomic imbalance was observed in these patients at peak effort and during post-exercise recovery. A higher vagal modulation during exercise, as well as an increasing parasympathetic activity at peak effort and a decreasing vagal contribution during post-exercise recovery could be related with symptoms and, thus, with a worse prognosis in BS. This work proposes the first evaluation of the sympathetic and parasympathetic responses to exercise testing in patients suffering from BS, through the recursive identification of computational models; highlighting important trends of clinical relevance that provide new insights into the underlying autonomic mechanisms regulating the cardiovascular system in BS. The joint analysis of the extracted autonomic parameters and classic electrophysiological markers could improve BS risk stratification.
JTD Keywords: Autonomic nervous system, Brugada syndrome, Computational model, Recursive identification
Moles, E., Kavallaris, M., Fernàndez-Busquets, X., (2019). Modeling the distribution of diprotic basic drugs in liposomal systems: Perspectives on malaria nanotherapy Frontiers in Pharmacology 10, 1064
Understanding how polyprotic compounds distribute within liposome (LP) suspensions is of major importance to design effective drug delivery strategies. Advances in this research field led to the definition of LP-based active drug encapsulation methods driven by transmembrane pH gradients with evidenced efficacy in the management of cancer and infectious diseases. An accurate modeling of membrane-solution drug partitioning is also fundamental when designing drug delivery systems for poorly endocytic cells, such as red blood cells (RBCs), in which the delivered payloads rely mostly on the passive diffusion of drug molecules across the cell membrane. Several experimental models have been proposed so far to predict the partitioning of polyprotic basic/acid drugs in artificial membranes. Nevertheless, the definition of a model in which the membrane-solution partitioning of each individual drug microspecies is studied relative to each other is still a topic of ongoing research. We present here a novel experimental approach based on mathematical modeling of drug encapsulation efficiency (EE) data in liposomal systems by which microspecies-specific partition coefficients are reported as a function of pH and phospholipid compositions replicating the RBC membrane in a simple and highly translatable manner. This approach has been applied to the study of several diprotic basic antimalarials of major clinical importance (quinine, primaquine, tafenoquine, quinacrine, and chloroquine) describing their respective microspecies distribution in phosphatidylcholine-LP suspensions. Estimated EE data according to the model described here closely fitted experimental values with no significant differences obtained in 75% of all pH/lipid composition-dependent conditions assayed. Additional applications studied include modeling drug EE in LPs in response to transmembrane pH gradients and lipid bilayer asymmetric charge, conditions of potential interest reflected in our previously reported RBC-targeted antimalarial nanotherapeutics.
JTD Keywords: Distribution coefficient, Liposomal systems, Malaria therapy, Nanomedicine, Partition coefficient, PH-controlled drug encapsulation, Polyprotic drug, Targeted drug delivery
Lozano-García, M., Estrada-Petrocelli, L., Moxham, J., Rafferty, G. F., Torres, A., Jolley, C. J., Jané, R. , (2019). Noninvasive assessment of inspiratory muscle neuromechanical coupling during inspiratory threshold loading IEEE Access 7, 183634-183646
Diaphragm neuromechanical coupling (NMC), which reflects the efficiency of conversion of neural activation to transdiaphragmatic pressure (Pdi), is increasingly recognized to be a useful clinical index of diaphragm function and respiratory mechanics in neuromuscular weakness and cardiorespiratory disease. However, the current gold standard assessment of diaphragm NMC requires invasive measurements of Pdi and crural diaphragm electromyography (oesEMGdi), which complicates the measurement of diaphragm NMC in clinical practice. This is the first study to compare invasive measurements of diaphragm NMC (iNMC) using the relationship between Pdi and oesEMGdi, with noninvasive assessment of NMC (nNMC) using surface mechanomyography (sMMGlic) and electromyography (sEMGlic) of lower chest wall inspiratory muscles. Both invasive and noninvasive measurements were recorded in twelve healthy adult subjects during an inspiratory threshold loading protocol. A linear relationship between noninvasive sMMGlic and sEMGlic measurements was found, resulting in little change in nNMC with increasing inspiratory load. By contrast, a curvilinear relationship between invasive Pdi and oesEMGdi measurements was observed, such that there was a progressive increase in iNMC with increasing inspiratory threshold load. Progressive recruitment of lower ribcage muscles, serving to enhance the mechanical advantage of the diaphragm, may explain the more linear relationship between sMMGlic and sEMGlic (both representing lower intercostal plus costal diaphragm activity) than between Pdi and crural oesEMGdi. Noninvasive indices of NMC derived from sEMGlic and sMMGlic may prove to be useful indices of lower chest wall inspiratory muscle NMC, particularly in settings that do not have access to invasive measures of diaphragm function.
JTD Keywords: Cardiovascular system, Diaphragms, Diseases, Electromyography, Medical signal processing, Neurophysiology, Patient monitoring, Pneumodynamics, Inspiratory muscle neuromechanical coupling, Diaphragm neuromechanical coupling, Neural activation, Transdiaphragmatic pressure, Diaphragm function, Respiratory mechanics, Diaphragm NMC, Invasive measurements, Crural diaphragm electromyography, iNMC, Noninvasive assessment, nNMC, Lower chest wall inspiratory muscles, Inspiratory threshold loading protocol, Noninvasive sMMGlic measurements, sEMGlic measurements, oesEMGdi measurements, Inspiratory threshold load, Lower ribcage muscles, Lower intercostal plus costal diaphragm activity, Crural oesEMGdi, Noninvasive indices, sEMGlic sMMGlic, Lower chest wall inspiratory muscle NMC, Surface mechanomyography, Electromyography, Inspiratory threshold loading, Mechanomyography, Neuromechanical coupling, Respiratory muscles
Gil, V., Del Río, J. A., (2019). Generation of 3-d collagen-based hydrogels to analyze axonal growth and behavior during nervous system development Journal of Visualized Experiments , (148), e59481
This protocol uses natural type I collagen to generate three-dimensional (3-D) hydrogel for monitoring and analyzing the axonal growth. The protocol is centered on culturing small pieces of embryonic or early postnatal rodent brains inside a 3-D hydrogel formed by the rat tail tendon-derived type I collagen with specific porosity. Tissue pieces are cultured inside the hydrogel and confronted to specific brain fragments or genetically-modified cell aggregates to produce and secrete molecules suitable for creating a gradient inside the porous matrix. The steps of this protocol are simple and reproducible but include critical steps to be considered carefully during its development. Moreover, the behavior of growing axons can be monitored and analyzed directly using a phase-contrast microscope or mono/multiphoton fluorescence microscope after fixation by immunocytochemical methods.
JTD Keywords: 3-D hydrogel cultures, Axonal growth, Cell transfection, Chemoattraction, Chemorepulsion, Embryonic nervous system, Issue 148, Neuroscience, Tissue explants
Arsiwalla, X. D., Freire, I. T., Vouloutsi, V., Verschure, P., (2019). Latent morality in algorithms and machines Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019 (Lecture Notes in Computer Science) , Springer, Cham (Nara, Japan) 11556, 309-315
Can machines be endowed with morality? We argue that morality in the descriptive or epistemic sense can be extended to artificial systems. Following arguments from evolutionary game-theory, we identify two main ingredients required to operationalize this notion of morality in machines. The first, being a group theory of mind, and the second, being an assignment of valence. We make the case for the plausibility of these operations in machines without reference to any form of intentionality or consciousness. The only systems requirements needed to support the above two operations are autonomous goal-directed action and the ability to interact and learn from the environment. Following this we have outlined a theoretical framework based on conceptual spaces and valence assignments to gauge latent morality in autonomous machines and algorithms.
JTD Keywords: Autonomous systems, Ethics of algorithms, Goal-directed action, Philosophy of morality, Qualia, Theory of mind
Solà-Soler, J., Giraldo, B. F., Jané, R., (2019). Linear mixed effects modelling of oxygen desaturation after sleep apneas and hypopneas: A pilot study Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 5731-5734
Obstructive Sleep Apnea severity is commonly determined after a sleep polysomnographic study by the Apnea-Hypopnea Index (AHI). This index does not contain information about the duration of events, and weights apneas and hypopneas alike. Significant differences in disease severity have been reported in patients with the same AHI. The aim of this work was to study the effect of obstructive event type and duration on the subsequent oxygen desaturation (SaO2) by mixed-effects models. These models allow continuous and categorical independent variables and can model within-subject variability through random effects. The desaturation depth dSaO2, desaturation duration dtSaO2 and desaturation area dSaO2A were analyzed in the 2022 apneas and hypopneas of eight severe patients. A mixed-effects model was defined to account for the influence of event duration (AD), event type, and their interaction on SaO2 parameters. A two-step backward model reduction process was applied for random and fixed effects optimization. The optimum model obtained for dtSaO2 suggests an almost subject-independent proportion increase with AD, which did not significantly change in apneas as compared to hypopneas. The optimum model for dSaO2 reveals a significantly higher increase as a function of AD in apneas than hypopneas. Dependence of on event type and duration was different in every subject, and a subject-specific model could be obtained. The optimum model for SaO2A combines the effects of the other two. In conclusion, the proposed mixed-effects models for SaO2 parameters allow to study the effect of respiratory event duration and type, and to include repeated events within each subject. This simple model can be easily extended to include the contribution of other important factors such as patient severity, sleep stage, sleeping position, or the presence of arousals.
JTD Keywords: Biological system modeling, Sleep apnea, Mathematical model, Indexes, Reduced order systems, Optimization
Samitier, Josep, Correia, A., (2019). Biomimetic Nanotechnology for Biomedical Applications (NanoBio&Med 2018) Biomimetics MDPI
Emerging nanobiotechnologies can offer solutions to the current and future challenges in medicine. By covering topics from regenerative medicine, tissue engineering, drug delivery, bionanofabrication, and molecular biorecognition, this Special Issue aims to provide an update on the trends in nanomedicine and drug delivery using biomimetic approaches, and the development of novel biologically inspired devices for the safe and effective diagnosis, prevention, and treatment of disease.
JTD Keywords: Bioinspired nanotechnologies, Bionanofabrication, Bio-nano measurement and microscopy, Nanomaterials for biological and medical applications, Nanoassemblies, Nanostructured surfaces, Drug delivery, Nanobioelectronics, Integrated systems/nanobiosensors, Nanotoxicology, Graphene-based applications
Muro, Silvia, (2018). Alterations in cellular processes involving vesicular trafficking and implications in drug delivery Biomimetics 3, (3), 19
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.
JTD Keywords: Cellular vesicles, Vesicle fusion, Fission and intracellular trafficking, Drug delivery systems and nanomedicines, Transcytosis and endocytosis of drugs carriers, Disease effects on vesicular trafficking, Drug effects on vesicular trafficking, Role of the biological environment
Badiola-Mateos, M., Hervera, A., del Río, J. A., Samitier, J., (2018). Challenges and future prospects on 3D in-vitro modeling of the neuromuscular circuit Frontiers in Bioengineering and Biotechnology 6, Article 194
Movement of skeletal-muscle fibers is generated by the coordinated action of several cells taking part within the locomotion circuit (motoneurons, sensory-neurons, Schwann cells, astrocytes, microglia, and muscle-cells). Failures in any part of this circuit could impede or hinder coordinated muscle movement and cause a neuromuscular disease (NMD) or determine its severity. Studying fragments of the circuit cannot provide a comprehensive and complete view of the pathological process. We trace the historic developments of studies focused on in-vitro modeling of the spinal-locomotion circuit and how bioengineered innovative technologies show advantages for an accurate mimicking of physiological conditions of spinal-locomotion circuit. New developments on compartmentalized microfluidic culture systems (cμFCS), the use of human induced pluripotent stem cells (hiPSCs) and 3D cell-cultures are analyzed. We finally address limitations of current study models and three main challenges on neuromuscular studies: (i) mimic the whole spinal-locomotion circuit including all cell-types involved and the evaluation of independent and interdependent roles of each one; (ii) mimic the neurodegenerative response of mature neurons in-vitro as it occurs in-vivo; and (iii) develop, tune, implement, and combine cμFCS, hiPSC, and 3D-culture technologies to ultimately create patient-specific complete, translational, and reliable NMD in-vitro model. Overcoming these challenges would significantly facilitate understanding the events taking place in NMDs and accelerate the process of finding new therapies.
JTD Keywords: 3D-culture, Compartmentalized microfluidic culture systems (cμFCS), HiPSC, In-vitro models, Neuromuscular circuit
Silva, N., Riveros, A., Yutronic, N., Lang, E., Chornik, B., Guerrero, S., Samitier, J., Jara, P., Kogan, M. J., (2018). Photothermally controlled methotrexate release system using β-cyclodextrin and gold nanoparticles Nanomaterials 8, (12), 985
The inclusion compound (IC) of cyclodextrin (CD) containing the antitumor drug Methotrexate (MTX) as a guest molecule was obtained to increase the solubility of MTX and decrease its inherent toxic effects in nonspecific cells. The IC was conjugated with gold nanoparticles (AuNPs), obtained by a chemical method, creating a ternary intelligent delivery system for MTX molecules, based on the plasmonic properties of the AuNPs. Irradiation of the ternary system, with a laser wavelength tunable with the corresponding surface plasmon of AuNPs, causes local energy dissipation, producing the controlled release of the guest from CD cavities. Finally, cell viability was evaluated using MTS assays for β-CD/MTX and AuNPs + β-CD/MTX samples, with and without irradiation, against HeLa tumor cells. The irradiated sample of the ternary system AuNPs + β-CD/MTX produced a diminution in cell viability attributed to the photothermal release of MTX.
JTD Keywords: Cyclodextrin, Delivery system, Gold nanoparticles, Inclusion compound, Irradiation, Laser, Methotrexate, Photothermal release
Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J., Pattacini, U., Low, S. C., Camilleri, D., Nguyen, P., Hoffmann, M., Chang, H. J., Zambelli, M., Mealier, A., Damianou, A., Metta, G., Prescott, T. J., Demiris, Y., Dominey, P. F., Verschure, P. F. M. J., (2018). DAC-h3: A proactive robot cognitive architecture to acquire and express knowledge about the world and the self IEEE Transactions on Cognitive and Developmental Systems 10, (4), 1005-1022
This paper introduces a cognitive architecture for a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the initiative can originate from both the human and the robot. The framework, based on a biologically-grounded theory of the brain and mind, integrates a reactive interaction engine, a number of state-of-the art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The architecture as a whole drives the robot behavior to solve the symbol grounding problem, acquire language capabilities, execute goal-oriented behavior, and express a verbal narrative of its own experience in the world. We validate our approach in human-robot interaction experiments with the iCub humanoid robot, showing that the proposed cognitive architecture can be applied in real time within a realistic scenario and that it can be used with naive users.
JTD Keywords: Autobiographical Memory., Biology, Cognition, Cognitive Robotics, Computer architecture, Distributed Adaptive Control, Grounding, Human-Robot Interaction, Humanoid robots, Robot sensing systems, Symbol Grounding
Garreta, E., González, F., Montserrat, N., (2018). Studying kidney disease using tissue and genome engineering in human pluripotent stem cells Nephron 138, 48-59
Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease.
JTD Keywords: Clustered regularly interspaced short palindromic repeats/CRISPR-associated systems 9, Disease modeling, Gene editing, Human pluripotent stem cells, Kidney genetics, Tissue engineering
Verschure, P., (2018). The architecture of mind and brain Living machines: A handbook of research in biomimetics and biohybrid systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 338-345
The components of a Living Machine must be integrated into a functioning whole, which requires a detailed understanding of the architecture of living machines. This chapter starts with a conceptual and historical analysis which from Plato brings us to nineteenth-century neuroscience and early concepts of the layered structure of nervous systems. These concepts were further captured in the cognitive behaviorism of Tolman and came to full fruition in the cognitive revolution of the second half of the twentieth century. Verschure subsequently describes the most relevant proposals of cognitive architectures followed by an overview of the few proposals stemming from modern neuroscience on the architecture of the brain. Subsequently, we will look at contemporary contenders that mediate between cognitive and brain architecture. An important challenge to any model of cognitive architectures is how to benchmark it. Verschure proposes the Unified Theories of Embodied Minds (UTEM) benchmark which advances from Newell’s classic Unified Theories of Cognition benchmark.
JTD Keywords: Architecture, Mind, Brain, Organization, System, Virtualization, Abstraction layers
Verschure, P., (2018). A chronology of Distributed Adaptive Control Living machines: A handbook of research in biomimetics and biohybrid systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 346-360
This chapter presents the Distributed Adaptive Control (DAC) theory of the mind and brain of living machines. DAC provides an explanatory framework for biological brains and an integration framework for synthetic ones. DAC builds on several themes presented in the handbook: it integrates different perspectives on mind and brain, exemplifies the synthetic method in understanding living machines, answers well-defined constraints faced by living machines, and provides a route for the convergent validation of anatomy, physiology, and behavior in our explanation of biological living machines. DAC addresses the fundamental question of how a living machine can obtain, retain, and express valid knowledge of its world. We look at the core components of DAC, specific benchmarks derived from the engagement with the physical and the social world (the H4W and the H5W problems) in foraging and human–robot interaction tasks. Lastly we address how DAC targets the UTEM benchmark and the relation with contemporary developments in AI.
JTD Keywords: Distributed Adaptive Control, Problem of priors, Symbol grounding problem, Convergent validation, Foraging, brain, Architecture, system
Vouloutsi, Vasiliki, Halloy, José, Mura, Anna, Mangan, Michael, Lepora, Nathan, Prescott, T. J., Verschure, P., (2018). Biomimetic and Biohybrid Systems 7th International Conference, Living Machines 2018, Paris, France, July 17–20, 2018, Proceedings , Springer International Publishing (Lausanne, Switzerland) 10928, 1-551
This book constitutes the proceedings of the 7th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2018, held in Paris, France, in July 2018.
The 40 full and 18 short papers presented in this volume were carefully reviewed and selected from 60 submissions. The theme of the conference targeted at the intersection of research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.
JTD Keywords: Artificial neural network, Bio-actuators, Bio-robotics, Biohybrid systems, Biomimetics, Bipedal robots, Earthoworm-like robots, Robotics, Decision-making, Tactile sensing, Soft robots, Locomotion, Insects, Sensors, Actuators, Robots, Artificial intelligence, Neural networks, Motion planning, Learning algorithms
Prescott, T. J., Lepora, Nathan, Verschure, P., (2018). Living machines: A handbook of research in biomimetics and biohybrid systems Oxford Scholarship , 1-623
Biomimetics is the development of novel technologies through the distillation of ideas from the study of biological systems. Biohybrids are formed through the combination of at least one biological component—an existing living system—and at least one artificial, newly engineered component. These two fields are united under the theme of Living Machines—the idea that we can construct artifacts that not only mimic life but also build on the same fundamental principles. The research described in this volume seeks to understand and emulate life’s ability to self-organize, metabolize, grow, and reproduce; to match the functions of living tissues and organs such as muscles, skin, eyes, ears, and neural circuits; to replicate cognitive and physical capacities such as perception, attention, locomotion, grasp, emotion, and consciousness; and to assemble all of these elements into integrated systems that can hold a technological mirror to life or that have the capacity to merge with it. We conclude with contributions from philosophers, ethicists, and futurists on the potential impacts of this remarkable research on society and on how we see ourselves.
JTD Keywords: Novel technologies, Biomimetics, Biohybrids, Living systems, Living machines, Biological principles, Technology ethics, Societal impacts
Solorzano, A., Fonollosa, J., Fernandez, L., Eichmann, J., Marco, S., (2017). Fire detection using a gas sensor array with sensor fusion algorithms IEEE Conference Publications ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) , IEEE (Montreal, Canada) , 1-3
Conventional fire alarms are based on smoke detection. Nevertheless, in some fire scenarios volatiles are released before smoke. Fire detectors based only on chemical sensors have already been proposed as they may provide faster response, but they are still prone to false alarms in the presence of nuisances. These systems rely heavily on pattern recognition techniques to discriminate fires from nuisances. In this context, it is important to test the systems according to international standards for fires and testing the system against a diversity of nuisances. In this work, we investigate the behavior of a gas sensor array coupled to sensor fusion algorithms for fire detection when exposed to standardized fires and several nuisances. Results confirmed the ability to detect fires (97% Sensitivity), although the system still produces a significant rate of false alarms (35%) for nuisances not presented in the training set.
JTD Keywords: Fire alarm, Gas sensor array, Machine Olfaction, Multisensor system, Sensor fusion
Trapero, J. I., Arizmendi, C. J., Gonzalez, H., Forero, C., Giraldo, B. F., (2017). Nonlinear dynamic analysis of the cardiorespiratory system in patients undergoing the weaning process Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 3493-3496
In this work, the cardiorespiratory pattern of patients undergoing extubation process is studied. First, the respiratory and cardiac signals were resampled, next the Symbolic Dynamics (SD) technique was implemented, followed of a dimensionality reduction applying Forward Selection (FS) and Moving Window with Variance Analysis (MWVA) methods. Finally, the Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM) classifiers were used. The study analyzed 153 patients undergoing weaning process, classified into 3 groups: Successful Group (SG: 94 patients), Failed Group (FG: 39 patients), and patients who had been successful during the extubation and had to be reintubated before 48 hours, Reintubated Group (RG: 21 patients). According to the results, the best classification present an accuracy higher than 88.98 ± 0.013% in all proposed combinations.
JTD Keywords: Support vector machines, Standards, Time series analysis, Resonant frequency, Nonlinear dynamical systems, Ventilation
Tomas-Roig, J., Piscitelli, F., Gil, V., del Río, J. A., Moore, T. P., Agbemenyah, H., Salinas-Riester, G., Pommerenke, C., Lorenzen, S., Beißbarth, T., Hoyer-Fender, S., Di Marzo, V., Havemann-Reinecke, U., (2016). Social defeat leads to changes in the endocannabinoid system: An overexpression of calreticulin and motor impairment in mice Behavioural Brain Research , 303, 34-43
Prolonged and sustained stimulation of the hypothalamo-pituitary-adrenal axis have adverse effects on numerous brain regions, including the cerebellum. Motor coordination and motor learning are essential for animal and require the regulation of cerebellar neurons. The G-protein-coupled cannabinoid CB1 receptor coordinates synaptic transmission throughout the CNS and is of highest abundance in the cerebellum. Accordingly, the aim of this study was to investigate the long-lasting effects of chronic psychosocial stress on motor coordination and motor learning, CB1 receptor expression, endogenous cannabinoid ligands and gene expression in the cerebellum. After chronic psychosocial stress, motor coordination and motor learning were impaired as indicated the righting reflex and the rota-rod. The amount of the endocannabinoid 2-AG increased while CB1 mRNA and protein expression were downregulated after chronic stress. Transcriptome analysis revealed 319 genes differentially expressed by chronic psychosocial stress in the cerebellum; mainly involved in synaptic transmission, transmission of nerve impulse, and cell-cell signaling. Calreticulin was validated as a stress candidate gene. The present study provides evidence that chronic stress activates calreticulin and might be one of the pathological mechanisms underlying the motor coordination and motor learning dysfunctions seen in social defeat mice.
JTD Keywords: Psychosocial stress, Cerebellum, Calreticulin, Endocannabinoid system, Behavior, RNA seq.
Torres, M., Rojas, M., Campillo, N., Cardenes, N., Montserrat, J. M., Navajas, D., Farré, R., (2015). Parabiotic model for differentiating local and systemic effects of continuous and intermittent hypoxia Journal of Applied Physiology , 118, (1), 42-47
Hypoxia can be damaging either because cells are directly sensitive to low oxygen pressure in their local microenvironment and/or because they are exposed to circulating factors systemically secreted in response to hypoxia. The conventional hypoxia model, breathing hypoxic air, does not allow one to distinguish between these local and systemic effects. Here we propose and validate a model for differentially applying local and systemic hypoxic challenges in an animal. We used parabiosis, two mice sharing circulation by surgical union through the skin, and tested the hypothesis that when one of the parabionts breathes room air and the other one is subjected to hypoxic air, both mice share systemic circulation but remain normoxic and hypoxic, respectively. We tested two common hypoxic paradigms in 10 parabiotic pairs: continuous hypoxia (10% O2) mimicking chronic lung diseases, and intermittent hypoxia (40 s, 21% O2; 20 s, 5% O2) simulating sleep apnea. Arterial oxygen saturation and oxygen partial pressure at muscle tissue were measured in both parabionts. Effective cross-circulation was assessed by intraperitoneally injecting a dye in one of the parabionts and measuring blood dye concentration in both animals after 2 h. The results confirmed the hypothesis that tissues of the parabiont under room air were perfused with normally oxygenated blood and, at the same time, were exposed to all of the systemic mediators secreted by the other parabiont actually subjected to hypoxia. In conclusion, combination of parabiosis and hypoxic/normoxic air breathing is a novel approach to investigate the effects of local and systemic hypoxia in respiratory diseases.
JTD Keywords: Animal model, Local hypoxia, Parabiosis, Systemic hypoxia
Aviles, A. I., Alsaleh, S. M., Sobrevilla, P., Casals, A., (2015). Force-feedback sensory substitution using supervised recurrent learning for robotic-assisted surgery Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 1-4
The lack of force feedback is considered one of the major limitations in Robot Assisted Minimally Invasive Surgeries. Since add-on sensors are not a practical solution for clinical environments, in this paper we present a force estimation approach that starts with the reconstruction of a 3D deformation structure of the tissue surface by minimizing an energy functional. A Recurrent Neural Network-Long Short Term Memory (RNN-LSTM) based architecture is then presented to accurately estimate the applied forces. According to the results, our solution offers long-term stability and shows a significant percentage of accuracy improvement, ranging from about 54% to 78%, over existing approaches.
JTD Keywords: Computer architecture, Estimation, Force, Microprocessors, Robot sensing systems, Surgery
Mur, O., Frigola, M., Casals, A., (2015). Modelling daily actions through hand-based spatio-temporal features ICAR 2015 International Conference on Advanced Robotics , IEEE (Istanbul, Turkey) , 478-483
In this paper, we propose a new approach to domestic action recognition based on a set of features which describe the relation between poses and movements of both hands. These features represent a set of basic actions in a kitchen in terms of the mimics of the hand movements, without needing information of the objects present in the scene. They address specifically the intra-class dissimilarity problem, which occurs when the same action is performed in different ways. The goal is to create a generic methodology that enables a robotic assistant system to recognize actions related to daily life activities and then, be endowed with a proactive behavior. The proposed system uses depth and color data acquired from a Kinect-style sensor and a hand tracking system. We analyze the relevance of the proposed hand-based features using a state-space search approach. Finally, we show the effectiveness of our action recognition approach using our own dataset.
JTD Keywords: Histograms, Joints, Robot sensing systems, Thumb, Tracking, Human activity recognition, Disable and elderly assistance
Aviles, A. I., Alsaleh, S., Sobrevilla, P., Casals, A., (2015). Sensorless force estimation using a neuro-vision-based approach for robotic-assisted surgery NER 2015 7th International IEEE/EMBS Conference on Neural Engineering , IEEE (Montpellier, France) , 86-89
This paper addresses the issue of lack of force feedback in robotic-assisted minimally invasive surgeries. Force is an important measure for surgeons in order to prevent intra-operative complications and tissue damage. Thus, an innovative neuro-vision based force estimation approach is proposed. Tissue surface displacement is first measured via minimization of an energy functional. A neuro approach is then used to establish a geometric-visual relation and estimate the applied force. The proposed approach eliminates the need of add-on sensors, carrying out biocompatibility studies and is applicable to tissues of any shape. Moreover, we provided an improvement from 15.14% to 56.16% over other approaches which demonstrate the potential of our proposal.
JTD Keywords: Estimation, Force, Minimally invasive surgery, Robot sensing systems, Three-dimensional displays
Fernàndez-Busquets, X., (2014). Toy kit against malaria: Magic bullets, LEGO, Trojan horses and Russian dolls Therapeutic Delivery , 5, (10), 1049-1052
JTD Keywords: antimalarial, heparin, magic bullet, malaria, nanomedicine, nanotechnology, nanovector, Plasmodium, polymers, targeted drug delivery, chloroquine, immunoliposome, liposome, nanoparticle, solid lipid nanoparticle, Anopheles, antimalarial activity, drug delivery system, drug efficacy, erythrocyte, human, IC50, malaria, malaria control, nanoencapsulation, nonhuman, pathophysiology, Plasmodium, Review
Bennetts, Victor, Schaffernicht, Erik, Pomareda, Victor, Lilienthal, Achim, Marco, Santiago, Trincavelli, Marco, (2014). Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds Sensors 14, (9), 17331-17352
In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.
JTD Keywords: Environmental monitoring, Gas discrimination, Gas distribution mapping, Service robots, Open sampling systems, PID, Metal oxide sensors
Juanola-Feliu, E., Miribel-Català, P. L., Avilés, C. P., Colomer-Farrarons, J., González-Piñero, M., Samitier, J., (2014). Design of a customized multipurpose nano-enabled implantable system for in-vivo theranostics Sensors 14, (10), 19275-19306
The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device.
JTD Keywords: Biocompatible, Biosensor, Biotelemetry, Implantable multi-sensor, Innovation, KET, Nanomedicine, Personalized medicine, Biotelemetry, Innovation, Medical nanotechnology, Biocompatible, Implantable system, In-vivo, KET, Multi sensor, Personalized medicines, Theranostics, Biosensors
Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Analysis of heart rate variability in elderly patients with chronic heart failure during periodic breathing CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 991-994
Assessment of the dynamic interactions between cardiovascular signals can provide valuable information that improves the understanding of cardiovascular control. Heart rate variability (HRV) analysis is known to provide information about the autonomic heart rate modulation mechanism. Using the HRV signal, we aimed to obtain parameters for classifying patients with and without chronic heart failure (CHF), and with periodic breathing (PB), non-periodic breathing (nPB), and Cheyne-Stokes respiration (CSR) patterns. An electrocardiogram (ECG) and a respiratory flow signal were recorded in 36 elderly patients: 18 patients with CHF and 18 patients without CHF. According to the clinical criteria, the patients were classified into the follow groups: 19 patients with nPB pattern, 7 with PB pattern, 4 with Cheyne-Stokes respiration (CSR), and 6 non-classified patients (problems with respiratory signal). From the HRV signal, parameters in the time and frequency domain were calculated. Frequency domain parameters were the most discriminant in comparisons of patients with and without CHF: PTot (p = 0.02), PLF (p = 0.022) and fpHF (p = 0.021). For the comparison of the nPB vs. CSR patients groups, the best parameters were RMSSD (p = 0.028) and SDSD (p = 0.028). Therefore, the parameters appear to be suitable for enhanced diagnosis of decompensated CHF patients and the possibility of developed periodic breathing and a CSR pattern.
JTD Keywords: cardiovascular system, diseases, electrocardiography, frequency-domain analysis, geriatrics, medical signal processing, patient diagnosis, pneumodynamics, signal classification, Cheyne-Stokes respiration patterns, ECG, autonomic heart rate modulation mechanism, cardiovascular control, cardiovascular signals, chronic heart failure, decompensated CHF patients, dynamic interaction assessment, elderly patients, electrocardiogram, enhanced diagnosis, frequency domain parameters, heart rate variability analysis, patient classification, periodic breathing, respiratory flow signal recording, Electrocardiography, Frequency modulation, Frequency-domain analysis, Heart rate variability, Senior citizens, Standards
Marco, S., Gutiérrez-Gálvez, A., Lansner, A., Martinez, D., Rospars, J. P., Beccherelli, R., Perera, A., Pearce, T., Vershure, P., Persaud, K., (2013). Biologically inspired large scale chemical sensor arrays and embedded data processing Proceedings of SPIE - The International Society for Optical Engineering Smart Sensors, Actuators, and MEMS VI , SPIE Digital Library (Grenoble, France) 8763, 1-15
Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: The olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes.
JTD Keywords: Antennal lobes, Artificial olfaction, Computational neuroscience, Olfactory bulbs, Plume tracking, Abstracting, Actuators, Algorithms, Biomimetic processes, Chemical sensors, Conducting polymers, Data processing, Flavors, Odors, Robots, Smart sensors, Embedded systems
Arcentales, A., Voss, A., Caminal, P., Bayes-Genis, A., Domingo, M. T., Giraldo, B. F., (2013). Characterization of patients with different ventricular ejection fractions using blood pressure signal analysis CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 795-798
Ischemic and dilated cardiomyopathy are associated with disorders of myocardium. Using the blood pressure (BP) signal and the values of the ventricular ejection fraction, we obtained parameters for stratifying cardiomyopathy patients as low- and high-risk. We studied 48 cardiomyopathy patients characterized by NYHA ≥2: 19 patients with dilated cardiomyopathy (DCM) and 29 patients with ischemic cardiomyopathy (ICM). The left ventricular ejection fraction (LVEF) percentage was used to classify patients in low risk (LR: LVEF > 35%, 17 patients) and high risk (HR: LVEF ≤ 35%, 31 patients) groups. From the BP signal, we extracted the upward systolic slope (BPsl), the difference between systolic and diastolic BP (BPA), and systolic time intervals (STI). When we compared the LR and HR groups in the time domain analysis, the best parameters were standard deviation (SD) of 1=STI, kurtosis (K) of BPsl, and K of BPA. In the frequency domain analysis, very low frequency (VLF) and high frequency (HF) bands showed statistically significant differences in comaprisons of LR and HR groups. The area under the curve of power spectral density was the best parameter in all classifications, and particularly in the very-low-and high- frequency bands (p <; 0.001). These parameters could help to improve the risk stratification of cardiomyopathy patients.
JTD Keywords: blood pressure measurement, cardiovascular system, diseases, medical disorders, medical signal processing, statistical analysis, time-domain analysis, BP signal, HR groups, LR groups, blood pressure signal analysis, cardiomyopathy patients, diastolic BP, dilated cardiomyopathy, frequency domain analysis, high-frequency bands, ischemic cardiomyopathy, left ventricular ejection fraction, low-frequency bands, myocardium disorders, patient characterization, power spectral density curve, standard deviation, statistical significant differences, systolic BP, systolic slope, systolic time intervals, time domain analysis, ventricular ejection fraction, Abstracts, Databases, Parameter extraction, Telecommunication standards, Time-frequency analysis
Giraldo, B. F., Chaparro, J. A., Caminal, P., Benito, S., (2013). Characterization of the respiratory pattern variability of patients with different pressure support levels Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 3849-3852
One of the most challenging problems in intensive care is still the process of discontinuing mechanical ventilation, called weaning process. Both an unnecessary delay in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we analyzed respiratory pattern variability using the respiratory volume signal of patients submitted to two different levels of pressure support ventilation (PSV), prior to withdrawal of the mechanical ventilation. In order to characterize the respiratory pattern, we analyzed the following time series: inspiratory time, expiratory time, breath duration, tidal volume, fractional inspiratory time, mean inspiratory flow and rapid shallow breathing. Several autoregressive modeling techniques were considered: autoregressive models (AR), autoregressive moving average models (ARMA), and autoregressive models with exogenous input (ARX). The following classification methods were used: logistic regression (LR), linear discriminant analysis (LDA) and support vector machines (SVM). 20 patients on weaning trials from mechanical ventilation were analyzed. The patients, submitted to two different levels of PSV, were classified as low PSV and high PSV. The variability of the respiratory patterns of these patients were analyzed. The most relevant parameters were extracted using the classifiers methods. The best results were obtained with the interquartile range and the final prediction errors of AR, ARMA and ARX models. An accuracy of 95% (93% sensitivity and 90% specificity) was obtained when the interquartile range of the expiratory time and the breath duration time series were used a LDA model. All classifiers showed a good compromise between sensitivity and specificity.
JTD Keywords: autoregressive moving average processes, feature extraction, medical signal processing, patient care, pneumodynamics, signal classification, support vector machines, time series, ARX, autoregressive modeling techniques, autoregressive models with exogenous input, autoregressive moving average model, breath duration time series, classification method, classifier method, discontinuing mechanical ventilation, expiratory time, feature extraction, final prediction errors, fractional inspiratory time, intensive care, interquartile range, linear discriminant analysis, logistic regression analysis, mean inspiratory flow, patient respiratory volume signal, pressure support level, pressure support ventilation, rapid shallow breathing, respiratory pattern variability characterization, support vector machines, tidal volume, weaning trial, Analytical models, Autoregressive processes, Biological system modeling, Estimation, Support vector machines, Time series analysis, Ventilation
Jané, R., Lazaro, J., Ruiz, P., Gil, E., Navajas, D., Farre, R., Laguna, P., (2013). Obstructive Sleep Apnea in a rat model: Effects of anesthesia on autonomic evaluation from heart rate variability measures CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 1011-1014
Rat model of Obstructive Sleep Apnea (OSA) is a realistic approach for studying physiological mechanisms involved in sleep. Rats are usually anesthetized and autonomic nervous system (ANS) could be blocked. This study aimed to assess the effect of anesthesia on ANS activity during OSA episodes. Seven male Sprague-Dawley rats were anesthetized intraperitoneally with urethane (1g/kg). The experiments were conducted applying airway obstructions, simulating 15s-apnea episodes for 15 minutes. Five signals were acquired: respiratory pressure and flow, SaO2, ECG and photoplethysmography (PPG). In total, 210 apnea episodes were studied. Normalized power spectrum of Pulse Rate Variability (PRV) was analyzed in the Low Frequency (LF) and High Frequency (HF) bands, for each episode in consecutive 15s intervals (before, during and after the apnea). All episodes showed changes in respiratory flow and SaO2 signal. Conversely, decreases in the amplitude fluctuations of PPG (DAP) were not observed. Normalized LF presented extremely low values during breathing (median=7,67%), suggesting inhibition of sympathetic system due to anesthetic effect. Subtle increases of LF were observed during apnea. HRV and PPG analysis during apnea could be an indirect tool to assess the effect and deep of anesthesia.
JTD Keywords: electrocardiography, fluctuations, medical disorders, medical signal detection, medical signal processing, neurophysiology, photoplethysmography, pneumodynamics, sleep, ECG, SaO2 flow, SaO2 signal, airway obstructions, amplitude fluctuations, anesthesia effects, anesthetized nervous system, autonomic evaluation, autonomic nervous system, breathing, heart rate variability, high-frequency bands, low-frequency bands, male Sprague-Dawley rats, normalized power spectrum, obstructive sleep apnea, photoplethysmography, physiological mechanisms, pulse rate variability, rat model, respiratory flow, respiratory pressure, signal acquisition, sympathetic system inhibition, time 15 min, time 15 s, Abstracts, Atmospheric modeling, Computational modeling, Electrocardiography, Rats, Resonant frequency
Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Study of the oscillatory breathing pattern in elderly patients Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 5228-5231
Some of the most common clinical problems in elderly patients are related to diseases of the cardiac and respiratory systems. Elderly patients often have altered breathing patterns, such as periodic breathing (PB) and Cheyne-Stokes respiration (CSR), which may coincide with chronic heart failure. In this study, we used the envelope of the respiratory flow signal to characterize respiratory patterns in elderly patients. To study different breathing patterns in the same patient, the signals were segmented into windows of 5 min. In oscillatory breathing patterns, frequency and time-frequency parameters that characterize the discriminant band were evaluated to identify periodic and non-periodic breathing (PB and nPB). In order to evaluate the accuracy of this characterization, we used a feature selection process, followed by linear discriminant analysis. 22 elderly patients (7 patients with PB and 15 with nPB pattern) were studied. The following classification problems were analyzed: patients with either PB (with and without apnea) or nPB patterns, and patients with CSR versus PB, CSR versus nPB and PB versus nPB patterns. The results showed 81.8% accuracy in the comparisons of nPB and PB patients, using the power of the modulation peak. For the segmented signal, the power of the modulation peak, the frequency variability and the interquartile ranges provided the best results with 84.8% accuracy, for classifying nPB and PB patients.
JTD Keywords: cardiovascular system, diseases, feature extraction, geriatrics, medical signal processing, oscillations, pneumodynamics, signal classification, time-frequency analysis, Cheyne-Stokes respiration, apnea, cardiac systems, chronic heart failure, classification problems, discriminant band, diseases, elderly patients, feature selection process, frequency variability, interquartile ranges, linear discriminant analysis, nonperiodic breathing, oscillatory breathing pattern, periodic breathing, respiratory How signal, respiratory systems, signal segmentation, time 5 min, time-frequency parameters, Accuracy, Aging, Frequency modulation, Heart, Senior citizens, Time-frequency analysis
Hernandez Bennetts, V. M., Lilienthal, A. J., Khaliq, A. A., Pomareda Sese, V., Trincavelli, M., (2013). Towards real-world gas distribution mapping and leak localization using a mobile robot with 3d and remote gas sensing capabilities 2013 IEEE International Conference on Robotics and Automation (ICRA) (ed. Parker, Lynne E.), IEEE (Karlsruhe, Germany) , 2335-2340
Due to its environmental, economical and safety implications, methane leak detection is a crucial task to address in the biogas production industry. In this paper, we introduce Gasbot, a robotic platform that aims to automatize methane emission monitoring in landfills and biogas production sites. The distinctive characteristic of the Gasbot platform is the use of a Tunable Laser Absorption Spectroscopy (TDLAS) sensor. This sensor provides integral concentration measurements over the path of the laser beam. Existing gas distribution mapping algorithms can only handle local measurements obtained from traditional in-situ chemical sensors. In this paper we also describe an algorithm to generate 3D methane concentration maps from integral concentration and depth measurements. The Gasbot platform has been tested in two different scenarios: an underground corridor, where a pipeline leak was simulated and in a decommissioned landfill site, where an artificial methane emission source was introduced.
JTD Keywords: Laser beams, Measurement by laser beam, Mobile robots, Robot kinematics, Robot sensing systems
Guamán, Ana V., Carreras, Alba, Calvo, Daniel, Agudo, Idoya, Navajas, Daniel, Pardo, Antonio, Marco, Santiago, Farré, Ramon, (2012). Rapid detection of sepsis in rats through volatile organic compounds in breath Journal of Chromatography B , 881-882, 76-82
Background: Sepsis is one of the main causes of death in adult intensive care units. The major drawbacks of the different methods used for its diagnosis and monitoring are their inability to provide fast responses and unsuitability for bedside use. In this study, performed using a rat sepsis model, we evaluate breath
analysis with Ion Mobility Spectrometry (IMS) as a fast, portable and non-invasive strategy. Methods: This study was carried out on 20 Sprague-Dawley rats. Ten rats were injected with lipopolysaccharide from Escherichia coli and ten rats were IP injected with regular saline. After a 24-h period, the rats were anaesthetized and their exhaled breaths were collected and measured with IMS and SPME-gas chromatography/mass spectrometry (SPME-GC/MS) and the data were analyzed with multivariate data processing techniques. Results: The SPME-GC/MS dataset processing showed 92% accuracy in the discrimination between the two groups, with a confidence interval of between 90.9% and 92.9%. Percentages for sensitivity and specificity were 98% (97.5–98.5%) and 85% (84.6–87.6%), respectively. The IMS database processing generated an accuracy of 99.8% (99.7–99.9%), a specificity of 99.6% (99.5–99.7%) and a sensitivity of 99.9% (99.8–100%). Conclusions: IMS involving fast analysis times, minimum sample handling and portable instrumentation can be an alternative for continuous bedside monitoring. IMS spectra require data processing with proper statistical models for the technique to be used as an alternative to other methods. These animal model results suggest that exhaled breath can be used as a point-of-care tool for the diagnosis and monitoring of sepsis.
JTD Keywords: Sepsis, Volatile organic compounds, Ion mobility spectrometer, Rat model, Bedside patient systems, Non-invasive detection
Marco, S., Gutierrez-Galvez, A., (2012). Signal and data processing for machine olfaction and chemical sensing: A review IEEE Sensors Journal 12, (11), 3189-3214
Signal and data processing are essential elements in electronic noses as well as in most chemical sensing instruments. The multivariate responses obtained by chemical sensor arrays require signal and data processing to carry out the fundamental tasks of odor identification (classification), concentration estimation (regression), and grouping of similar odors (clustering). In the last decade, important advances have shown that proper processing can improve the robustness of the instruments against diverse perturbations, namely, environmental variables, background changes, drift, etc. This article reviews the advances made in recent years in signal and data processing for machine olfaction and chemical sensing.
JTD Keywords: Chemical sensors, Electronic nose, Intelligent sensors, Measurement techniques, Sensor arrays, Sensor systems
Fazel Zarandi, M. H., Avazbeigi, M., (2012). A multi-agent solution for reduction of bullwhip effect in fuzzy supply chains Journal of Intelligent and Fuzzy Systems , 23, (5), 259-268
In this paper, we present a new Multi-Agent System for reduction of the bullwhip effect in fuzzy supply chains. First, we show that a supply chain that uses an optimal ordering policy without data sharing among echelons still suffers from the bullwhip effect. Then, we propose the multi-agent solution to manage and reduce the bullwhip effect. The proposed multi-agent system includes four different types of agents in which each agent has its own list of actions. The proposed Multi-agent System applies a new Tabu Search algorithm for fuzzy rule generation, and a new data filtering algorithm for extraction of the bullwhip-free data from supply chain data warehouse. We validate the multi-agent system under different conditions and discuss how the system responds to different factors. The results show that the proposed multi-agent system reduces the bullwhip effect significantly in a rational time.
JTD Keywords: Bullwhip effect, Bullwhip-free data, Decentralized decision making, Fuzzy rule base, Fuzzy supply chain, Fuzzy time series, Multi-agent system, Supply chain management
Giraldo, B.F., Gaspar, B.W., Caminal, P., Benito, S., (2012). Analysis of roots in ARMA model for the classification of patients on weaning trials Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 698-701
One objective of mechanical ventilation is the recovery of spontaneous breathing as soon as possible. Remove the mechanical ventilation is sometimes more difficult that maintain it. This paper proposes the study of respiratory flow signal of patients on weaning trials process by autoregressive moving average model (ARMA), through the location of poles and zeros of the model. A total of 151 patients under extubation process (T-tube test) were analyzed: 91 patients with successful weaning (GS), 39 patients that failed to maintain spontaneous breathing and were reconnected (GF), and 21 patients extubated after the test but before 48 hours were reintubated (GR). The optimal model was obtained with order 8, and statistical significant differences were obtained considering the values of angles of the first four poles and the first zero. The best classification was obtained between GF and GR, with an accuracy of 75.3% on the mean value of the angle of the first pole.
JTD Keywords: Analytical models, Biological system modeling, Computational modeling, Estimation, Hospitals, Poles and zeros, Ventilation, Autoregressive moving average processes, Patient care, Patient monitoring, Pneumodynamics, Poles and zeros, Ventilation, ARMA model, T-tube test, Autoregressive moving average model, Extubation process, Mechanical ventilation, Optimal model, Patient classification, Respiratory flow signal, Roots, Spontaneous breathing, Weaning trials
Antelis, J.M., Montesano, L., Giralt, X., Casals, A., Minguez, J., (2012). Detection of movements with attention or distraction to the motor task during robot-assisted passive movements of the upper limb Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 6410-6413
Robot-assisted rehabilitation therapies usually focus on physical aspects rather than on cognitive factors. However, cognitive aspects such as attention, motivation, and engagement play a critical role in motor learning and thus influence the long-term success of rehabilitation programs. This paper studies motor-related EEG activity during the execution of robot-assisted passive movements of the upper limb, while participants either: i) focused attention exclusively on the task; or ii) simultaneously performed another task. Six healthy subjects participated in the study and results showed lower desynchronization during passive movements with another task simultaneously being carried out (compared to passive movements with exclusive attention on the task). In addition, it was proved the feasibility to distinguish between the two conditions.
JTD Keywords: Electrodes, Electroencephalography, Induction motors, Medical treatment, Robot sensing systems, Time frequency analysis, Biomechanics, Cognition, Electroencephalography, Medical robotics, Medical signal detection, Medical signal processing, Patient rehabilitation, Attention, Cognitive aspects, Desynchronization, Engagement, Motivation, Motor learning, Motor task, Motor-related EEG activity, Physical aspects, Robot-assisted passive movement detection, Robot-assisted rehabilitation therapies, Upper limb
Amigo, L. E., Fernandez, Q., Giralt, X., Casals, A., Amat, J., (2012). Study of patient-orthosis interaction forces in rehabilitation therapies IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 1098-1103
The design of mechanical joints that kinematically behave as their biological counterparts is a challenge that if not addressed properly can cause inadequate forces transmission between robot and patient. This paper studies the interaction forces in rehabilitation therapies of the elbow joint. To measure the effect of orthosis-patient misalignments, a force sensor with a novel distributed architecture has been designed and used for this study. A test-bed based on an industrial robot acting as a virtual exoskeleton that emulates the action of a therapist has been developed and the interaction forces analyzed.
JTD Keywords: Force, Force measurement, Force sensors, Joints, Medical treatment, Robot sensing systems, Force sensors, Medical robotics, Patient rehabilitation, Biological counterparts, Distributed architecture, Elbow joint, Force sensor, Inadequate forces transmission, Industrial robot, Mechanical joints design, Orthosis-patient misalignments, Patient-orthosis interaction forces, Rehabilitation therapies, Robot, Test-bed, Virtual exoskeleton
Garrido-Delgado, R., Arce, L., Guaman, A. V., Pardo, A., Marco, S., Valcárcel, M., (2011). Direct coupling of a gas-liquid separator to an Ion Mobility Spectrometer for the classification of different white wines using chemometrics tools Talanta 84, (2), 471-479
The potential of a vanguard technique as is the Ion Mobility Spectrometry with Ultraviolet ionization (UV-IMS) coupled to a Continuous Flow System (CFS) have been demonstrated in this work by using a Gas Phase Separator (GPS). This vanguard system (CFS-GPS-UV-IMS) has been used for the analysis of different types of white wines to obtain a characteristic profile for each type of wine and their posterior classification using different chemometric tools. Precision of the method was 3.1% expressed as relative standard deviation. A deep chemometric study was carried out for the classification of the four types of wines selected. The best classification performance was obtained by first reducing the data dimensionality by Principal Component Analysis (PCA) followed by Linear Discriminant Analysis (LDA) and finally using a K-Nearest Neighbour (kNN) classifier. The classification rate in an independent validation set were 92.0% classification rate value with confidence interval [89.0%, 95.0%] at P = 0.05 confidence level. The same white wines analyzed by using CFS-GPS-UV-IMS were analyzed by using Gas Chromatography with a Flame Detector (GC-FID) as conventional technique. The chromatographic method used for the determination of superior alcohols in wine samples shown in the Regulation CEE 1238/1992 was selected to carry out the analysis of the same samples set and later the classification using appropriate chemometric tools. In this case, strategies PCA-LDA and kNN classifier were also used for the correct classification of the wine samples. This combination showed similar results to the ones obtained with the proposed method.
JTD Keywords: Classification, White wines, Ultraviolet-Ion Mobility Spectrometry, Gas Phase Separate, Vanguard method, Continuous Flow System, Chemometric analysis.
Mir, Monica, Martinez-Rodriguez, Sergio, Castillo-Fernandez, Oscar, Homs-Corbera, Antoni, Samitier, Josep, (2011). Electrokinetic techniques applied to electrochemical DNA biosensors Electrophoresis , 32, (8), 811-821
Electrokinetic techniques are contact-free methods currently used in many applications, where precise handling of biological entities, such as cells, bacteria or nucleic acids, is needed. These techniques are based on the effect of electric fields on molecules suspended in a fluid, and the corresponding induced motion, which can be tuned according to some known physical laws and observed behaviours. Increasing interest on the application of such strategies in order to improve the detection of DNA strands has appeared during the recent decades. Classical electrode-based DNA electrochemical biosensors with combined electrokinetic techniques present the advantage of being able to improve the working electrode's bioactive part during their fabrication and also the hybridization yield during the sensor detection phase. This can be achieved by selectively manipulating, driving and directing the molecules towards the electrodes increasing the speed and yield of the floating DNA strands attached to them. On the other hand, this technique can be also used in order to make biosensors reusable, or reconfigurable, by simply inverting its working principle and pulling DNA strands away from the electrodes. Finally, the combination of these techniques with nanostructures, such as nanopores or nanochannels, has recently boosted the appearance of new types of electrochemical sensors that exploit the time-varying position of DNA strands in order to continuously scan these molecules and to detect their properties. This review gives an insight into the main forces involved in DNA electrokinetics and discusses the state of the art and uses of these techniques in recent years.
JTD Keywords: Electrochemical DNA biosensors, Lab-on-a-chip (LOC), Micro-total analysis systems (mu TAS), Nanopore
Carreras, Alba, Wang, Yang, Gozal, David, Montserrat, Josep M., Navajas, Daniel, Farre, Ramon, (2011). Non-invasive system for applying airway obstructions to model obstructive sleep apnea in mice Respiratory Physiology & Neurobiology , 175, (1), 164-168
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway obstructions during sleep. The most common animal model of OSA is based on subjecting rodents to intermittent hypoxic exposures and does not mimic important OSA features, such as recurrent hypercapnia and increased inspiratory efforts. To circumvent some of these issues, a novel murine model involving non-invasive application of recurrent airway obstructions was developed. An electronically controlled airbag system is placed in front of the mouse's snout, whereby inflating the airbag leads to obstructed breathing and spontaneous breathing occurs with the airbag deflated. The device was tested on 29 anesthetized mice by measuring inspiratory effort and arterial oxygen saturation (SaO(2)). Application of recurrent obstructive apneas (6s each, 120/h) for 6h resulted in SaO(2) oscillations to values reaching 84.4 +/- 2.5% nadir, with swings mimicking OSA patients. This novel system, capable of applying controlled recurrent airway obstructions in mice, is an easy-to-use tool for investigating pertinent aspects of OSA.
JTD Keywords: Animal model, Upper airway Obstruction, Mouse model, Non-invasive system, Model sleep apnea, Respiratory disease
Fernandez, L., Gutierrez-Galvez, A., Marco, S., (2010). Gas sensor array system inspired on the sensory diversity and redundancy of the olfactory epithelium Procedia Engineering Eurosensor XXIV Conference (ed. Jakoby, B., Vellekoop, M.J.), Elsevier Science BV (Linz, Austria) 5, (0), 25-28
This paper presents a chemical sensing system that takes inspiration from the combination of sensory diversity and redundancy at the olfactory epithelium to enhance the chemical information obtained from the odorants. The system is based on commercial MOS sensors and achieves, first, diversity trough different types of MOS along with modulation of their temperatures, and second redundancy including 12 MOS sensors for each type (12×8) combined with a high-speed multiplexing system that allows connecting 16 load resistors with each and every one of the 96 sensors in about two seconds. Exposition of the system to ethanol, ammonia, and acetone at different concentrations shows how the system is able to capture a large amount of information of the identity and the concentration of the odorant.
JTD Keywords: Gas sensor array, Biologically inspired system, Redundancy, Diversity, MOX sensors, Temperature modulation
Leder, R. S., Schlotthauer, G., Penzel, T., Jané, R., (2010). The natural history of the sleep and respiratory engineering track at EMBC 1988 to 2010 Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 288-291
Sleep science and respiratory engineering as medical subspecialties and research areas grew up side-by-side with biomedical engineering. The formation of EMBS in the 1950's and the discovery of REM sleep in the 1950's led to parallel development and interaction of sleep and biomedical engineering in diagnostics and therapeutics.
JTD Keywords: Practical/ biomedical equipment, Biomedical measurement, Patient diagnosis, Patient monitoring, Patient treatment, Pneumodynamics, Sleep/ sleep engineering, Respiratory engineering, Automatic sleep analysis, Automatic sleep interpretation systems, Breathing, Biomedical, Engineering, Diagnostics, Therapeutics, REM sleep, Portable, Measurement, Ambulatory measurement, Monitoring
Amigo, L.E., Casals, A., Amat, J., (2010). Polyarticulated architecture for the emulation of an isocentric joint in orthetic applications BioRob 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics , IEEE (Tokyo, Japan) , 825-830
The design of orthotic devices that tries to fit to the anthropomorphic structure of human limbs faces the problem of achieving the highest approximation to the anatomical kinematics. This paper studies the main characteristics and performances of orthotic devices, mainly focusing on the upper limbs, and proposes a solution to the problem of the superposition of rotation and displacement of some joints, as the shoulder, elbow or knee. A 3 DoF virtual joint is proposed to emulate a human joint, solving the isocentricity and size adaptation of most current orthosis.
JTD Keywords: Prosthetics and other practical applications, Prosthetics and orthotics, Prosthetic and orthotic control systems, Robotics, Biomechanics (mechanical engineering), Robot and manipulator mechanics
Fumagalli, L., Ferrari, G., Sampietro, M., Gomila, G., (2009). Quantitative nanoscale dielectric microscopy of single-layer supported biomembranes Nano Letters 9, (4), 1604-1608
Mir, M., Homs, A., Samitier, J., (2009). Integrated electrochemical DNA biosensors for lab-on-a-chip devices Electrophoresis , 30, (19), 3386-3397
Analytical devices able to perform accurate and fast automatic DNA detection or sequencing procedures have many potential benefits in the biomedical and environmental fields. The conversion of biological or biochemical responses into quantifiable optical, mechanical or electronic signals is achieved by means of biosensors. Most of these transducing elements can be miniaturized and incorporated into lab-on-a-chip devices, also known as Micro Total Analysis Systems. The use of multiple DNA biosensors integrated in these miniaturized laboratories, which perform several analytical operations at the microscale, has many cost and efficiency advantages. Tiny amounts of reagents and samples are needed and highly sensitive, fast and parallel assays can be done at low cost. A particular type of DNA biosensors are the ones used based on electrochemical principles. These sensors offer several advantages over the popular fluorescence-based detection schemes. The resulting signal is electrical and can be processed by conventional electronics in a very cheap and fast manner. Furthermore, the integration and miniaturization of electrochemical transducers in a microsystem makes easier its fabrication in front of the most common currently used detection method. In this review, different electrochemical DNA biosensors integrated in analytical microfluidic devices are discussed and some early stage commercial products based on this strategy are presented.
JTD Keywords: DNA, Electrochemical DNA biosensors, Electrochemistry, Lab-on-a-chip, Micro Total Analysis systems, Field-effect transistors, Sequence-specific detection, Chemical-analysis systems, Solid-state nanopores, Carbon nanotubes, Microfluidic device, Electrical detection, Hybridization, Molecules, Sensor
Casals, A., Frigola, M., Amat, J., (2009). Robotics, a valuable tool in surgery Revista Iberoamericana de Automatica e Informatica Industrial , 6, (1), 5-19
Continuous advances on diagnostic techniques based on medical images, as well as the incorporation of new techniques in surgical instruments are progressively changing the new surgical procedures. Also, new minimally invasive techniques, which are currently highly consolidated, have produced significant advances, both from the technological and from the surgical treatment perspectives. The limitations that the manual realization of surgical interventions implies, in what refers to precision and accessibility, can be tackled with the help of robotics. In the same way, sensor based robot control techniques are opening new possibilities for the introduction of more improvements in these procedures, either relying on teleoperation, in which the surgeon and the robot establish their best synergy to get the optimal results, or by means of the automation of some specific actions or tasks. In this article the effect of robotics in the evolution of surgical techniques is described. Starting with a review of the robotics application fields, the article continues analyzing the methods and technologies involved in the process of robotizing surgical procedures, as well as the surgeon-robot interaction systems.
JTD Keywords: Robotics, Medical Applications, Teleoperation, Biomedical Systems, Computer Aided Surgery, Human-Machine Interaction
Hernansanz, A., Amat, J., Casals, A., (2009). Optimization criterion for safety task transfer in cooperative robotics 14th International Conference on Advanced Robotics (ICAR) , IEEE (Munich, Germany) , 254-259
This paper presents a strategy for a cooperative multirobot system, constituting a virtual robot. The virtual robot is composed of a set of robotic arms acting as only one, transferring the execution of a teleoperated task from one to another when necessary. To decide which of the robots is the most suitable to execute the task at every instant, a multiparametric decision function has been defined. This function is based on a set of intrinsic and extrinsic evaluation indexes of the robot. Since the internal operation of the virtual robot must be transparent to the user, a control architecture has been developed.
JTD Keywords: Control engineering computing, Manipulators, Multi-robot systems, Optimsation, Telerobotics, Virtual reality
Gutierrez, A., Marco, S., (2009). Biologically inspired signal processing for chemical sensing Studies in Computational Intelligence GOSPEL Workshop on Bio-inspired Signal Processing (ed. Gutierrez, A., Marco, S.), Springer (Barcelona, Spain) -----, (188), -----
This 167-page book is volume 188 in the series 'Studies in computational intelligence.' This volume contain 9 extensive chapters written in English. This volume presents a collection of research advances in biologically inspired signal processing for chemical sensing. The olfactory system, and the gustatory system to a minor extent, has been taken in the last decades as a source of inspiration to develop artificial sensing systems. The recognition of odors by the olfactory system entails a number of signal processing functions such as preprocessing, dimensionality reduction, contrast enhancement, and classification. Using mathematical models to mimic the architecture of the olfactory system, these processing functions can be applied to chemical sensor signals. This book provides background on the olfactory system including a review on information processing in the insect olfactory system along with a proposed signal processing architecture based on the mammalian cortex. It also provides some bio-inspired approaches to process chemical sensor signals such as an olfactory mucosa to improve odor separation and a model of olfactory receptor neuron convergence to correlated sensor responses to an odor and his organoleptic properties. This book will useful to those working or studying in the areas of sensory reception and computational biology.
JTD Keywords: Nervous System (Neural Coordination), Computer Applications (Computational Biology), Sense Organs (Sensory Reception)
Lopez, M. J., Caballero, D., Campo, E. M., Perez-Castillejos, R., Errachid, A., Esteve, J., Plaza, J. A., (2008). Focused ion beam-assisted technology in sub-picolitre micro-dispenser fabrication Journal of Micromechanics and Microengineering , 18, (7), 8
Novel medical and biological applications are driving increased interest in the fabrication of micropipette or micro-dispensers. Reduced volume samples and drug dosages are prime motivators in this effort. We have combined microfabrication technology with ion beam milling techniques to successfully produce cantilever-type polysilicon micro-dispensers with 3D enclosed microchannels. The microfabrication technology described here allows for the designing of nozzles with multiple shapes. The contribution of ion beam milling has had a large impact on the fabrication process and on further customizing shapes of nozzles and inlet ports. Functionalization tests were conducted to prove the viability of ion beam-fabricated micro-dispensers. Self-assembled monolayers were successfully formed when a gold surface was patterned with a thiol solution dispensed by the fabricated micro-dispensers.
JTD Keywords: Dip-pen nanolithography, Silicon, Deposition, Microneedles, Delivery, Arrays, Polysilicon, Capillary, Systems, Gene
Cho, S., Castellarnau, M., Samitier, J., Thielecke, H., (2008). Dependence of impedance of embedded single cells on cellular behaviour Sensors 8, (2), 1198-1211
Non-invasive single cell analyses are increasingly required for the medical diagnostics of test substances or the development of drugs and therapies on the single cell level. For the non-invasive characterisation of cells, impedance spectroscopy which provides the frequency dependent electrical properties has been used. Recently, microfludic systems have been investigated to manipulate the single cells and to characterise the electrical properties of embedded cells. In this article, the impedance of partially embedded single cells dependent on the cellular behaviour was investigated by using the microcapillary. An analytical equation was derived to relate the impedance of embedded cells with respect to the morphological and physiological change of extracellular interface. The capillary system with impedance measurement showed a feasibility to monitor the impedance change of embedded single cells caused by morphological and physiological change of cell during the addition of DMSO. By fitting the derived equation to the measured impedance of cell embedded at different negative pressure levels, it was able to extrapolate the equivalent gap and gap conductivity between the cell and capillary wall representing the cellular behaviour.
JTD Keywords: Frequency-domain, Spectroscopy, Erythrocytes, Biosensor, Membrane, System
Castellarnau, M., Zine, N., Bausells, J., Madrid, C., Juarez, A., Samitier, J., Errachid, A., (2008). ISFET-based biosensor to monitor sugar metabolism in bacteria Materials Science & Engineering C 5th Maghreb-Europe Meeting on Materials and their Applicatons for Devices and Physical, Chemical and Biological Sensors (ed. -----), Elsevier Science (Mahdia, Tunisia) 28, (5-6), 680-685
We report the use of ion-selective field effect transistor devices (ISFETs) with an integrated pseudo-reference electrode for on-line monitoring of bacterial metabolism by monitoring of the pH variation. As a model we tested the ability of Lactobacillus strains to ferment sugars, producing lactic acid, which results in a decrease in pH in the suspension medium. We have tested and compared sugar uptake by L. sakei and a L. curvatus strains. The results obtained show that it is possible to distinguish between both types of Lactobacillus strains through their pattern of ribose uptake. The use of ISFETs represents a non-invasive methodology that can be used to monitor biological activity in a wide variety of systems.
JTD Keywords: Lactobacillus-sakei, Technology, Sensors, System, Growth, Cells, State, Meat