DONATE

Publications

by Keyword: Rb

Chausse, V, Iglesias, C, Bou-Petit, E, Ginebra, MP, Pegueroles, M, (2023). Chemical vs thermal accelerated hydrolytic degradation of 3D-printed PLLA/PLCL bioresorbable stents: Characterization and influence of sterilization Polymer Testing 117, 107817

Bioresorbable stents (BRS) are designed to provide initial sufficient mechanical support to prevent vessel recoil while being degraded until their complete resorption. Therefore, degradation rate of BRS plays a crucial role in successful stent performance. This work presents a complete study on the degradation of poly-llactic acid (PLLA) and poly(lactic-co-epsilon-caprolactone) (PLCL) stents fabricated by solvent-cast direct-writing (SC-DW) through two different accelerated assays: alkaline medium at 37 degrees C for 10 days and PBS at 50 degrees C for 4 months. On retrieval, degraded stents were characterized in terms of mass loss, molecular weight (Mw), thermal and mechanical properties. The results showed that under alkaline conditions, stents underwent surface erosion, whereas stents immersed in PBS at 50 degrees C experienced bulk degradation. M-n decrease was accurately described by the autocatalyzed kinetic model, with PLCL showing a degradation rate 1.5 times higher than PLLA. Additionally, stents were subjected to gamma-irradiation and ethylene oxide (EtO) sterilization. Whereas EtOsterilized stents remained structurally unaltered, gamma-irradiated stents presented severe deterioration as a result of extensive chain scission.

JTD Keywords: Acid, Behavior, Bioresorbable stents, Copolymer, Hydrolytic degradation, In-vitro degradation, Mechanical-properties, Molecular-weight, Poly(l-lactide), Poly-l-lactic acid, Poly-l-lactide, Scaffolds, Solvent-cast direct-writing, Sterilization


Mughal, S, Lopez-Munoz, GA, Fernandez-Costa, JM, Cortes-Resendiz, A, De Chiara, F, Ramon-Azcon, J, (2022). Organs-on-Chips: Trends and Challenges in Advanced Systems Integration Advanced Materials Interfaces 9, 2201618

Organ-on-chip platforms combined with high-throughput sensing technology allow bridging gaps in information presented by 2D cultures modeled on static microphysiological systems. While these platforms do not aim to replicate whole organ systems with all physiological nuances, they try to mimic relevant structural, physiological, and functional features of organoids and tissues to best model disease and/or healthy states. The advent of this platform has not only challenged animal testing but has also presented the opportunity to acquire real-time, high-throughput data about the pathophysiology of disease progression by employing biosensors. Biosensors allow monitoring of the release of relevant biomarkers and metabolites as a result of physicochemical stress. It, therefore, helps conduct quick lead validation to achieve personalized medicine objectives. The organ-on-chip industry is currently embarking on an exponential growth trajectory. Multiple pharmaceutical and biotechnology companies are adopting this technology to enable quick patient-specific data acquisition at substantially low costs.

JTD Keywords: A-chip, Biosensor, Biosensors, Cancer, Cells, Culture, Disease models, Epithelial electrical-resistance, Hydrogel, Microfabrication, Microphysiological systems, Models, Niches, Organ-on-a-chips, Platform


Sans, J, Arnau, M, Sanz, V, Turon, P, Aleman, C, (2022). Fine-tuning of polarized hydroxyapatite for the catalytic conversion of dinitrogen to ammonium under mild conditions Chemical Engineering Journal 446, 137440

Polarized hydroxyapatite (p-HAp), a calcium phosphate catalyst obtained at high temperature under intense electric field, has been used for the synthesis of ammonium starting from N2 and liquid water at low pressure (<6 bar) and temperatures below 120 C. The success of the nitrogen fixation process has been demonstrated by isotope labelling experiments using 15N2. Considering the optimal reaction conditions for the production of ammonium, the yield is as high as 154.6 +/- 25.8 mu mol/g of catalyst. The proposed synthesis exhibits three important advantages for its utilization in green chemistry environmental processes related to the recycling of polluted air. These are: i) the catalysts converts CO2 into valuable chemical products in addition of transforming N2 in ammonium; ii) the final energy balance is very favorable since no external electrical field is necessary to promote nitrogen and carbon fixation reactions; and iii) products are easily transferred to water favoring their extraction and avoiding the saturation of the catalyst.

JTD Keywords: Adsorbed nitrogen, Air pollution, Amino-acids, Electrophotosynthesis, Environmental process, Facile synthesis, Fixation, Functionalization, Hydroxyapatite, Nitride, Nitrogen reduction, Polarized catalyst


Fontana-Escartin, A, Lanzalaco, S, Bertran, O, Aleman, C, (2022). Electrochemical multi-sensors obtained by applying an electric discharge treatment to 3D-printed poly(lactic acid) Applied Surface Science 597, 153623

Electrochemical sensors for real-time detection of several bioanalytes have been prepared by additive manufacturing, shaping non-conductive poly(lactic acid) (PLA) filaments, and applying a physical treatment to create excited species. The latter process, which consists of the application of power discharge of 100 W during 2 min in a chamber at a low pressure of O-2, converts electrochemically inert PLA into an electrochemically responsive material. The electric discharge caused the oxidation of the PLA surface as evidenced by the increment in the quantity of oxygenated species detected by FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). Indeed, changes in the surface chemical composition became more pronounced with increasing O-2 pressure. After demonstrating the performance of the chemically modified material as individual dopamine and glucose sensors, multiplexed detection has been achieved by measuring simultaneously the two voltammetric signals. This has been performed by collecting the signals in two different regions, a naked chemically modified PLA for dopamine detection and a chemically modified PLA region functionalized with Glucose Oxidase. These outcomes led to define a new paradigm for manufacturing electrodes for electrochemical sensors based on 3D printing without using conducting materials at any stage of the process.

JTD Keywords: Additive manu f a c turing, Carbon, Conductivity, Degradation, Dopamine, Dopamine detection, Glucose detection, Glucose sensors, Immobilization, Multiplexed detect i o n, Oxidase, Plasma treatment


Bonany, M, del-Mazo-Barbara, L, Espanol, M, Ginebra, MP, (2022). Microsphere incorporation as a strategy to tune the biological performance of bioinks Journal Of Tissue Engineering 13,

Although alginate is widely used as a matrix in the formulation of cell-laden inks, this polymer often requires laborious processing strategies due to its lack of cell adhesion moieties. The main objective of the present work was to explore the incorporation of microspheres into alginate-based bioinks as a simple and tuneable way to solve the cell adhesion problems, while adding extra biological functionality and improving their mechanical properties. To this end, three types of microspheres with different mineral contents (i.e. gelatine with 0% of hydroxyapatite, gelatine with 25 wt% of hydroxyapatite nanoparticles and 100 wt% of calcium -deficient hydroxyapatite) were synthesised and incorporated into the formulation of cell-laden inks. The results showed that the addition of microspheres generally improved the rheological properties of the ink, favoured cell proliferation and positively affected osteogenic cell differentiation. Furthermore, this differentiation was found to be influenced by the type of microsphere and the ability of the cells to migrate towards them, which was highly dependent on the stiffness of the bioink. In this regard, Ca2+ supplementation in the cell culture medium had a pronounced effect on the relaxation of the stiffness of these cell-loaded inks, influencing the overall cell performance. In conclusion, we have developed a powerful and tuneable strategy for the fabrication of alginate-based bioinks with enhanced biological characteristics by incorporating microspheres into the initial ink formulation.; [GRAPHICS]; .

JTD Keywords: 3d bioprinting, Alginate, Behavior, Bioink, Cell-culture, Gelatin, Gelatine, Hydrogels, Hydroxyapatite, Laden, Microspheres, Mineralization, Scaffolds


Joseph A, Wagner AM, Garay-Sarmiento M, Aleksanyan M, Haraszti T, Söder D, Georgiev VN, Dimova R, Percec V, Rodriguez-Emmenegger C, (2022). Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes Advanced Materials 34, 2206288

Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, we introduce a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC ) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.

JTD Keywords: biological-membranes, bottom-up synthetic biology, chain, hybrid vesicles, hydroethidine, organization, polymersome, proteins, stability, synthetic cells, thickness, vesicle fusion, vesicle motility, vesicles, zwitterionic dendrimersomes, Biosensor, Biosensors, Bottom-up synthetic biology, Hybrid vesicles, Lipid-bilayers, Synthetic cells, Vesicle fusion, Vesicle motility, Zwitterionic dendrimersomes


Matera, Carlo, Calvé, Pablo, Casadó-Anguera, Verònica, Sortino, Rosalba, Gomila, Alexandre MJ., Moreno, Estefanía, Gener, Thomas, Delgado-Sallent, Cristina, Nebot, Pau, Costazza, Davide, Conde-Berriozabal, Sara, Masana, Mercè, Hernando, Jordi, Casadó, Vicent, Puig, MVictoria, Gorostiza, Pau, (2022). Reversible Photocontrol of Dopaminergic Transmission in Wild-Type Animals International Journal Of Molecular Sciences 23, 10114

Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circuits have limited specificity, reversibility, resolution, or require genetic manipulation. Here, we introduce azodopa, a novel photoswitchable ligand that enables reversible spatiotemporal control of dopaminergic transmission. We demonstrate that azodopa activates D1-like receptors in vitro in a light-dependent manner. Moreover, it enables reversibly photocontrolling zebrafish motility on a timescale of seconds and allows separating the retinal component of dopaminergic neurotransmission. Azodopa increases the overall neural activity in the cortex of anesthetized mice and displays illumination-dependent activity in individual cells. Azodopa is the first photoswitchable dopamine agonist with demonstrated efficacy in wild-type animals and opens the way to remotely controlling dopaminergic neurotransmission for fundamental and therapeutic purposes.

JTD Keywords: behavior, brainwave, d-1, dopamine, gpcr, in vivo electrophysiology, inhibitors, optogenetics, optopharmacology, photochromism, photopharmacology, photoswitch, stimulation, zebrafish, Azobenzene, Receptors


Ordoño J, Pérez-Amodio S, Ball K, Aguirre A, Engel E, (2022). The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes Biomaterials Advances 139, 213035

In situ tissue engineering strategies are a promising approach to activate the endogenous regenerative potential of the cardiac tissue helping the heart to heal itself after an injury. However, the current use of complex reprogramming vectors for the activation of reparative pathways challenges the easy translation of these therapies into the clinic. Here, we evaluated the response of mouse neonatal and human induced pluripotent stem cell-derived cardiomyocytes to the presence of exogenous lactate, thus mimicking the metabolic environment of the fetal heart. An increase in cardiomyocyte cell cycle activity was observed in the presence of lactate, as determined through Ki67 and Aurora-B kinase. Gene expression and RNA-sequencing data revealed that cardiomyocytes incubated with lactate showed upregulation of BMP10, LIN28 or TCIM in tandem with downregulation of GRIK1 or DGKK among others. Lactate also demonstrated a capability to modulate the production of inflammatory cytokines on cardiac fibroblasts, reducing the production of Fas, Fraktalkine or IL-12p40, while stimulating IL-13 and SDF1a. In addition, the generation of a lactate-rich environment improved ex vivo neonatal heart culture, by affecting the contractile activity and sarcomeric structures and inhibiting epicardial cell spreading. Our results also suggested a common link between the effect of lactate and the activation of hypoxia signaling pathways. These findings support a novel use of lactate in cardiac tissue engineering, modulating the metabolic environment of the heart and thus paving the way to the development of lactate-releasing platforms for in situ cardiac regeneration.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

JTD Keywords: cardiac regeneration, cardiac tissue engineering, cell cycle, failure, growth, heart regeneration, induced pluripotent stem cells, ischemia, lactate, metabolic environment, metabolism, mouse, proliferation, repair, Bone morphogenetic protein-10, Cardiac tissue engineering, Cardiomyocytes, Cell cycle, Induced pluripotent stem cells, Lactate, Metabolic environment


Riedelová, Zuzana, de los Santos Pereira, Andres, Svoboda, Jan, Pop‐Georgievski, Ognen, Májek, Pavel, Pečánková, Klára, Dyčka, Filip, Rodriguez‐Emmenegger, Cesar, Riedel, Tomáš, (2022). The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes Macromolecular Bioscience 22, 2200247

Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.

JTD Keywords: biosensor, blood-plasma, coagulation, coatings, compatibility, glycoprotein, hemocompatibility, identification, methacrylate), ms identification, polymer brushes, protein adsorption, surface-chemistry, Antifouling surfaces, High-density-lipoprotein


Varea, Olga, Guinovart, Joan J, Duran, Jordi, (2022). Malin restoration as proof of concept for gene therapy for Lafora disease Brain Commun 4, fcac168

Abstract Lafora disease is a fatal neurodegenerative childhood dementia caused by loss-of-function mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of abnormal glycogen aggregates known as Lafora bodies (LBs) in the brain and other tissues. These aggregates are responsible for the pathological features of the disease. As a monogenic disorder, Lafora disease is a good candidate for gene therapy-based approaches. However, most patients are diagnosed after the appearance of the first symptoms and thus when LBs are already present in the brain. In this context, it was not clear whether the restoration of a normal copy of the defective gene (either laforin or malin) would prove effective. Here we evaluated the effect of restoring malin in a malin-deficient mouse model of Lafora disease as a proof of concept for gene replacement therapy. To this end, we generated a malin-deficient mouse in which malin expression can be induced at a certain time. Our results reveal that malin restoration at an advanced stage of the disease arrests the accumulation of LBs in brain and muscle, induces the degradation of laforin and glycogen synthase bound to the aggregates, and ameliorates neuroinflammation. These results identify malin restoration as the first therapeutic strategy to show effectiveness when applied at advanced stages of Lafora disease.

JTD Keywords: accumulation, gene therapy, glycogen, lafora disease, neurodegeneration, neuroinflammation, neurons, targets, Carbohydrate-binding domain, Glycogen


Lozano-Garcia M, Estrada-Petrocelli L, Blanco-Almazan D, Tas B, Cho PS, Moxham J, Rafferty GF, Torres A, Jane R, Jolley CJ, (2022). Noninvasive Assessment of Neuromechanical and Neuroventilatory Coupling in COPD Ieee Journal Of Biomedical And Health Informatics 26, 3385-3396

This study explored the use of parasternal second intercostal space and lower intercostal space surface electromyogram (sEMG) and surface mechanomyogram (sMMG) recordings (sEMGpara and sMMGpara, and sEMGlic and sMMGlic, respectively) to assess neural respiratory drive (NRD), neuromechanical (NMC) and neuroventilatory (NVC) coupling, and mechanical efficiency (MEff) noninvasively in healthy subjects and chronic obstructive pulmonary disease (COPD) patients. sEMGpara, sMMGpara, sEMGlic, sMMGlic, mouth pressure (Pmo), and volume (Vi) were measured at rest, and during an inspiratory loading protocol, in 16 COPD patients (8 moderate and 8 severe) and 9 healthy subjects. Myographic signals were analyzed using fixed sample entropy and normalized to their largest values (fSEsEMGpara%max, fSEsMMGpara%max, fSEsEMGlic%max, and fSEsMMGlic%max). fSEsMMGpara%max, fSEsEMGpara%max, and fSEsEMGlic%max were significantly higher in COPD than in healthy participants at rest. Parasternal intercostal muscle NMC was significantly higher in healthy than in COPD participants at rest, but not during threshold loading. Pmo-derived NMC and MEff ratios were lower in severe patients than in mild patients or healthy subjects during threshold loading, but differences were not consistently significant. During resting breathing and threshold loading, Vi-derived NVC and MEff ratios were significantly lower in severe patients than in mild patients or healthy subjects. sMMG is a potential noninvasive alternative to sEMG for assessing NRD in COPD. The ratios of Pmo and Vi to sMMG and sEMG measurements provide wholly noninvasive NMC, NVC, and MEff indices that are sensitive to impaired respiratory mechanics in COPD and are therefore of potential value to assess disease severity in clinical practice. Author

JTD Keywords: biomedical measurement, chronic obstructive pulmonary disease, couplings, diaphragm, disease severity, efficiency, electromyography, exacerbations, healthy volunteers, inspiratory muscles, loading, mechanomyography, obstructive pulmonary-disease, pressure measurement, protocols, respiratory mechanics, respiratory muscles, responsiveness, spirometry, stimulation, volume measurement, At rests, Biomedical measurement, Biomedical measurements, Chronic obstructive pulmonary disease, Couplings, Disease severity, Efficiency ratio, Electromyography, Healthy subjects, Healthy volunteers, Loading, Mechanical efficiency, Mechanomyogram, Muscle, Muscles, Neural respiratory drive, Noninvasive medical procedures, Pressure measurement, Protocols, Pulmonary diseases, Surface electromyogram, Volume measurement


Herrero-Gomez, A, Azagra, M, Marco-Rius, I, (2022). A cryopreservation method for bioengineered 3D cell culture models Biomedical Materials 17, 045023

Technologies to cryogenically preserve (a.k.a. cryopreserve) living tissue, cell lines and primary cells have matured greatly for both clinicians and researchers since their first demonstration in the 1950s and are widely used in storage and transport applications. Currently, however, there remains an absence of viable cryopreservation and thawing methods for bioengineered, three-dimensional (3D) cell models, including patients' samples. As a first step towards addressing this gap, we demonstrate a viable protocol for spheroid cryopreservation and survival based on a 3D carboxymethyl cellulose scaffold and precise conditions for freezing and thawing. The protocol is tested using hepatocytes, for which the scaffold provides both the 3D structure for cells to self-arrange into spheroids and to support cells during freezing for optimal post-thaw viability. Cell viability after thawing is improved compared to conventional pellet models where cells settle under gravity to form a pseudo-tissue before freezing. The technique may advance cryobiology and other applications that demand high-integrity transport of pre-assembled 3D models (from cell lines and in future cells from patients) between facilities, for example between medical practice, research and testing facilities.

JTD Keywords: 3d cell culture, Biofabrication, Biomaterials, Carboxymethyl cellulose, Cryopreservation, Hepatocytes, Prevention, Scaffolds, Spheroids


Sans, J, Arnau, M, Roa, JJ, Turon, P, Alernan, C, (2022). Tailorable Nanoporous Hydroxyapatite Scaffolds for Electrothermal Catalysis Acs Applied Nano Materials 5, 8526-8536

Polarized hydroxyapatite (HAp) scaffolds with customized architecture at the nanoscale have been presented as a green alternative to conventional catalysts used for carbon and dinitrogen fixation. HAp printable inks with controlled nanoporosity and rheological properties have been successfully achieved by incorporating Pluronic hydrogel. Nanoporous scaffolds with good mechanical properties, as demonstrated by means of the nanoindentation technique, have been obtained by a sintering treatment and the posterior thermally induced polarization process. Their catalytic activity has been evaluated by considering three different key reactions (all in the presence of liquid water): (1) the synthesis of amino acids from gas mixtures of N-2, CO2, and CH4; (2) the production of ethanol from gas mixtures of CO2 and CH4; and (3) the synthesis of ammonia from N-2 gas. Comparison of the yields obtained by using nanoporous and nonporous (conventional) polarized HAp catalysts shows that both the nanoporosity and water absorption capacity of the former represent a drawback when the catalytic reaction requires auxiliary coating layers, as for example for the production of amino acids. This is because the surface nanopores achieved by incorporating Pluronic hydrogel are completely hindered by such auxiliary coating layers. On the contrary, the catalytic activity improves drastically for reactions in which the HAp-based scaffolds with enhanced nanoporosity are used as catalysts. More specifically, the carbon fixation from CO2 and CH4 to yield ethanol improves by more than 3000% when compared with nonporous HAp catalyst. Similarly, the synthesis of ammonia by dinitrogen fixation increases by more than 2000%. Therefore, HAp catalysts based on nanoporous scaffolds exhibit an extraordinary potential for scalability and industrial utilization for many chemical reactions, enabling a feasible green chemistry alternative to catalysts based on heavy metals.

JTD Keywords: Amino acids, Amino-acids, Ammonium production, Bone, Carbon fixation, Composites, Constitutive phases, Decarbonization, Dinitrogen, Ditrogen fixation, Elastic-modulus, Electrophotosynthesis, Ethanol production, Hardness, Indentation, Nanoindentation, Pluronic hydrogel, Polarized hydroxyapatite


Yang, Bingquan, Wang, Yangxin, Vorobii, Mariia, Sauter, Eric, Koenig, Meike, Kumar, Ravi, Rodriguez-Emmenegger, Cesar, Hirtz, Michael, (2022). Evaluation of Dibenzocyclooctyne and Bicyclononyne Click Reaction on Azido-Functionalized Antifouling Polymer Brushes via Microspotting Advanced Materials Interfaces 9, 2102325

Tas B, Kalk NJ, Lozano- García M, Rafferty GF, Cho PSP, Kelleher M, Moxham J, Strang J, Jolley CJ, (2022). Undetected Respiratory Depression in People with Opioid Use Disorder Drug And Alcohol Dependence 234, 109401

Background: Opioid-related deaths are increasing globally. Respiratory complications of opioid use and underlying respiratory disease in people with Opioid Use Disorder (OUD) are potential contributory factors. Individual variation in susceptibility to overdose is, however, incompletely understood. This study investigated the prevalence of respiratory depression (RD) in OUD treatment and compared this to patients with chronic obstructive pulmonary disease (COPD) of equivalent severity. We also explored the contribution of opioid agonist treatment (OAT) dosage, and type, to the prevalence of RD. Methods: There were four groups of participants: 1) OUD plus COPD (‘OUD-COPD’, n = 13); 2) OUD without COPD (‘OUD’, n = 7); 3) opioid-naïve COPD patients (‘COPD'n = 13); 4) healthy controls (‘HC'n = 7). Physiological indices, including pulse oximetry (SpO2%), end-tidal CO2 (ETCO2), transcutaneous CO2 (TcCO2), respiratory airflow and second intercostal space parasternal muscle electromyography (EMGpara), were recorded continuously over 40 min whilst awake at rest. Significant RD was defined as: SpO2%< 90% for > 10 s, ETCO2 per breath > 6.6 kPa, TcCO2 overall mean > 6 kPa, respiratory pauses > 10 s Results: At least one indicator was observed in every participant with OUD (n = 20). This compared to RD episode occurrence in only 2/7 HC and 2/13 COPD participants (p < 0.05,Fisher's exact test). The occurrence of RD was similar in OUD participants prescribed methadone (n = 6) compared to those prescribed buprenorphine (n = 12). Conclusions: Undetected RD is common in OUD cohorts receiving OAT and is significantly more severe than in opioid-naïve controls. RD can be assessed using simple objective measures. Further studies are required to determine the association between RD and overdose risk. © 2022 Elsevier B.V.

JTD Keywords: Comorbidity, Lung disease, Opioid substitution treatment, Opioids, Overdose, Respiratory depression


Moreira, VB, Aleman, C, Rintjema, J, Bravo, F, Kleij, AW, Armelin, E, (2022). A Biosourced Epoxy Resin for Adhesive Thermoset Applications Chemsuschem 15, e202102624

Biobased epoxy-derived raw materials will be essential for future coating and adhesive designs in industry. Here, a facile approach is reported towards the incorporation of limonene into an epoxy-functionalized polycarbonate and its crosslinking with a polyamine curing agent to obtain a thermoset material. For the first time, a solvent-borne adhesive with excellent film-forming, mechanical and adhesion strength properties is described.

JTD Keywords: adhesives, biobased epoxies, limonene, polycarbonate, Adhesives, Biobased epoxies, Biobased epoxy, Carbon-dioxide, Curing agents, Design in industries, Epoxides, Epoxy, Epoxy resins, Film adhesion, Film-forming, Functionalized, Limonene, Mechanical, Monomer, Monoterpenes, Oil, Oxide, Performance, Polyamines, Polycarbonate, Polycarbonates, Terpenes, Thermoset materials, Thermosets


Sans J, Arnau M, Sanz V, Turon P, Alemán C, (2022). Hydroxyapatite-based biphasic catalysts with plasticity properties and its potential in carbon dioxide fixation Chemical Engineering Journal 433, 133512

The design of catalysts with controlled selectivity at will, also known as catalytic plasticity, is a very attractive approach for the recycling of carbon dioxide (CO2). In this work, we study how catalytically active hydroxyapatite (HAp) and brushite (Bru) interact synergistically, allowing the production of formic acid or acetic acid depending on the HAp/Bru ratio in the catalyst. Raman, wide angle X-ray scattering, X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical impedance spectroscopy studies, combined with an exhaustive revision of the crystalline structure of the catalyst at the atomic level, allowed to discern how the Bru phase can be generated and stabilized at high temperatures. Results clearly indicate that the presence of OH– groups to maintain the crystalline structural integrity in conjunction with Ca2+ ions less bonded to the lattice fixate carbon into C1, C2 and C3 molecules from CO2 and allow the evolution from formic to acetic acid and acetone. In this way, the plasticity of the HAp-Bru system is demonstrated, representing a promising green alternative to the conventional metal-based electrocatalysts used for CO2 fixation. Thus, the fact that no electric voltage is necessary for the CO2 reduction has a very favorable impact in the final energetic net balance of the carbon fixation reaction. © 2021

JTD Keywords:

ethanol production & nbsp, brushite, co2 reduction, conversion, electrocatalytic reduction, electrode, formate, heterogeneous catalysis & nbsp, hydrogen evolution, insights, monetite, polarized hydroxyapatite,

, Acetic acid, Acetone, Biphasic catalyst, Brushite, Calcium phosphate, Carbon dioxide, Carbon dioxide fixation, Catalysis, Catalyst selectivity, Co 2 reduction, Co2 reduction, Electrocatalysts, Electrochemical impedance spectroscopy, Electrochemical reduction, Electrochemical-impedance spectroscopies, Ethanol production, Formic acid, Heterogeneous catalysis, Hydroxyapatite, Ph, Polarized hydroxyapatite, Property, Reduction, Scanning electron microscopy, Temperature programmed desorption, Wide angle x-ray scattering, X ray photoelectron spectroscopy, X ray scattering, ]+ catalyst


Bonamigo Moreira, Vitor, Rintjema, Jeroen, Bravo, Fernando, Kleij, Arjan W., Franco, Lourdes, Puiggalí, Jordi, Alemán, Carlos, Armelin, Elaine, (2022). Novel Biobased Epoxy Thermosets and Coatings from Poly(limonene carbonate) Oxide and Synthetic Hardeners Acs Sustainable Chemistry & Engineering 10, 2708-2719

In the area of coating development, it is extremely difficult to find a substitute for bisphenol A diglycidyl ether (DGEBA), the classical petroleum-based raw material used for the formulation of epoxy thermosets. This epoxy resin offers fast curing reaction with several hardeners and the best thermal and chemical resistance properties for applications in coatings and adhesive technologies. In this work, a new biobased epoxy, derived from poly(limonene carbonate) oxide (PLCO), was combined with polyetheramine and polyamineamide curing agents, offering a spectrum of thermal and mechanical properties, superior to DGEBA-based thermosets. The best formulation was found to be a combination of PLCO and a commercial curing agent (Jeffamine) in a stoichiometric 1:1 ratio. Although PLCO is a solid due to its high molecular weight, it was possible to create a two-component partially biobased epoxy paint without the need of volatile organic compounds (i.e., solvent-free formulation), intended for use in coating technology to partially replace DGEBA-based thermosets.

JTD Keywords: acid, adhesion, epoxy thermoset, mechanical properties, monomer, polycarbonates, polymers, protection, resins, solvent-free paint, thermal properties, Adhesives, Biobased epoxy, Bisphenol-a-diglycidyl ethers, Carbonation, Coating development, Coating technologies, Curing, Curing agents, Epoxy coatings, Epoxy resins, Epoxy thermoset, Epoxy thermosets, Limonene oxide, Mechanical properties, Monoterpenes, Paint, Poly(limonene carbonate) oxide, Solvent free, Solvent-free paint, Thermal properties, Thermosets, Volatile organic compounds


Freire R, Mego M, Oliveira LF, Mas S, Azpiroz F, Marco S, Pardo A, (2022). Quantitative GC–TCD Measurements of Major Flatus Components: A Preliminary Analysis of the Diet Effect Sensors 22, 838

The impact of diet and digestive disorders in flatus composition remains largely unexplored. This is partially due to the lack of standardized sampling collection methods, and the easy atmospheric contamination. This paper describes a method to quantitatively determine the major gases in flatus and their application in a nutritional intervention. We describe how to direct sample flatus into Tedlar bags, and simultaneous analysis by gas chromatography–thermal conductivity detection (GC–TCD). Results are analyzed by univariate hypothesis testing and by multilevel principal component analysis. The reported methodology allows simultaneous determination of the five major gases with root mean measurement errors of 0.8% for oxygen (O2), 0.9% for nitrogen (N2), 0.14% for carbon dioxide (CO2), 0.11% for methane (CH4), and 0.26% for hydrogen (H2). The atmospheric contamination was limited to 0.86 (95% CI: [0.7–1.0])% for oxygen and 3.4 (95% CI: [1.4–5.3])% for nitrogen. As an illustration, the method has been successfully applied to measure the response to a nutritional intervention in a reduced crossover study in healthy subjects. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: breath, colonic microbiota, diet effect on flatus, disorders, evacuation, excretion, flatulence, hydrogen gas, major flatus gas components, multilevel principal component analysis, rectal gas collection, systems, volume, Atmospheric contamination, Carbon dioxide, Conductivity detection, Diet effect on flatus, Gas chromatography, Gas collections, Gas component, Gases, Major flatus gas component, Major flatus gas components, Multilevel principal component analyse, Multilevel principal component analysis, Multilevels, Nitrogen, Nutrition, Oxygen, Principal component analysis, Principal-component analysis, Rectal gas collection, Volatile organic-compounds


Gawish R, Starkl P, Pimenov L, Hladik A, Lakovits K, Oberndorfer F, Cronin SJF, Ohradanova-Repic A, Wirnsberger G, Agerer B, Endler L, Capraz T, Perthold JW, Cikes D, Koglgruber R, Hagelkruys A, Montserrat N, Mirazimi A, Boon L, Stockinger H, Bergthaler A, Oostenbrink C, Penninger JM, Knapp S, (2022). ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF-and IFNy-driven immunopathology Elife 11, e74623

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cyto-kines IFN? and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo. © Gawish et al.

JTD Keywords: covid-19 mouse model, covid-19 therapy, cytokine storm, mavie16, mouse, program, recombinant soluble ace2, tmprss2, Adaptive immunity, Angiotensin converting enzyme 2, Angiotensin-converting enzyme 2, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Apoptosis, Article, Bagg albino mouse, Breathing rate, Bronchoalveolar lavage fluid, C57bl mouse, Cell composition, Cell infiltration, Controlled study, Coronavirus disease 2019, Coronavirus spike glycoprotein, Covid-19, Cytokeratin 18, Cytokine production, Dipeptidyl carboxypeptidase, Disease model, Disease models, animal, Disease severity, Drosophila-melanogaster, Enzyme linked immunosorbent assay, Expression vector, Flow cytometry, Gamma interferon, Gene editing, Gene expression, Gene mutation, Genetic engineering, Genetics, Glycosylation, High mobility group b1 protein, Histology, Histopathology, Immune response, Immunocompetent cell, Immunology, Immunopathology, Interferon-gamma, Interleukin 2, Metabolism, Mice, inbred balb c, Mice, inbred c57bl, Mouse-adapted sars-cov-2, Myeloperoxidase, Neuropilin 1, Nonhuman, Nucleocapsid protein, Pathogenicity, Peptidyl-dipeptidase a, Pyroptosis, Renin angiotensin aldosterone system, Rna extraction, Rna isolation, Sars-cov-2, Severe acute respiratory syndrome coronavirus 2, Spike glycoprotein, coronavirus, T lymphocyte activation, Trabecular meshwork, Tumor necrosis factor, Virology, Virus load, Virus replication, Virus transmission, Virus virulence


Páscoa dos Santos F, Verschure PFMJ, (2022). Excitatory-Inhibitory Homeostasis and Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex Frontiers In Systems Neuroscience 15, 806544

Maintaining a balance between excitatory and inhibitory activity is an essential feature of neural networks of the neocortex. In the face of perturbations in the levels of excitation to cortical neurons, synapses adjust to maintain excitatory-inhibitory (EI) balance. In this review, we summarize research on this EI homeostasis in the neocortex, using stroke as our case study, and in particular the loss of excitation to distant cortical regions after focal lesions. Widespread changes following a localized lesion, a phenomenon known as diaschisis, are not only related to excitability, but also observed with respect to functional connectivity. Here, we highlight the main findings regarding the evolution of excitability and functional cortical networks during the process of post-stroke recovery, and how both are related to functional recovery. We show that cortical reorganization at a global scale can be explained from the perspective of EI homeostasis. Indeed, recovery of functional networks is paralleled by increases in excitability across the cortex. These adaptive changes likely result from plasticity mechanisms such as synaptic scaling and are linked to EI homeostasis, providing a possible target for future therapeutic strategies in the process of rehabilitation. In addition, we address the difficulty of simultaneously studying these multiscale processes by presenting recent advances in large-scale modeling of the human cortex in the contexts of stroke and EI homeostasis, suggesting computational modeling as a powerful tool to tie the meso- and macro-scale processes of recovery in stroke patients. Copyright © 2022 Páscoa dos Santos and Verschure.

JTD Keywords: balanced excitation, canonical microcircuit, cerebral-cortex, cortical excitability, cortical reorganization, diaschisis, excitability, excitatory-inhibitory balance, functional networks, homeostatic plasticity, ischemic-stroke, neuronal avalanches, photothrombotic lesions, state functional connectivity, whole-brain models, Algorithm, Biological marker, Brain, Brain cell, Brain cortex, Brain function, Brain radiography, Cerebrovascular accident, Cortical reorganization, Diaschisis, Down regulation, Excitability, Excitatory-inhibitory balance, Fluorine magnetic resonance imaging, Functional networks, Homeostasis, Homeostatic plasticity, Human, Motor dysfunction, Neuromodulation, Plasticity, Pyramidal nerve cell, Review, Simulation, Stroke, Stroke patient, Theta-burst stimulation, Visual cortex


Sans, Jordi, Sanz, Vanesa, Turon, Pau, Alemán, Carlos, (2021). Enhanced CO2 Conversion into Ethanol by Permanently Polarized Hydroxyapatite through C-C Coupling Chemcatchem 13, 5025-5033

Chacon DS, Torres TM, da Silva IB, de Araújo TF, Roque AdA, Pinheiro FASD, Selegato D, Pilon A, Reginaldo FPS, da Costa CT, Vilasboa J, Freire RT, Voigt EL, Zuanazzi JAS, Libonati R, Rodrigues JA, Santos FLM, Scortecci KC, Lopes NP, Ferreira LDS, dos Santos LV, Cavalheiro AJ, Fett-Neto AG, Giordani RB, (2021). Erythrina velutina Willd. alkaloids: Piecing biosynthesis together from transcriptome analysis and metabolite profiling of seeds and leaves Journal Of Advanced Research 34, 123-136

© 2021 Introduction: Natural products of pharmaceutical interest often do not reach the drug market due to the associated low yields and difficult extraction. Knowledge of biosynthetic pathways is a key element in the development of biotechnological strategies for plant specialized metabolite production. The scarce studies regarding non-model plants impair advances in this field. Erythrina spp. are mainly used as central nervous system depressants in folk medicine and are important sources of bioactive tetracyclic benzylisoquinoline alkaloids, which can act on several pathology-related biological targets. Objective: Herein the purpose is to employ combined transcriptome and metabolome analyses (seeds and leaves) of a non-model medicinal Fabaceae species grown in its unique arid natural habitat. The study tries to propose a putative biosynthetic pathway for the bioactive alkaloids by using an omic integrated approach. Methods: The Next Generation Sequencing-based transcriptome (de novo RNA sequencing) was carried out in a Illumina NextSeq 500 platform. Regarding the targeted metabolite profiling, Nuclear Magnetic Resonance and the High-Performance Liquid Chromatography coupled to a micrOTOF-QII, High Resolution Mass Spectrometer, were used. Results: This detailed macro and micromolecular approach applied to seeds and leaves of E. velutina revealed 42 alkaloids by metabolome tools. Based on the combined evidence, 24 gene candidates were put together in a putative pathway leading to the singular alkaloid diversity of this species. Conclusion: These results contribute by indicating potential biotechnological targets Erythrina alkaloids biosynthesis as well as to improve molecular databases with omic data from a non-model medicinal plant. Furthermore, they reveal an interesting chemical diversity in Erythrina velutina harvested in Caatinga. Last, but not least, this data may also contribute to tap Brazilian biodiversity in a rational and sustainable fashion, promoting adequate public policies for preservation and protection of sensitive areas within the Caatinga.

JTD Keywords: benzylisoquinoline alkaloids, caatinga, codeinone reductase, erythrina velutina, expression, mass-spectrometry, molecular-cloning, morphine biosynthesis, natural-products, opium poppy, papaver-somniferum, plant-metabolism, targeted metabolite profile, transcriptome, Benzylisoquinoline alkaloids, Berberine bridge enzyme, Caatinga, Erythrina velutina, Targeted metabolite profile, Transcriptome


García-Mintegui C, Córdoba LC, Buxadera-Palomero J, Marquina A, Jiménez-Piqué E, Ginebra MP, Cortina JL, Pegueroles M, (2021). Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility Bioactive Materials 6, 4430-4446

In the recent decades, zinc (Zn) and its alloys have been drawing attention as promising candidates for bioresorbable cardiovascular stents due to its degradation rate more suitable than magnesium (Mg) and iron (Fe) alloys. However, its mechanical properties need to be improved in order to meet the criteria for vascular stents. This work investigates the mechanical properties, biodegradability and biocompatibility of Zn-Mg and Zn-Cu alloys in order to determine a proper alloy composition for optimal stent performance. Nanoindentation measurements are performed to characterize the mechanical properties at the nanoscale as a function of the Zn microstructure variations induced by alloying. The biodegradation mechanisms are discussed and correlated to microstructure, mechanical performance and bacterial/cell response. Addition of Mg or Cu alloying elements refined the microstructure of Zn and enhanced yield strength (YS) and ultimate tensile strength (UTS) proportional to the volume fraction of secondary phases. Zn-1Mg showed the higher YS and UTS and better performance in terms of degradation stability in Hanks’ solution. Zn-Cu alloys presented an antibacterial effect for S. aureus controlled by diffusion mechanisms and by contact. Biocompatibility was dependent on the degradation rate and the nature of the corrosion products.

JTD Keywords: behavior, biocompatibility, biodegradable metals, bioresorbable metals, bioresorbable scaffold, copper, corrosion properties, elastic-modulus, galvanic corrosion, microstructure, nanoindentation, redox homeostasis, zinc, Biocompatibility, Bioresorbable metals, Galvanic corrosion, Nanoindentation, Room-temperature superplasticity, Zinc alloys


Lopez-Muñoz, Gerardo A, Fernández-Costa, Juan M, Ortega, Maria Alejandra, Balaguer-Trias, Jordina, Martin-Lasierra, Eduard, Ramón-Azcón, Javier, (2021). Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles Nanophotonics 10, 4477-4488

Abstract The development of nanostructured plasmonic biosensors has been widely widespread in the last years, motivated by the potential benefits they can offer in integration, miniaturization, multiplexing opportunities, and enhanced performance label-free biodetection in a wide field of applications. Between them, engineering tissues represent a novel, challenging, and prolific application field for nanostructured plasmonic biosensors considering the previously described benefits and the low levels of secreted biomarkers (?pM–nM) to detect. Here, we present an integrated plasmonic nanocrystals-based biosensor using high throughput nanostructured polycarbonate substrates. Metallic film thickness and incident angle of light for reflectance measurements were optimized to enhance the detection of antibody–antigen biorecognition events using numerical simulations. We achieved an enhancement in biodetection up to 3× as the incident angle of light decreases, which can be related to shorter evanescent decay lengths. We achieved a high reproducibility between channels with a coefficient of variation below 2% in bulk refractive index measurements, demonstrating a high potential for multiplexed sensing. Finally, biosensing potential was demonstrated by the direct and label-free detection of interleukin-6 biomarker in undiluted cell culture media supernatants from bioengineered 3D skeletal muscle tissues stimulated with different concentrations of endotoxins achieving a limit of detection (LOD) of ? 0.03 ng/mL (1.4 pM).

JTD Keywords: assay, crystals, drug, label-free biosensing, molecules, plasmonic nanostructures, sensors, skeletal muscle, tissue engineering, Biodetection, Biomarkers, Biosensors, Cell culture, Cells, Chemical detection, Histology, Interleukin-6, Interleukin6 (il6), Label free, Label-free biosensing, Muscle, Nano-structured, Nanocrystals, Plasmonic nanocrystals, Plasmonic nanostructures, Plasmonics, Polycarbonate substrates, Polycarbonates, Refractive index, Sensitivity, Skeletal muscle, Tissue engineering, Tissues engineerings


Chausse, Victor, Schieber, Romain, Raymond, Yago, Ségry, Brian, Sabaté, Ramon, Kolandaivelu, Kumaran, Ginebra, Maria-Pau, Pegueroles, Marta, (2021). Solvent-cast direct-writing as a fabrication strategy for radiopaque stents Additive Manufacturing 48,

Raymond Y, Bonany M, Lehmann C, Thorel E, Benítez R, Franch J, Espanol M, Solé-Martí X, Manzanares MC, Canal C, Ginebra MP, (2021). Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment Acta Biomaterialia 135, 671-688

Hydrothermal (H) processes accelerate the hydrolysis reaction of α-tricalcium phosphate (α-TCP) compared to the long-established biomimetic (B) treatments. They are of special interest for patient-specific 3D-printed bone graft substitutes, where the manufacturing time represents a critical constraint. Altering the reaction conditions has implications for the physicochemical properties of the reaction product. However, the impact of the changes produced by the hydrothermal reaction on the in vivo performance was hitherto unknown. The present study compares the bone regeneration potential of 3D-printed α-TCP scaffolds hardened using these two treatments in rabbit condyle monocortical defects. Although both consolidation processes resulted in biocompatible scaffolds with osseointegrative and osteoconductive properties, the amount of newly formed bone increased by one third in the hydrothermal vs the biomimetic samples. B and H scaffolds consisted mostly of high specific surface area calcium-deficient hydroxyapatite (38 and 27 m2 g-1, respectively), with H samples containing also 10 wt.% β-tricalcium phosphate (β-TCP). The shrinkage produced during the consolidation process was shown to be very small in both cases, below 3%, and smaller for H than for B samples. The differences in the in vivo performance were mainly attributed to the distinct crystallisation nanostructures, which proved to have a major impact on permeability and protein adsorption capacity, using BSA as a model protein, with B samples being highly impermeable. Given the crucial role that soluble proteins play in osteogenesis, this is proposed to be a relevant factor behind the distinct in vivo performances observed for the two materials. Statement of significance: The possibility to accelerate the consolidation of self-setting calcium phosphate inks through hydrothermal treatments has aroused great interest due to the associated advantages for the development of 3D-printed personalised bone scaffolds. Understanding the implications of this approach on the in vivo performance of the scaffolds is of paramount importance. This study compares, for the first time, this treatment to the long-established biomimetic setting strategy in terms of osteogenic potential in vivo in a rabbit model, and relates the results obtained to the physicochemical properties of the 3D-printed scaffolds (composition, crystallinity, nanostructure, nanoporosity) and their interaction with soluble proteins.

JTD Keywords: 3d printing, behavior, biomimetic, bone scaffolds, calcium phosphate, deficient hydroxyapatite, design, graft, hydrothermal, in vivo, morbidity, osteoinduction, porosity, standard, tricalcium phosphate, 3d printing, Biomimetic, Bone scaffolds, Calcium phosphate, Fibula free-flap, Hydrothermal, In vivo


Velasco-Mallorqui, F, Rodriguez-Comas, J, Ramon-Azcon, J, (2021). Cellulose-based scaffolds enhance pseudoislets formation and functionality Biofabrication 13,

In vitro research for the study of type 2 diabetes (T2D) is frequently limited by the availability of a functional model for islets of Langerhans. To overcome the limitations of obtaining pancreatic islets from different sources, such as animal models or human donors, immortalized cell lines as the insulin-producing INS1E beta-cells have appeared as a valid alternative to model insulin-related diseases. However, immortalized cell lines are mainly used in flat surfaces or monolayer distributions, not resembling the spheroid-like architecture of the pancreatic islets. To generate islet-like structures, the use of scaffolds appeared as a valid tool to promote cell aggregations. Traditionally-used hydrogel encapsulation methods do not accomplish all the requisites for pancreatic tissue engineering, as its poor nutrient and oxygen diffusion induces cell death. Here, we use cryogelation technology to develop a more resemblance scaffold with the mechanical and physical properties needed to engineer pancreatic tissue. This study shows that carboxymethyl cellulose (CMC) cryogels prompted cells to generate beta-cell clusters in comparison to gelatin-based scaffolds, that did not induce this cell organization. Moreover, the high porosity achieved with CMC cryogels allowed us to create specific range pseudoislets. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 d and a better response to glucose over conventional monolayer cultures. Overall, our results demonstrate that CMC-scaffolds can be used to control the organization and function of insulin-producing beta-cells, representing a suitable technique to generate beta-cell clusters to study pancreatic islet function.

JTD Keywords: biomaterial, cryogel, pancreatic islets, scaffold, tissue engineering, ?-cell, Architecture, Beta-cell, Beta-cell heterogeneity, Biomaterial, Carboxymethyl cellulose, Cell culture, Cell death, Cell engineering, Cell organization, Cells, Cellulose, Cryogel, Cryogels, Cytoarchitecture, Delivery, Encapsulation methods, Gelation, Gene-expression, Immortalized cells, Insulin, Insulin secretory responses, Islets of langerhans, Mechanical and physical properties, Monolayer culture, Monolayers, Pancreatic islets, Pancreatic tissue, Pancreatic-islets, Proliferation, Scaffold, Scaffolds, Scaffolds (biology), Size, Tissue, Tissue engineering


Cereta, AD, Oliveira, VR, Costa, IP, Guimaraes, LL, Afonso, JPR, Fonseca, AL, de Sousa, ART, Silva, GAM, Mello, DACPG, de Oliveira, LVF, da Palma, RK, (2021). Early Life Microbial Exposure and Immunity Training Effects on Asthma Development and Progression Frontiers Of Medicine 8, 662262

Asthma is the most common inflammatory disease affecting the lungs, which can be caused by intrauterine or postnatal insults depending on the exposure to environmental factors. During early life, the exposure to different risk factors can influence the microbiome leading to undesired changes to the immune system. The modulations of the immunity, caused by dysbiosis during development, can increase the susceptibility to allergic diseases. On the other hand, immune training approaches during pregnancy can prevent allergic inflammatory diseases of the airways. In this review, we focus on evidence of risk factors in early life that can alter the development of lung immunity associated with dysbiosis, that leads to asthma and affect childhood and adult life. Furthermore, we discuss new ideas for potential prevention strategies that can be applied during pregnancy and postnatal period.

JTD Keywords: asthma, dysbiosis, early life immunity, lung microbiome, Adulthood, Antibiotic exposure, Asthma, Childhood, Disease, Disease exacerbation, Dysbiosis, Early life immunity, Gut microbiome, Human, Immunity, Intestine flora, Lung development, Lung microbiome, Lung microbiota, Nonhuman, Perinatal period, Pregnancy, Prevention, Prevention strategies, Review, Risk, Risk factor, Sensitization, Supplementation, Vitamin-d, Wheeze


De Matteis V, Rizzello L, Ingrosso C, Rinaldi R, (2021). Purification of olive mill wastewater through noble metal nanoparticle synthesis: waste safe disposal and nanomaterial impact on healthy hepatic cell mitochondria Environmental Science And Pollution Research 28, 26154-26171

The exponential increase of waste derived from different human activities points out the importance of their reuse in order to create materials with specific properties that can be used for different applications. In this work, it was showed how the typical Mediterranean organic liquid waste, namely olive mill wastewater (OMWW), obtained during olive oil production, can be turned into an efficient reactive agent for the production of noble metals gold (Au) and silver nanoparticles (Ag NPs) with very well-defined physico-chemical properties. More than that, it was demonstrated that this synthetic procedure also leads to a drastic decrease of the organic pollution load of the OMWW, making it safer for environmental disposal and plants irrigation. Then, using healthy hepatic cell line mitochondria, the biological effects induced by these green metal NPs surrounded by a polyphenols shell, with the same NPs synthetized through a standard chemical colloidal reduction process, were compared, finding out that the green NPs are much safer.

JTD Keywords: antioxidants perturbation, green synthesis, gtpase dynamin-related protein 1 expression, mitochondria assessment, physico-chemical properties, Antioxidants perturbation, Green synthesis, Gtpase dynamin-related protein 1 expression, Mitochondria assessment, Physico-chemical properties, Reusability of waste


Sans, J, Sanz, V, del Valle, LJ, Puiggali, J, Turon, P, Aleman, C, (2021). Optimization of permanently polarized hydroxyapatite catalyst. Implications for the electrophotosynthesis of amino acids by nitrogen and carbon fixation Journal Of Catalysis 397, 98-107

The enhanced catalytic activity of permanently polarized hydroxyapatite, which is achieved using a thermally stimulated polarization process, largely depends on both the experimental conditions used to prepare crystalline hydroxyapatite from its calcium and phosphate precursors and the polarization process parameters. A mineral similar to brushite, which is an apatitic phase that can evolve to hydroxyapatite, is found at the surface of highly crystalline hydroxyapatite. It appears after chemical precipitation and hydrothermal treatment performed at 150 degrees C for 24 h followed by a sinterization at 1000 degrees C and a polarization treatment by applying a voltage of 500 Vat high temperature. Both the high crystallinity and the presence of brushite-like phase on the electrophotocatalyst affect the nitrogen and carbon fixation under mild reaction conditions (95 degrees C and 6 bar) and the synthesis of glycine and alanine from a simple gas mixture containing N-2, CO2, CH4 and H2O. Thus, the Gly/Ala ratio can be customized by controlling the presence of brushite on the surface of the catalyst, enabling to develop new strategies to regulate the production of amino acids by nitrogen and carbon fixation. (C) 2021 Elsevier Inc. All rights reserved.

JTD Keywords: Amino acids, Brushite, Carbon, Carbon dioxide fixation, Catalyst activity, Catalytic apatites, Chemical precipitation, Crystalline hydroxyapatite, Crystallinity, Decomposition, Enhanced catalytic activity, Experimental conditions, Heterogeneous catalysis, High crystallinity, Hydrothermal synthesis, Hydrothermal treatments, Hydroxyapatite, Lactic-acid, Mild reaction conditions, Molecular nitrogen fixation, Nitrogen, Nitrogen fixation, Phosphate, Polarization, Precipitation (chemical), Process parameters, Thermally stimulated polarization


Vilela D, Blanco-Cabra N, Eguskiza A, Hortelao AC, Torrents E, Sanchez S, (2021). Drug-Free Enzyme-Based Bactericidal Nanomotors against Pathogenic Bacteria Acs Applied Materials & Interfaces 13, 14964-14973

The low efficacy of current conventional treatments for bacterial infections increases mortality rates worldwide. To alleviate this global health problem, we propose drug-free enzyme-based nanomotors for the treatment of bacterial urinary-tract infections. We develop nanomotors consisting of mesoporous silica nanoparticles (MSNPs) that were functionalized with either urease (U-MSNPs), lysozyme (L-MSNPs), or urease and lysozyme (M-MSNPs), and use them against nonpathogenic planktonic Escherichia coli. U-MSNPs exhibited the highest bactericidal activity due to biocatalysis of urea into NaHCO3 and NH3, which also propels U-MSNPs. In addition, U-MSNPs in concentrations above 200 μg/mL were capable of successfully reducing 60% of the biofilm biomass of a uropathogenic E. coli strain. This study thus provides a proof-of-concept, demonstrating that enzyme-based nanomotors are capable of fighting infectious diseases. This approach could potentially be extended to other kinds of diseases by selecting appropriate biomolecules.

JTD Keywords: biofilms, carbonate, e. coli, enzymatic nanomotors, infections, lysozyme, micromotors, nanomachines, proteins, self-propulsion, Biofilms, E. coli, Eliminate escherichia-coli, Enzymatic nanomotors, Infections, Nanomachines, Self-propulsion


Ruano G, Iribarren JI, Pérez-Madrigal MM, Torras J, Alemán C, (2021). Electrical and capacitive response of hydrogel solid-like electrolytes for supercapacitors Polymers 13,

Flexible hydrogels are attracting significant interest as solid-like electrolytes for energy storage devices, especially for supercapacitors, because of their lightweight and anti-deformation features. Here, we present a comparative study of four ionic conductive hydrogels derived from biopolymers and doped with 0.1 M NaCl. More specifically, such hydrogels are constituted by κcarrageenan (κC), carboxymethyl cellulose (CMC), poly-γ-glutamic acid (PGGA) or a phenylalaninecontaining polyesteramide (PEA). After examining the morphology and the swelling ratio of the four hydrogels, which varies between 483% and 2356%, their electrical and capacitive behaviors were examined using electrochemical impedance spectroscopy. Measurements were conducted on devices where a hydrogel film was sandwiched between two identical poly(3,4-ethylenedioxythiophene) electrodes. The bulk conductivity of the prepared doped hydrogels is 76, 48, 36 and 34 mS/cm for PEA, PGGA, κC and CMC, respectively. Overall, the polyesteramide hydrogel exhibits the most adequate properties (i.e., low electrical resistance and high capacitance) to be used as semi-solid electrolyte for supercapacitors, which has been attributed to its distinctive structure based on the homogeneous and abundant distribution of both micro-and nanopores. Indeed, the morphology of the polyestermide hydrogel reduces the hydrogel resistance, enhances the transport of ions, and results in a better interfacial contact between the electrodes and solid electrolyte. The correlation between the supercapacitor performance and the hydrogel porous morphology is presented as an important design feature for the next generation of light and flexible energy storage devices for wearable electronics.

JTD Keywords: biopolymers, electrochemical impedance spectroscopy, flexible hydrogels, supercapacitor, Biopolymers, Electrochemical impedance spectroscopy, Flexible hydrogels, Supercapacitor


Hodásová L, Sans J, Molina BG, Alemán C, Llanes L, Fargas G, Armelin E, (2021). Polymer infiltrated ceramic networks with biocompatible adhesive and 3D-printed highly porous scaffolds Additive Manufacturing 39

© 2021 Elsevier B.V. Herein, for the first time is described the design of a novel porous zirconia scaffolds manufactured by using polymer-infiltrated ceramic network (PICN) and 3D-printing technologies. Cubic geometry of pieces was obtained by perpendicular layer-by-layer deposition of yttrium-stabilized tetragonal zirconia polycrystal (3Y-TZP) and Pluronic® hydrogel ceramic paste. The specimens were prepared by robocasting assembly with 50% infill and 50% of pores, as feed setup. Bisphenol A glycerolate dimethacrylate (Bis-GMA) and tri(ethylenglycol) dimethacrylate (TEGDMA) copolymer, a well-known biocompatible adhesive, which is widely used in dentistry field, was employed to reinforce the pores of the 3D-printed ceramic structure. The success of the acrylate polymer infiltration above the scaffold surface and among the 3Y-TZP filaments was achieved through previous ceramic functionalization with 3-(trimethoxysilyl)propyl methacrylate (γ-MPS). The well infiltration of the material on pores was evaluated by gravimetry, obtaining a value of 87.5 ± 6.6% of pores covered by the adhesive. Such successful infiltration of methacrylate copolymer had also a positive effect on the mechanical properties of the scaffold material, being the PICN sample that one with the highest elongation resistance. The new system showed reduced bacteria proliferation, over 24 h of incubation with Gram-negative Escherichia coli and Gram-positive Streptococcus salivarius bacteria lines, when compared to the control.

JTD Keywords: acrylate polymer, bacteria colonization, yttrium stabilized zirconia, Acrylate polymer, Bacteria colonization, Robocasting, Yttrium stabilized zirconia


López-Ortiz M, Zamora RA, Antinori ME, Remesh V, Hu C, Croce R, Van Hulst NF, Gorostiza P, (2021). Fast Photo-Chrono-Amperometry of Photosynthetic Complexes for Biosensors and Electron Transport Studies Acs Sensors 6, 581-587

© 2021 American Chemical Society. Photosynthetic reactions in plants, algae, and cyanobacteria are driven by photosystem I and photosystem II complexes, which specifically reduce or oxidize partner redox biomolecules. Photosynthetic complexes can also bind synthetic organic molecules, which inhibit their photoactivity and can be used both to study the electron transport chain and as herbicides and algicides. Thus, their development, characterization, and sensing bears fundamental and applied interest. Substantial efforts have been devoted to developing photosensors based on photosystem II to detect compounds that bind to the plastoquinone sites of this complex. In comparison, photosystem I based sensors have received less attention and could be used to identify novel substances displaying phytotoxic effects, including those obtained from natural product extracts. We have developed a robust procedure to functionalize gold electrodes with photo- and redox-active photosystem I complexes based on transparent gold and a thiolate self-assembled monolayer, and we have obtained reproducible electrochemical photoresponses. Chronoamperometric recordings have allowed us to measure photocurrents in the presence of the viologen derivative paraquat at concentrations below 100 nM under lock-in operation and a sensor dynamic range spanning six orders of magnitude up to 100 mM. We have modeled their time course to identify the main electrochemical processes and limiting steps in the electron transport chain. Our results allow us to isolate the contributions from photosystem I and the redox mediator, and evaluate photocurrent features (spectral and power dependence, fast transient kinetics) that could be used as a sensing signal to detect other inhibitors and modulators of photosystem I activity.

JTD Keywords: biosensor, herbicide, kinetic model, paraquat, photo-chrono-amperometry, photosystem i, self-assembled monolayer, transparent gold microelectrode, Biosensor, Herbicide, Kinetic model, Paraquat, Photo-chrono-amperometry, Photosystem i, Self-assembled monolayer, Transparent gold microelectrode


Marco-Rius I, Wright AJ, Hu De, Savic D, Miller JJ, Timm KN, Tyler D, Brindle KM, Comment A, (2021). Probing hepatic metabolism of [2-13C]dihydroxyacetone in vivo with 1H-decoupled hyperpolarized 13C-MR Magnetic Resonance Materials In Physics Biology And Medicine 34, 49-56

© 2020, The Author(s). Objectives: To enhance detection of the products of hyperpolarized [2-13C]dihydroxyacetone metabolism for assessment of three metabolic pathways in the liver in vivo. Hyperpolarized [2-13C]DHAc emerged as a promising substrate to follow gluconeogenesis, glycolysis and the glycerol pathways. However, the use of [2-13C]DHAc in vivo has not taken off because (i) the chemical shift range of [2-13C]DHAc and its metabolic products span over 144 ppm, and (ii) 1H decoupling is required to increase spectral resolution and sensitivity. While these issues are trivial for high-field vertical-bore NMR spectrometers, horizontal-bore small-animal MR scanners are seldom equipped for such experiments. Methods: Real-time hepatic metabolism of three fed mice was probed by 1H-decoupled 13C-MR following injection of hyperpolarized [2-13C]DHAc. The spectra of [2-13C]DHAc and its metabolic products were acquired in a 7 T small-animal MR scanner using three purpose-designed spectral-spatial radiofrequency pulses that excited a spatial bandwidth of 8 mm with varying spectral bandwidths and central frequencies (chemical shifts). Results: The metabolic products detected in vivo include glycerol 3-phosphate, glycerol, phosphoenolpyruvate, lactate, alanine, glyceraldehyde 3-phosphate and glucose 6-phosphate. The metabolite-to-substrate ratios were comparable to those reported previously in perfused liver. Discussion: Three metabolic pathways can be probed simultaneously in the mouse liver in vivo, in real time, using hyperpolarized DHAc.

JTD Keywords: carbon-13 magnetic resonance spectroscopy, dynamic nuclear polarisation, gluconeogenesis, glycolysis, hyperpolarisation, liver, Carbon-13 magnetic resonance spectroscopy, Cycle, Dihydroxyacetone, Dynamic nuclear polarisation, Excitation, Fructose, Gluconeogenesis, Glucose, Glycolysis, Hyperpolarisation, Liver, Magnetic-resonance, Metabolism, Mri


Vidal, E, Guillem-Marti, J, Ginebra, MP, Combes, C, Ruperez, E, Rodriguez, D, (2021). Multifunctional homogeneous calcium phosphate coatings: Toward antibacterial and cell adhesive titanium scaffolds Surface & Coatings Technology 405,

Implants for orthopedic applications need to be biocompatible and bioactive, with mechanical properties similar to those of surrounding natural bone. Given this scenario titanium (Ti) scaffolds obtained by Direct Ink Writing technique offer the opportunity to manufacture customized structures with controlled porosity and mechanical properties. Considering that 3D Ti scaffolds have a significant surface area, it is necessary to develop strategies against the initial bacterial adhesion in order to prevent infection in the early stages of the implantation, while promoting cell adhesion to the scaffold. The challenge is not only achieving a balance between antibacterial activity and osseointegration, it is also to develop a homogeneous coating on the inner and outer surface of the scaffold. The purpose of this work was the development of a single-step electrodeposition process in order to uniformly cover Ti scaffolds with a layer of calcium phosphate (CaP) loaded with chlorhexidine digluconate (CHX). Scaffold characterization was assessed by scanning electron microscopy, Energy dispersive X-ray spectroscopy, X-ray diffraction, micro-Raman microscopy and compressive strength tests. Results determined that the surface of scaffolds was covered by plate-like and whisker-like calcium phosphate crystals, which main phases were octacalcium phosphate and brushite. Biological tests showed that the as-coated scaffolds reduced bacteria adhesion (73 +/- 3% for Staphylococcus aureus and 70 +/- 2% for Escherichia coli). In vitro cell studies and confocal analysis revealed the adhesion and spreading of osteoblast-like SaOS-2 on coated surfaces. Therefore, the proposed strategy can be a potential candidate in bone replacing surgeries.

JTD Keywords: Antibacterial, Bacterial, Behavior, Biocompatibility, Calcium phosphate coating, Chlorhexidine, Chlorhexidine digluconate, Deposition, Electrodeposition, Hydroxyapatite coatings, Implants, One-step pulse electrodeposition, Plasma-spray, Release, Surface, Titanium scaffolds


Watt, AC, Cejas, P, DeCristo, MJ, Metzger, O, Lam, EYN, Qiu, XT, BrinJones, H, Kesten, N, Coulson, R, Font-Tello, A, Lim, K, Vadhi, R, Daniels, VW, Montero, J, Taing, L, Meyer, CA, Gilan, O, Bell, CC, Korthauer, KD, Giambartolomei, C, Pasaniuc, B, Seo, JH, Freedman, ML, Ma, CT, Ellis, MJ, Krop, I, Winer, E, Letai, A, Brown, M, Dawson, MA, Long, HW, Zhao, JJ, Goel, S, (2021). CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity Nature Cancer 2, 34-+

Goel and colleagues show that CDK4/6 inhibition induces global chromatin changes mediated by AP-1 factors, which mediate key biological and clinical effects in breast cancer. Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that are enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several activator protein-1 transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.

JTD Keywords: Abemaciclib, Androgen receptor, Animal experiment, Animal model, Animal tissue, Apoptosis, Article, Breast cancer, C-jun, Cancer cell, Carcinoembryonic antigen related cell adhesion molecule 1, Caspase 3, Cell cycle arrest, Cells, Chromatin, Chromatin immunoprecipitation, Controlled study, Cyclin dependent kinase 4, Cyclin dependent kinase 6, Dna damage, Epidermal growth factor receptor 2, Estrogen receptor, Female, Flow cytometry, Fulvestrant, Hla drb1 antigen, Human, Human cell, Immunoblotting, Immunogenicity, Immunoprecipitation, Interferon, Luciferase assay, Mcf-7 cell line, Mda-mb-231 cell line, Microarray analysis, Morphogenesis, Mouse, Nonhuman, Palbociclib, Protein, Protein expression, Rb, Resistance, Rna polymerase ii, Rna sequence, Selective-inhibition, Senescence, Short tandem repeat, Signal transduction, Tamoxifen, Transcription elongation, Transcription factor, Transcription factor ap 1, Transcriptome, Tumor biopsy, Tumor differentiation, Tumor spheroid, Tumor xenograft, Vinculin, Whole exome sequencing


Vilanova, E., Ciodaro, P. J., Bezerra, F. F., Santos, G. R. C., Valle-Delgado, J. J., Anselmetti, D., Fernàndez-Busquets, X., Mourão, P. A. S., (2020). Adhesion of freshwater sponge cells mediated by carbohydrate-carbohydrate interactions requires low environmental calcium Glycobiology 30, (9), 710-721

Marine ancestors of freshwater sponges had to undergo a series of physiological adaptations to colonize harsh and heterogeneous limnic environments. Besides reduced salinity, river-lake systems also have calcium concentrations far lower than seawater. Cell adhesion in sponges is mediated by calcium-dependent multivalent self-interactions of sulfated polysaccharide components of membrane-bound proteoglycans named aggregation factors. Cells of marine sponges require seawater average calcium concentration (10 mM) to sustain adhesion promoted by aggregation factors. We demonstrate here that the freshwater sponge Spongilla alba can thrive in a calcium-poor aquatic environment and that their cells are able to aggregate and form primmorphs with calcium concentrations 40-fold lower than that required by marine sponges cells. We also find that their gemmules need calcium and other micronutrients to hatch and generate new sponges. The sulfated polysaccharide purified from S. alba has sulfate content and molecular size notably lower than those from marine sponges. Nuclear magnetic resonance analyses indicated that it is composed of a central backbone of non- and 2-sulfated α- and β-glucose units decorated with branches of α-glucose. Assessments with atomic force microscopy/single-molecule force spectroscopy show that S. alba glucan requires 10-fold less calcium than sulfated polysaccharides from marine sponges to self-interact efficiently. Such an ability to retain multicellular morphology with low environmental calcium must have been a crucial evolutionary step for freshwater sponges to successfully colonize inland waters.

JTD Keywords: Carbohydrate interactions, Evolutionary adaptation, Porifera, Proteoglycans, Sulfated polysaccharides


Revilla-López, G., Sans, J., Casanovas, J., Bertran, O., Puiggalí, J., Turon, P., Alemán, C., (2020). Analysis of nitrogen fixation by a catalyst capable of transforming N2, CO2 and CH4 into amino acids under mild reactions conditions Applied Catalysis A: General 596, 117526

The processes related to the fixation of nitrogen in a catalyst able to produce glycine and alanine from a N2, CO2 and CH4 gas mixture at mild reaction conditions have been studied by combining experimental and theoretical investigations. Results have allowed to understand the role of different elements of the catalyst, which is constituted by permanently polarized hydroxyapatite (p-HAp), zirconia, and aminotris(methylenephosphonic acid) (ATMP). ATMP attracts N2 molecules towards the surface, maintaining them close to the zirconia and p-HAp components that are the most active from a catalytic point of view. On the other hand, the associative mechanism is thermodynamically favoured under mild reaction conditions with respect to the dissociative one, which is limited by the barrier associated to the Nsingle bondN bond cleavage. Because this reaction mechanism is similar to that employed in the nitrogen fixation by nitrogenase enzymes, these findings provide an opportunity to design new bioinspired catalysts.

JTD Keywords: Artificial photosynthesis, Carbon fixation, Hydroxyapatite, N[sbnd]N bond cleavage


Sans, J., Armelin, E., Sanz, V., Puiggalí, J., Turon, P., Alemán, C., (2020). Breaking-down the catalyst used for the electrophotosynthesis of amino acids by nitrogen and carbon fixation Journal of Catalysis 389, 646-656

The electrophotocatalytic synthesis of Glycine and Alanine from a simple gas mixture containing N2, CO2, CH4 and H2O under mild reaction conditions (95 °C and 6 bar) was recently developed using a catalyst formed by permanently polarized hydroxyapatite, which is achieved using a thermally stimulated polarization process, coated with two layers of aminotris(methylenephosphonic acid) (ATMP) separated by an intermediate layer of zirconyl chloride (ZC). This work reports the optimization of the ATMP- and ZC-coating content by examining the influence of their concentration of each component in each layer on the structural and electrochemical properties of the catalyst. After exhaustive analyses, such properties have been related with the efficiency of the catalysts prepared using different ATMP- and ZC-concentrations to yield Gly and Ala amino acids by fixing nitrogen from N2 and carbon from CO2 and CH4. Results show that, although the concentrations of ATMP and ZC in the first and the intermediate layers are important, the third layer plays a predominant role as is responsible of the apparition of supramolecular structures on the surface and the capacitive behavior of the coating

JTD Keywords: Carbon dioxide fixation, Electrocatalyst, Heterogeneous catalysis, Phosphonic acid, Photocatalyst, Polarized hydroxyapatite, Surface chemistry, Zirconyl chloride


Bortolla, R., Cavicchioli, M., Soler Rivaldi, J., Pascual Mateos, J.C., Verschure, P., Maffei, C., (2020). Hypersensitivity or hyperreactivity? An experimental investigation in Borderline Personality Disorder Mediterranean Journal of Clinical Psychology 8, (1), 1-17

Objective: Starting from the controversial results showed by empirical research on Linehan’s Biosocial model of Borderline Personality Disorder (BPD), this study aims to empirically evaluate Linehan’s conceptualization of emotional hypersensitivity and hyperreactivity, as well as to investigate the role of pre-existing emotional states in BPD altered physiological responsivity. Methods: We asked 24 participants (BPD = 12; Healthy Controls = 12) to complete a self-reported questionnaire (Positive and Negative Affect Schedule) in order to assess their pre-task affective state. Subsequently, 36 emotional pictures from four valence categories (i.e. erotic, negative, positive, neutral) were administered while assessing participants self-reported and electrodermal responses. Results: BPD patients showed higher levels of pre-task negative affectivity as well as an enhanced physiological response to neutral stimuli. No main BPD group effect was found for the physiological data. Moreover, pre-task negative affectivity levels were exclusively related to physiological responses among BPD subjects. Discussion: Our findings supported the hypersensitivity hypothesis operationalized as an enhanced responsiveness to non-emotional cues. Hyperreactivity assumption was not supported. Conversely, our study revealed heightened physiological responses in relation to pre-existent negative emotional states in BPD. We discussed our results in the context of the putative pathological processes underlying BPD.

JTD Keywords: Borderline Personality Disorder, Biosocial model, Hyperreactivity, Hypersensitivity, Negative affectivity, Physiology.


Kaang, Byung Kwon, Mestre, Rafael, Kang, Dong-Chang, Sánchez, Samuel, Kim, Dong-Pyo, (2020). Scalable and integrated flow synthesis of triple-responsive nano-motors via microfluidic Pickering emulsification Applied Materials Today 21, 100854

Artificial micro-/nano-motors are tiny machines as newly emerging tools capable of achieving numerous tasks. In principle, the self-phoretic motions require asymmetric structures in geometry and chemistry. However, conventional production techniques suffered from complex and time consuming multi-step process in low uniformity, and difficult to endow multi-functions into motors. This work disclosed a continuous-flow synthesis of triple-responsive (thermophoretic, chemical and magnetic movement) nano-motors (m-SiO2/Fe3O4-Pdop/Pt) via microfluidic Pickering emulsification in a process of integrated and scalable manner. The droplet microfluidic process allows efficient self-assembly of the silica nanoparticles surrounding the spherical interface of resin droplet, rendering excellent Pickering efficiency and reproducibility, and followed by anisotropic decoration of polydopamine (Pdop) and Pt catalyst in a serial flow process. The obtained Janus nanoparticles reveal double- or triple-responsive self-propulsions with synergic mobility by combining thermophoresis powered by light, catalytic driven motion in H2O2 or magnetic movement by magnet. Further, a non-metallic polydopamine based thermophoretic motion as well as an automated nano-cleaner for rapid water purification by dye removal are convincingly functioned. Finally, this novel integrated flow strategy proves a scalable manufacturing production (> 0.7 g hr−1) of the nano-motors using inexpensive single microreactor, fulfilling quantitative and qualitative needs for versatile applications.

JTD Keywords: Microfluidics Pickering emulsions, Triple-responsive motor, Adsorbent


Almici, Enrico, Caballero, David, Montero, Joan, Samitier, Josep, (2020). 3D neuroblastoma in vitro models using engineered cell-derived matrices Biomaterials for 3D Tumor Modeling (ed. Kundu, Subhas C., Reis, Rui L.), Elsevier (Amsterdam, Netherlands) , 107-130

Neuroblastoma (NB) is a malignant tumor that affects the peripheral nervous system and represents one of the most frequent cancers in infants. Its prognosis is poor in older patients and the presence of genetic abnormalities. Metastasis is often present at the time of diagnosis, making treatment more intensive and unsuccessful. Poor prognosis and variable treatment efficacy require a better understanding of the underlying biology. Evidence has shown that the tumor microenvironment is the characteristic of tumor malignancy and progression. A more highly differentiated tissue phenotype represents a positive prognostic marker, while the tumoral tissue is characterized by a distinct composition and morphology of the extracellular matrix (ECM). In this chapter, we discuss the application of decellularized cell-derived matrices (CDMs) to model in vitro the morphology of the ECM encountered in histological hallmarks of NB patients. This technique allows for the in vitro reproduction of the fine structure and composition of native microenvironments. Because of recent advances in culture systems and decellularization techniques, it is possible to engineer CDM composition and microarchitecture to produce differentiated models of tissue niches. The final goal is to repopulate the “scaffold” with malignant NB cells for drug screening and target discovery applications, studying the impact of patient-inspired tissues on signaling, migration, and tissue remodeling.

JTD Keywords: Neuroblastoma, Cancer, Bioengineering, Tumor microenvironment, Cell-derived matrices, Decellularization


Barba, A., Diez-Escudero, A., Espanol, M., Bonany, M., Sadowska, J. M., Guillem-Marti, J., Öhman-Mägi, C., Persson, C., Manzanares, M. C., Franch, J., Ginebra, M. P., (2019). Impact of biomimicry in the design of osteoinductive bone substitutes: Nanoscale matters ACS Applied Materials and Interfaces 11, (9), 8818-8830

Bone apatite consists of carbonated calcium-deficient hydroxyapatite (CDHA) nanocrystals. Biomimetic routes allow fabricating synthetic bone grafts that mimic biological apatite. In this work, we explored the role of two distinctive features of biomimetic apatites, namely, nanocrystal morphology (plate vs needle-like crystals) and carbonate content, on the bone regeneration potential of CDHA scaffolds in an in vivo canine model. Both ectopic bone formation and scaffold degradation were drastically affected by the nanocrystal morphology after intramuscular implantation. Fine-CDHA foams with needle-like nanocrystals, comparable in size to bone mineral, showed a markedly higher osteoinductive potential and a superior degradation than chemically identical coarse-CDHA foams with larger plate-shaped crystals. These findings correlated well with the superior bone-healing capacity showed by the fine-CDHA scaffolds when implanted intraosseously. Moreover, carbonate doping of CDHA, which resulted in small plate-shaped nanocrystals, accelerated both the intrinsic osteoinduction and the bone healing capacity, and significantly increased the cell-mediated resorption. These results suggest that tuning the chemical composition and the nanostructural features may allow the material to enter the physiological bone remodeling cycle, promoting a tight synchronization between scaffold degradation and bone formation.

JTD Keywords: Biomimetic, Calcium phosphate, Carbonated apatite, Foaming, Nanostructure, Osteogenesis, Osteoinduction


De Chiara, F., Checcllo, C. U., Ramón-Azcón, J., (2019). High protein diet and metabolic plasticity in non-alcoholic fatty liver disease: Myths and truths Nutrients 11, (12), 2985

Non-alcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation within the liver affecting 1 in 4 people worldwide. As the new silent killer of the twenty-first century, NAFLD impacts on both the request and the availability of new liver donors. The liver is the first line of defense against endogenous and exogenous metabolites and toxins. It also retains the ability to switch between different metabolic pathways according to food type and availability. This ability becomes a disadvantage in obesogenic societies where most people choose a diet based on fats and carbohydrates while ignoring vitamins and fiber. The chronic exposure to fats and carbohydrates induces dramatic changes in the liver zonation and triggers the development of insulin resistance. Common believes on NAFLD and different diets are based either on epidemiological studies, or meta-analysis, which are not controlled evidences; in most of the cases, they are biased on test-subject type and their lifestyles. The highest success in reverting NAFLD can be attributed to diets based on high protein instead of carbohydrates. In this review, we discuss the impact of NAFLD on body metabolic plasticity. We also present a detailed analysis of the most recent studies that evaluate high-protein diets in NAFLD with a special focus on the liver and the skeletal muscle protein metabolisms.

JTD Keywords: High protein diet, Low carbohydrates, NAFLD, NASH, Physical activity


Martinez, Dominique, Burgués, Javier, Marco, Santiago, (2019). Fast measurements with MOX sensors: A least-squares approach to blind deconvolution Sensors 19, (18), 4029

Metal oxide (MOX) sensors are widely used for chemical sensing due to their low cost, miniaturization, low power consumption and durability. Yet, getting instantaneous measurements of fluctuating gas concentration in turbulent plumes is not possible due to their slow response time. In this paper, we show that the slow response of MOX sensors can be compensated by deconvolution, provided that an invertible, parametrized, sensor model is available. We consider a nonlinear, first-order dynamic model that is mathematically tractable for MOX identification and deconvolution. By transforming the sensor signal in the log-domain, the system becomes linear in the parameters and these can be estimated by the least-squares techniques. Moreover, we use the MOX diversity in a sensor array to avoid training with a supervised signal. The information provided by two (or more) sensors, exposed to the same flow but responding with different dynamics, is exploited to recover the ground truth signal (gas input). This approach is known as blind deconvolution. We demonstrate its efficiency on MOX sensors recorded in turbulent plumes. The reconstructed signal is similar to the one obtained with a fast photo-ionization detector (PID). The technique is thus relevant to track a fast-changing gas concentration with MOX sensors, resulting in a compensated response time comparable to that of a PID.

JTD Keywords: MOX sensors, Blind deconvolution, Blind identification, Least-squares, Turbulent plumes.


Sebastian, P., Giannotti, M. I., Gómez, E., Feliu, J. M., (2018). Surface sensitive nickel electrodeposition in deep eutectic solvent ACS Applied Energy Materials , 1, (3), 1016-1028

The first steps of nickel electrodeposition in a deep eutectic solvent (DES) are analyzed in detail. Several substrates from glassy carbon to Pt(111) were investigated pointing out the surface sensitivity of the nucleation and growth mechanism. For that, cyclic voltammetry and chronoamperometry, in combination with scanning electron microscopy (SEM), were employed. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to more deeply analyze the Ni deposition on Pt substrates. In a 0.1 M NiCl2 + DES solution (at 70 °C), the nickel deposition on glassy carbon takes place within the potential limits of the electrode in the blank solution. Although, the electrochemical window of Pt|DES is considerably shorter than on glassy carbon|DES, it was still sufficient for the nickel deposition. On the Pt electrode, the negative potential limit was enlarged while the nickel deposit grew, likely because of the lower catalytic activity of the nickel toward the reduction of the DES. At lower overpotentials, different hydrogenated Ni structures were favored, most likely because of the DES co-reduction on the Pt substrate. Nanometric metallic nickel grains of rounded shape were obtained on any substrate, as evidenced by the FE-SEM. Passivation phenomena, related to the formation of Ni oxide and Ni hydroxylated species, were observed at high applied overpotentials. At low deposited charge, on Pt(111) the AFM measurements showed the formation of rounded nanometric particles of Ni, which rearranged and formed small triangular arrays at sufficiently low applied overpotential. This particle pattern was induced by the (111) orientation and related to surface sensitivity of the nickel deposition in DES. The present work provides deep insights into the Ni electrodeposition mechanism in the selected deep eutectic solvent.

JTD Keywords: AFM, Deep eutectic solvent, Glassy carbon, Nanostructures, Nickel electrodeposition, Platinum electrode, Pt(111), SEM, Surface sensitive


Marrugo-Ramírez, José, Mir, M., Samitier, Josep, (2018). Blood-based cancer biomarkers in liquid biopsy: A promising non-invasive alternative to tissue biopsy International Journal of Molecular Sciences 19, (10), 2877

Cancer is one of the greatest threats facing our society, being the second leading cause of death globally. Currents strategies for cancer diagnosis consist of the extraction of a solid tissue from the affected area. This sample enables the study of specific biomarkers and the genetic nature of the tumor. However, the tissue extraction is risky and painful for the patient and in some cases is unavailable in inaccessible tumors. Moreover, a solid biopsy is expensive and time consuming and cannot be applied repeatedly. New alternatives that overcome these drawbacks are rising up nowadays, such as liquid biopsy. A liquid biopsy is the analysis of biomarkers in a non-solid biological tissue, mainly blood, which has remarkable advantages over the traditional method; it has no risk, it is non-invasive and painless, it does not require surgery and reduces cost and diagnosis time. The most studied cancer non-invasive biomarkers are circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. These circulating biomarkers play a key role in the understanding of metastasis and tumorigenesis, which could provide a better insight into the evolution of the tumor dynamics during treatment and disease progression. Improvements in isolation technologies, based on a higher grade of purification of CTCs, exosomes, and ctDNA, will provide a better characterization of biomarkers and give rise to a wide range of clinical applications, such as early detection of diseases, and the prediction of treatment responses due to the discovery of personalized tumor-related biomarkers

JTD Keywords: Liquid biopsy, Cancer, Biomarkers, Non-invasive, Circulant tumor DNA (ctDNA), Circulant tumor cells (CTC)


Pujol, E., Blanco-Cabra, N., Julián, E., Leiva, R., Torrents, E., Vázquez, S., (2018). Pentafluorosulfanyl-containing triclocarban analogs with potent antimicrobial activity Molecules 23, (11), 2853

Concerns have been raised about the long-term accumulating effects of triclocarban, a polychlorinated diarylurea widely used as an antibacterial soap additive, in the environment and in human beings. Indeed, the Food and Drug Administration has recently banned it from personal care products. Herein, we report the synthesis, antibacterial activity and cytotoxicity of novel N,N′-diarylureas as triclocarban analogs, designed by reducing one or more chlorine atoms of the former and/or replacing them by the novel pentafluorosulfanyl group, a new bioisostere of the trifluoromethyl group, with growing importance in drug discovery. Interestingly, some of these pentafluorosulfanyl-bearing ureas exhibited high potency, broad spectrum of antimicrobial activity against Gram-positive bacterial pathogens, and high selectivity index, while displaying a lower spontaneous mutation frequency than triclocarban. Some lines of evidence suggest a bactericidal mode of action for this family of compounds.

JTD Keywords: Antibacterial, Gram-positive, N,N'-diarylureas, Pentafluorosulfanyl, Staphylococcus aureus, Triclocarban


Fonollosa, Jordi, Solórzano, Ana, Marco, Santiago, (2018). Chemical sensor systems and associated algorithms for fire detection: A review Sensors 18, (2), 553

Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative

JTD Keywords: Fire detection, Gas sensor, Pattern recognition, Sensor fusion, Machine learning, Toxicants, Carbon monoxide, Hydrogen cyanide, Standard test fires, Transducers, Smoke


Santander-Nelli, M., Silva, C. P., Espinoza-Vergara, J., Silva, J. F., Olguín, C. F., Cortés-Arriagada, D., Zagal, J. H., Mendizabal, F., Díez-Pérez, I., Pavez, J., (2017). Tailoring electroactive surfaces by non-template molecular assembly. Towards electrooxidation of L-cysteine Electrochimica Acta 254, 201-213

We have prepared a nanoelectrode ensemble containing vertically aligned single walled carbon nanotubes (SWCNTs) using a non-template molecular self-assembling strategy. We used a bottom-up construction approach to assemble amino functionalized SWCNTs (af-SWCNTs) in a well-defined architecture. These af-SWCNTs were linked and vertically aligned to pre-formed self-assembled monolayers of 4-MBA. A Cobalt(II) tetracarboxyphthalocyanine (Co(COOH)4Pc) complex was covalently bonded to external portion of af-SWCNTs to complete the final nanoelectrode ensemble. X-ray photoelectron spectroscopy (XPS) and Atomic Force Microcopy (AFM) confirmed the effectiveness of the assembling steps on the gold surface starting from the Au/MBA SAMs. The system Au/4-MBA/af-SWCNTs shows an interface with large ordered array, which exhibits a high activity for the electrooxidation of L-cysteine (L-cys). Theoretical calculations suggest that the incorporation of the af-SWCNTs increased the activity of the assembly to electronic transfer and it was observed that the electrooxidation reaction is energetically favorable.

JTD Keywords: Bottom-up construction, DFT, Modified electrode, Molecular assembly, SAMs, Single walled carbon nanotube


Ramos, E., Pardo, W. A., Mir, M., Samitier, J., (2017). Dependence of carbon nanotubes dispersion kinetics on surfactants Nanotechnology 28, (13), 135702

Carbon nanotubes (CNTs) have been the subject of many studies due to their unique structure and desirable properties. However, the ability to solubilize and separate single CNTs from the bundles they form is still a challenge that needs to be overcome in order to extend their applications in the field of Nanotechnology. Covalent interactions are designed to modify CNTs surface and so prevent agglomeration. Though, this method alters the structures and intrinsic properties of CNTs. In the present work, noncovalent approaches to functionalize and solubilize CNTs are studied in detail. A dispersion kinetic study was performed to characterize the ability of different type of surfactants (non-ionic, anionic, cationic and biopolymer) to unzip CNT bundles. The dispersion kinetic study performed depicts the distinct CNTs bundles unzipping behavior of the different type of surfactants and the results elucidate specific wavelengths in relation with the degree of CNT clustering, which provides new tools for a deeper understanding and characterization of CNTs. Small angle x-ray scattering and transmission electron microscopy results are in agreement with UV-vis-NIR observations, revealing perfectly monodispersed CNTs for the biopolymer and cationic surfactant.

JTD Keywords: Dispersion, DNA, Single-walled carbon nanotubes (SWCNTs), Small angle x-ray scattering (SAXS), Sodium dodecyl sulfate (SDS), Surfactant, Triton X-100


Klein, S., Schierwagen, R., Uschner, F. E., Trebicka, J., (2017). Mouse and rat models of induction of hepatic fibrosis and assessment of portal hypertension Fibrosis (Methods in Molecular Biology) (ed. Rittié, L.), Humana Press (New York, USA) 1627, 91-116

Portal hypertension either develops due to progressive liver fibrosis or is the consequence of vascular liver diseases such as portal vein thrombosis or non-cirrhotic portal hypertension. This chapter focuses on different rodent models of liver fibrosis with portal hypertension and also in few non-cirrhotic portal hypertension models. Importantly, after the development of portal hypertension, the proper assessment of drug effects in the portal and systemic circulation should be discussed. The last part of the chapter is dedicated in these techniques to assess the in vivo hemodynamics and the ex vivo techniques of the isolated liver perfusion and vascular contractility.

JTD Keywords: Aortic ring contraction, Bile duct ligation, Carbon tetrachloride, Colored microsphere technique, High-fat diet, Isolated in situ liver perfusion, Methionine-choline-deficient diet, Partial portal vein ligation, Portal hypertension


Aragonès, A. C., Aravena, D., Cerdá, J. I., Acís-Castillo, Z., Li, H., Real, J. A., Sanz, F., Hihath, J., Ruiz, E., Díez-Pérez, I., (2016). Large conductance switching in a single-molecule device through room temperature spin-dependent transport Nano Letters 16, (1), 218-226

Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover FeII complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.

JTD Keywords: Density functional calculations, Magnetoresistance, Single-molecule junctions, Spin orbit coupling, Spin-crossover complexes, Spinterface, STM break-junction


Hoyo, J., Guaus, E., Torrent-Burgués, J., Sanz, F., (2015). Biomimetic monolayer films of digalactosyldiacylglycerol incorporating plastoquinone Biochimica et Biophysica Acta - Biomembranes , 1848, (6), 1341-1351

The photosynthesis is the process used by plants and bacteria cells to convert inorganic matter in organic thanks to the light energy. This process consist on several steps, being one of them the electronic transport from the photosystem II to the cytochrome thanks to plastoquinone-9 (PQ). Here we prepare membranes that mimic the characteristics and composition of natural photosynthetic cell membranes and we characterize them in order to obtain the PQ molecules position in the membrane and their electrochemical behaviour. The selected galactolipid is digalactosyldiacylglycerol (DGDG) that represents the 30% of the thylakoid membrane lipid content. The results obtained are worthful for several science fields due to the relevance of galactolipids as anti-algal, anti-viral, anti-tumor and anti-inflammatory agents and the antioxidant and free radical scavenger properties of prenylquinones. Both pure components (DGDG and PQ) and the DGDG:PQ mixtures have been studied using surface pressure-area isotherms. These isotherms give information about the film stability and indicate the thermodynamic behaviour of the mixture and their physical state. The Langmuir-Blodgett (LB) film has been transferred forming a monolayer that mimics the bottom layer of the biological membranes. This monolayer on mica has been topographically characterized using AFM and both the height and the physical state that they present have been obtained. Moreover, these monolayers have been transferred onto ITO that is a hydrophilic substrate with good optical and electrical features, so that, it is suitable for studying the electrochemical behaviour of these systems and it is a good candidate for energy producing devices.

JTD Keywords: Biomimetic membrane, Digalactosyldiacylglycerol, Electron transfer, LangmuirBlodgett film, Modified ITO electrode, Plastoquinone


Fresco-Cala, B., Jimenez-Soto, J. M., Cardenas, S., Valcarcel, M., (2014). Single-walled carbon nanohorns immobilized on a microporous hollow polypropylene fiber as a sorbent for the extraction of volatile organic compounds from water samples Microchimica Acta , 181, (9-10), 1117-1124

We have evaluated the behavior of single-walled carbon nanohorns as a sorbent for headspace and direct immersion (micro)solid phase extraction using volatile organic compounds (VOCs) as model analytes. The conical carbon nanohorns were first oxidized in order to increase their solubility in water and organic solvents. A microporous hollow polypropylene fiber served as a mechanical support that provides a high surface area for nanoparticle retention. The extraction unit was directly placed in the liquid sample or the headspace of an aqueous standard or a water sample to extract and preconcentrate the VOCs. The variables affecting extraction have been optimized. The VOCs were then identified and quantified by GC/MS. We conclude that direct immersion of the fiber is the most adequate method for the extraction of VOCs from both liquid samples and headspace. Detection limits range from 3.5 to 4.3 ng L-1 (excepted for toluene with 25 ng L-1), and the precision (expressed as relative standard deviation) is between 3.9 and 9.6 %. The method was applied to the determination of toluene, ethylbenzene, various xylene isomers and styrene in bottled, river and tap waters, and the respective average recoveries of spiked samples are 95.6, 98.2 and 86.0 %.

JTD Keywords: (Micro)solid phase extraction, Nanotechnology, Oxidized single-walled carbon nanohorns, Volatiles compounds, Waters


Le Roux, D., Burger, P. B., Niemand, J., Grobler, A., Urbán, P., Fernàndez-Busquets, X., Barker, R. H., Serrano, A. E., I. Louw, A., Birkholtz, L. M., (2014). Novel S-adenosyl-L-methionine decarboxylase inhibitors as potent antiproliferative agents against intraerythrocytic Plasmodium falciparum parasites International Journal for Parasitology: Drugs and Drug Resistance , 4, (1), 28-36

S-adenosyl-l-methionine decarboxylase (AdoMetDC) in the polyamine biosynthesis pathway has been identified as a suitable drug target in Plasmodium falciparum parasites, which causes the most lethal form of malaria. Derivatives of an irreversible inhibitor of this enzyme, 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (MDL73811), have been developed with improved pharmacokinetic profiles and activity against related parasites, Trypanosoma brucei. Here, these derivatives were assayed for inhibition of AdoMetDC from P. falciparum parasites and the methylated derivative, 8-methyl-5'-{[(Z)-4-aminobut-2-enyl]methylamino}-5'-deoxyadenosine (Genz-644131) was shown to be the most active. The in vitro efficacy of Genz-644131 was markedly increased by nanoencapsulation in immunoliposomes, which specifically targeted intraerythrocytic P. falciparum parasites.

JTD Keywords: Immunoliposomes, Plasmodium, Polyamines, S-adenosyl-l-methionine decarboxylase


Castillo-Fernandez, O., Rodriguez-Trujillo, R., Gomila, G., Samitier, J., (2014). High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation Microfluidics and Nanofluidics , 16, (1-2), 91-99

Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of up to ~500 counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions.

JTD Keywords: Electronics, Impedance, Microcytometry, Microfluidics, Red blood cells (RBCs), White blood cells (WBCs)


Juanola-Feliu, E., Miribel-Català, P. L., Avilés, C. P., Colomer-Farrarons, J., González-Piñero, M., Samitier, J., (2014). Design of a customized multipurpose nano-enabled implantable system for in-vivo theranostics Sensors 14, (10), 19275-19306

The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device.

JTD Keywords: Biocompatible, Biosensor, Biotelemetry, Implantable multi-sensor, Innovation, KET, Nanomedicine, Personalized medicine, Biotelemetry, Innovation, Medical nanotechnology, Biocompatible, Implantable system, In-vivo, KET, Multi sensor, Personalized medicines, Theranostics, Biosensors


Pegueroles, M., Tonda-Turo, C., Planell, J. A., Gil, F. J., Aparicio, C., (2012). Adsorption of fibronectin, fibrinogen, and albumin on TiO2: Time-resolved kinetics, structural changes, and competition study Biointerphases , 7, (48), 13

An understanding of protein adsorption process is crucial for designing biomaterial surfaces. In this work, with the use of a quartz-crystal microbalance with dissipation monitoring, we researched the following: (a) the kinetics of adsorption on TiO2 surfaces of three extensively described proteins that are relevant for metallic implant integration [i.e., albumin (BSA), fibrinogen (Fbg), and fibronectin (Fn)]; and (b) the competition of those proteins for adsorbing on TiO2 in a two-step experiment consisted of sequentially exposing the surfaces to different monoprotein solutions. Each protein showed a different process of adsorption and properties of the adlayer-calculated using the Voigt model. The competition experiments showed that BSA displaced larger proteins such as Fn and Fbg when BSA was introduced as the second protein in the system, whereas the larger proteins laid on top of BSA forming an adsorbed protein bi-layer when those were introduced secondly in the system.

JTD Keywords: QCM, Human plasma fibronectin, Induced conformational-changes, Von-willebrand-factor, BSA, Protein adsortion, Polymer surfaces, Solid-surfaces, Viscoelastic properties, Globular-proteins


Simao, C., Mas-Torrent, M., Crivillers, N., Lloveras, V., Artés, Juan Manuel, Gorostiza, Pau, Veciana, Jaume, Rovira, C., (2011). A robust molecular platform for non-volatile memory devices with optical and magnetic responses Nature Chemistry , 3, (5), 359-364

Bistable molecules that behave as switches in solution have long been known. Systems that can be reversibly converted between two stable states that differ in their physical properties are particularly attractive in the development of memory devices when immobilized in substrates. Here, we report a highly robust surface-confined switch based on an electroactive, persistent organic radical immobilized on indium tin oxide substrates that can be electrochemically and reversibly converted to the anion form. This molecular bistable system behaves as an extremely robust redox switch in which an electrical input is transduced into optical as well as magnetic outputs under ambient conditions. The fact that this molecular surface switch, operating at very low voltages, can be patterned and addressed locally, and also has exceptionally high long-term stability and excellent reversibility and reproducibility, makes it a very promising platform for non-volatile memory devices.

JTD Keywords: Self-assembled monolayers, Chromophore-based monolayers, Ultrathin platinum films, Carbon free-radicals, Per-million levels, Polychlorotriphenylmethyl radicals, Electron-transfer, Surface, Logic, Quantification


Bohner, M., Loosli, Y., Baroud, G., Lacroix, D., (2011). Commentary: Deciphering the link between architecture and biological response of a bone graft substitute Acta Biomaterialia 7, (2), 478-484

Hundreds of studies have been devoted to the search for the ideal architecture for bone scaffold. Despite these efforts, results are often contradictory, and rules derived from these studies are accordingly vague. In fact, there is enough evidence to postulate that ideal scaffold architecture does not exist. The aim of this document is to explain this statement and review new approaches to decipher the existing but complex link between scaffold architecture and in vivo response.

JTD Keywords: Biomaterial, Bone, Tissue engineering, Resorbable, Graft


Sjoberg, B. M., Torrents, E., (2011). Shift in ribonucleotide reductase gene expression in pseudomonas aeruginosa during infection Infection and Immunity , 79, (7), 2663-2669

The roles of different ribonucleotide reductases (RNRs) in bacterial pathogenesis have not been studied systematically. In this work we analyzed the importance of the different Pseudomonas aeruginosa RNRs in pathogenesis using the Drosophila melanogaster host-pathogen interaction model. P. aeruginosa codes for three different RNRs with different environmental requirements. Class II and III RNR chromosomal mutants exhibited reduced virulence in this model. Translational reporter fusions of RNR gene nrdA, nrdJ, or nrdD to the green fluorescent protein were constructed to measure the expression of each class during the infection process. Analysis of the P. aeruginosa infection by flow cytometry revealed increased expression of nrdJ and nrdD and decreased nrdA expression during the infection process. Expression of each RNR class fits with the pathogenicities of the chromosomal deletion mutants. An extended understanding of the pathogenicity and physiology of P. aeruginosa will be important for the development of novel drugs against infections in cystic fibrosis patients.

JTD Keywords: Broad-host-range, Anaerobic growth, Drosophila-melanogaster, Bacterial biofilms, Escherichia-coli, Cystic-fibrosis, Model host, Virulence, Promoter, Vectors


Prieto-Simón, B., Campà s, M., Marty, J. L., (2010). Electrochemical aptamer-based sensors Bioanalytical Reviews , 1, (2), 141-157

The valuable properties of aptamers, such as specificity, sensitivity, stability, cost-effectiveness and design flexibility, have favoured their use as biorecognition elements in biosensor development. These synthetic affinity probes can be developed for almost any target molecule, covering a wide range of applications in fields such as clinical diagnosis and therapy, environmental monitoring and food control. The combination of aptamers with high-performance electrochemical transducers, with their inherent high sensitivities, fast response times and simple equipment, has already provided several electrochemical aptamer-based sensors. Moreover, the small size and versatility of aptamers allow efficient immobilisations in high-density monolayers, an important feature towards miniaturisation and integration of compact electrochemical devices. This review describes the state-of-the-art of electrochemical aptamer-based sensors, entering into the details of the different strategies and types of electrochemical transduction and also considering their advantages when applied to the analysis of complex matrices.

JTD Keywords: Aptabeacon, Aptamer, Biosensor, Electrochemical detection, Redox label


Fernàndez-Busquets, X., Ponce, J., Bravo, R., Arimon, M., Martianez, T., Gella, A., Cladera, J., Durany, N., (2010). Modulation of amyloid beta peptide(1-42) cytotoxicity and aggregation in vitro by glucose and chondroitin sulfate Current Alzheimer Research , 7, (5), 428-438

One mechanism leading to neurodegeneration during Alzheimer's Disease (AD) is amyloid beta peptide (A beta)-induced neurotoxicity. Among the factors proposed to potentiate A beta toxicity is its covalent modification through carbohydrate-derived advanced glycation endproducts (AGEs). Other experimental evidence, though, indicates that certain polymeric carbohydrates like the glycosaminoglycan (GAG) chains found in proteoglycan molecules attenuate the neurotoxic effect of A beta in primary neuronal cultures. Pretreatment of the 42-residue A beta fragment (A beta(1-42)) with the ubiquitous brain carbohydrates, glucose, fructose, and the GAG chondroitin sulfate B (CSB) inhibits A beta beta(1-42)-induced apoptosis and reduces the peptide neurotoxicity on neuroblastoma cells, a cytoprotective effect that is partially reverted by AGE inhibitors such as pyridoxamine and L-carnosine. Thioflavin T fluorescence measurements indicate that at concentrations close to physiological, only CSB promotes the formation of A beta amyloid fibril structure. Atomic force microscopy imaging and Western blot analysis suggest that glucose favours the formation of globular oligomeric structures derived from aggregated species. Our data suggest that at short times carbohydrates reduce A beta(1-42) toxicity through different mechanisms both dependent and independent of AGE formation.

JTD Keywords: Alzheimer's disease, Advanced glycation endproducts, Amyloid fibrils, Amyloid beta peptide, Apoptosis, Carbohydrates, Glycosaminoglycans


Caballero-Briones, F., Palacios-Padros, A., Calzadilla, O., Sanz, F., (2010). Evidence and analysis of parallel growth mechanisms in Cu2O films prepared by Cu anodization Electrochimica Acta 55, (14), 4353-4358

We have studied the preparation of Cu2O films by copper anodization in a 0.1 M NaOH electrolyte. We identified the potential range at which Cu dissolution takes place then we prepared films with different times of exposure to this potential. The morphology, crystalline structure, band gap. Urbach energy and thickness of the films were studied. Films prepared with the electrode unexposed to the dissolution potential have a pyramidal growth typical of potential driven processes, while samples prepared at increasing exposure times to dissolution potential present continuous nucleation, growth and grain coalescence. We observed a discrepancy in the respective film thicknesses calculated by coulometry, atomic force microscopy and optical reflectance. We propose that anodic Cu2O film formation involves three parallel mechanisms (i) Cu2O nucleation at the surface, (ii) Cu+ dissolution followed by heterogeneous nucleation and (iii) Cu+ and OH- diffusion through the forming oxide and subsequent reaction in the solid state.

JTD Keywords: Cuprous oxide, Anodic films, Reflectance, Thickness, Band gap, Urbach tail parameter, Dissolution, Growth mechanism


Jaramillo, M. D., Torrents, E., Martinez-Duarte, R., Madou, M. J., Juarez, A., (2010). On-line separation of bacterial cells by carbon-electrode dielectrophoresis Electrophoresis , 31, (17), 2921-2928

Dielectrophoresis (DEP) represents a powerful approach to manipulate and study living cells. Hitherto, several approaches have used 2-D DEP chips. With the aim to increase sample volume, in this study we used a 3-D carbon-electrode DEP chip to trap and release bacterial cells. A continuous flow was used to plug an Escherichia coli cell suspension first, to retain cells by positive DEP, and thereafter to recover them by washing with peptone water washing solution. This approach allows one not only to analyze DEP behavior of living cells within the chip, but also to further recover fractions containing DEP-trapped cells. Bacterial concentration and flow rate appeared as critical parameters influencing the separation capacity of the chip. Evidence is presented demonstrating that the setup developed in this study can be used to separate different types of bacterial cells.

JTD Keywords: Bacteria, Carbon electrode, Dielectrophoresis, E. coli, Separation


Koch, M. A., Vrij, E. J., Engel, E., Planell, J. A., Lacroix, D., (2010). Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters Journal of Biomedical Materials Research - Part A , 95A, (4), 1011-1018

A promising approach to bone tissue engineering lies in the use of perfusion bioreactors where cells are seeded and cultured on scaffolds under conditions of enhanced nutrient supply and removal of metabolic products. Fluid flow alterations can stimulate cell activity, making the engineering of tissue more efficient. Most bioreactor systems are used to culture cells on thin scaffold discs. In clinical use, however, bone substitutes of large dimensions are needed. In this study, MG63 osteoblast-like cells were seeded on large porous PLA/glass scaffolds with a custom developed perfusion bioreactor system. Cells were seeded by oscillating perfusion of cell suspension through the scaffolds. Applicable perfusion parameters for successful cell seeding were determined by varying fluid flow velocity and perfusion cycle number. After perfusion, cell seeding, the cell distribution, and cell seeding efficiency were determined. A fluid flow velocity of 5 mm/s had to be exceeded to achieve a uniform cell distribution throughout the scaffold interior. Cell seeding efficiencies of up to 50% were achieved. Results suggested that perfusion cycle number influenced cell seeding efficiency rather than fluid flow velocities. The cell seeding conducted is a promising basis for further long term cell culture studies in large porous scaffolds.

JTD Keywords: Bioreactor, Bone tissue engineering, Scaffolds, In vitro


Carreras, A., Rojas, M., Tsapikouni, T., Montserrat, J. M., Navajas, D., Farre, R., (2010). Obstructive apneas induce early activation of mesenchymal stem cells and enhancement of endothelial wound healing Respiratory Research , 11, (91), 1-7

Background: The aim was to test the hypothesis that the blood serum of rats subjected to recurrent airway obstructions mimicking obstructive sleep apnea (OSA) induces early activation of bone marrow-derived mesenchymal stem cells (MSC) and enhancement of endothelial wound healing. Methods: We studied 30 control rats and 30 rats subjected to recurrent obstructive apneas (60 per hour, lasting 15 s each, for 5 h). The migration induced in MSC by apneic serum was measured by transwell assays. MSC-endothelial adhesion induced by apneic serum was assessed by incubating fluorescent-labelled MSC on monolayers of cultured endothelial cells from rat aorta. A wound healing assay was used to investigate the effect of apneic serum on endothelial repair. Results: Apneic serum showed significant increase in chemotaxis in MSC when compared with control serum: the normalized chemotaxis indices were 2.20 +/- 0.58 (m +/- SE) and 1.00 +/- 0.26, respectively (p < 0.05). MSC adhesion to endothelial cells was greater (1.75 +/- 0.14 -fold; p < 0.01) in apneic serum than in control serum. When compared with control serum, apneic serum significantly increased endothelial wound healing (2.01 +/- 0.24 -fold; p < 0.05). Conclusions: The early increases induced by recurrent obstructive apneas in MSC migration, adhesion and endothelial repair suggest that these mechanisms play a role in the physiological response to the challenges associated to OSA.

JTD Keywords: Induced acute lung, Sleep-apnea, Intermitent hypoxia, Cardiovascular-disease, Progenito Cells, Rat model, Inflammation, Mechanisms, Repair, Blood


Caballero, D., Villanueva, G., Plaza, J. A., Mills, C. A., Samitier, J., Errachid, A., (2010). Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques Journal of Nanoscience and Nanotechnology , 10, (1), 497-501

The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips.

JTD Keywords: Atomic-Force Microscope, Carbon nanotube tips, Probes, Roughness, Cells, Microfabrication, Calibration, Surfaces


Correa, L. S., Laciar, E., Mut, V., Giraldo, B. F., Torres, A., (2010). Multi-parameter analysis of ECG and Respiratory Flow signals to identify success of patients on weaning trials Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) -----, 6070-6073

Statistical analysis, power spectral density, and Lempel Ziv complexity, are used in a multi-parameter approach to analyze four temporal series obtained from the Electrocardiographic and Respiratory Flow signals of 126 patients on weaning trials. In which, 88 patients belong to successful group (SG), and 38 patients belong to failure group (FG), i.e. failed to maintain spontaneous breathing during trial. It was found that mean values of cardiac inter-beat and breath durations give higher values for SG than for FG; Kurtosis coefficient of the spectrum of the rapid shallow breathing index is higher for FG; also Lempel Ziv complexity mean values associated with the respiratory flow signal are bigger for FG. Patients were then classified with a pattern recognition neural network, obtaining 80% of correct classifications (81.6% for FG and 79.5% for SG).

JTD Keywords: Electrocardiography, Medical signal processing, Neural nets, Pattern recognition, Pneumodynamics, Signal classification, Statistical analysis, ECG, Kurtosis coefficient, Lempel Ziv complexity, Breath durations, Cardiac interbeat durations, Electrocardiography, Multiparameter analysis, Pattern recognition neural network, Power spectral density, Respiratory flow signals, Signal classification, Spontaneous breathing, Statistical analysis, Weaning trials


Trepat, X., Wasserman, M. R., Angelini, T. E., Millet, E., Weitz, D. A., Butler, J. P., Fredberg, J. J., (2009). Physical forces during collective cell migration Nature Physics 5, (6), 426-430

Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions(1-3), and to drive these motions cells exert traction forces on their surroundings(4). Current understanding emphasizes that these traction forces arise mainly in 'leader cells' at the front edge of the advancing cell sheet(5-9). Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails(10-12). Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.

JTD Keywords: Focal adhesions, Granular matter, Bead packs, Morphogenesis, Sheets, Actin, Fluctuations, Fibroblasts, Microscopy, Diversity


Jang, J. H., Castano, O., Kim, H. W., (2009). Electrospun materials as potential platforms for bone tissue engineering Advanced Drug Delivery Reviews 61, (12), 1065-1083

Nanofibrous materials produced by electrospinning processes have attracted considerable interest in tissue regeneration, including bone reconstruction. A range of novel materials and processing tools have been developed to mimic the native bone extracellular matrix for potential applications as tissue engineering scaffolds and ultimately to restore degenerated functions of the bone. Degradable polymers, bioactive inorganics and their nanocomposites/hybrids nanofibers with suitable mechanical properties and bone bioactivity for osteoblasts and progenitor/stem cells have been produced. The surface functionalization with apatite minerals and proteins/peptides as well as drug encapsulation within the nanofibers is a promising strategy for achieving therapeutic functions with nanofibrous materials. Recent attempts to endow a 3D scaffolding technique to the electrospinning regime have shown some promise for engineering 3D tissue constructs. With the improvement in knowledge and techniques of bone-targeted nanofibrous matrices, bone tissue engineering is expected to be realized in the near future.

JTD Keywords: Electrospun nanofiber, Bone tissue engineering, Biomimetic matrix, Bone bioactivity, 3D scaffolding


Fernàndez-Busquets, X., Körnig, A., Bucior, I., Burger, M. M., Anselmetti, D., (2009). Self-recognition and Ca2+-dependent carbohydrate-carbohydrate cell adhesion provide clues to the cambrian explosion Molecular Biology and Evolution , 26, (11), 2551-2561

The Cambrian explosion of life was a relatively short period approximately 540 Ma that marked a generalized acceleration in the evolution of most animal phyla, but the trigger of this key biological event remains elusive. Sponges are the oldest extant Precambrian metazoan phylum and thus a valid model to study factors that could have unleashed the rise of multicellular animals. One such factor is the advent of self-/non-self-recognition systems, which would be evolutionarily beneficial to organisms to prevent germ-cell parasitism or the introduction of deleterious mutations resulting from fusion with genetically different individuals. However, the molecules responsible for allorecognition probably evolved gradually before the Cambrian period, and some other (external) factor remains to be identified as the missing triggering event. Sponge cells associate through calcium-dependent, multivalent carbohydrate-carbohydrate interactions of the g200 glycan found on extracellular proteoglycans. Single molecule force spectroscopy analysis of g200-g200 binding indicates that calcium affects the lifetime (+Ca/-Ca: 680 s/3 s) and bond reaction length (+Ca/-Ca: 3.47 /2.27). Calculation of mean g200 dissociation times in low and high calcium within the theoretical framework of a cooperative binding model indicates the nonlinear and divergent characteristics leading to either disaggregated cells or stable multicellular assemblies, respectively. This fundamental phenomenon can explain a switch from weak to strong adhesion between primitive metazoan cells caused by the well-documented rise in ocean calcium levels at the end of Precambrian time. We propose that stronger cell adhesion allowed the integrity of genetically uniform animals composed only of "self" cells, facilitating genetic constitutions to remain within the metazoan individual and be passed down inheritance lines. The Cambrian explosion might have been triggered by the coincidence in time of primitive animals endowed with self-/non-self-recognition and of a surge in seawater calcium that increased the binding forces between their calcium-dependent cell adhesion molecules.

JTD Keywords: Calcium, Cambrian explosion, Carbohydrates, Cell adhesion, Origin of Metazoa, Sponges


Mir, M., Homs, A., Samitier, J., (2009). Integrated electrochemical DNA biosensors for lab-on-a-chip devices Electrophoresis , 30, (19), 3386-3397

Analytical devices able to perform accurate and fast automatic DNA detection or sequencing procedures have many potential benefits in the biomedical and environmental fields. The conversion of biological or biochemical responses into quantifiable optical, mechanical or electronic signals is achieved by means of biosensors. Most of these transducing elements can be miniaturized and incorporated into lab-on-a-chip devices, also known as Micro Total Analysis Systems. The use of multiple DNA biosensors integrated in these miniaturized laboratories, which perform several analytical operations at the microscale, has many cost and efficiency advantages. Tiny amounts of reagents and samples are needed and highly sensitive, fast and parallel assays can be done at low cost. A particular type of DNA biosensors are the ones used based on electrochemical principles. These sensors offer several advantages over the popular fluorescence-based detection schemes. The resulting signal is electrical and can be processed by conventional electronics in a very cheap and fast manner. Furthermore, the integration and miniaturization of electrochemical transducers in a microsystem makes easier its fabrication in front of the most common currently used detection method. In this review, different electrochemical DNA biosensors integrated in analytical microfluidic devices are discussed and some early stage commercial products based on this strategy are presented.

JTD Keywords: DNA, Electrochemical DNA biosensors, Electrochemistry, Lab-on-a-chip, Micro Total Analysis systems, Field-effect transistors, Sequence-specific detection, Chemical-analysis systems, Solid-state nanopores, Carbon nanotubes, Microfluidic device, Electrical detection, Hybridization, Molecules, Sensor


Rodriguez-Segui, S. A., Bucior, I., Burger, M. M., Errachid, A., Fernàndez-Busquets, X., (2009). Application of the quartz crystal microbalance to the study of multivalent carbohydrate-carbohydrate adhesion Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 782-787

Carbohydrate-carbohydrate interactions in cell adhesion are being increasingly explored as important players in cell-cell and cell-extracellular matrix interactions that are characterized by finelytuned on-off rates. The emerging field of glycomics requires the application of new methodologies to the study of the generally weak and multivalent carbohydrate binding sites. Here we use the quartz crystal microbalance (QCM) for the analysis of the self-binding activity of the g200 glycan, a molecule of marine sponge origin that is responsible for Ca2+-dependent species-specific cell adhesion. The QCM has the advantages over other highly sensitive techniques of having only one of the interacting partners bound to a surface, and of lacking microfluidics circuits prone to be clogged by self-aggregating glycans. Our results show that g200 self-interaction is negligible in the absence of Ca2+. Different association kinetics at low and high Ca2+ concentrations suggest the existence of two different Ca2+ binding sites in g200. Finally, the observation of a non-saturable binding indicates that g200 has more than one self-adhesion site per molecule. This work represents the first report to date using the QCM to study carbohydrate-carbohydrate interactions involved in cell adhesion.

JTD Keywords: Ca2+-dependent binding, Carbohydrate-carbohydrate interaction, Cell adhesion, Proteoglycan, Quartz crystal microbalance, Sponges


Oncins, Gerard, Vericat, Carolina, Sanz, Fausto, (2008). Mechanical properties of alkanethiol monolayers studied by force spectroscopy Journal of Chemical Physics , 128, (4), 044701

The mechanical properties of alkanethiol monolayers on Au(111) in KOH solution have been studied by force spectroscopy. The analysis of the vertical force versus penetration curves showed that monolayer penetration is a stepped process that combines elastic regions with sudden penetration events. The structural meaning of these events can be explained both by the creation of gauche defects on the hydrocarbon chains and by a cooperative molecular tilting model proposed by Barrena et al. [J. Chem. Phys. 113, 2413 (2000)]. The validity of these models for alkanethiol monolayers of different compactness and chain length has been discussed. The Young's modulus (E) of the monolayers has been calculated by using a recently developed model which considers the thickness of the monolayer as a parameter, thus allowing a decoupling of the mechanical properties of the thiol layer from those of the Au(111) substrate. As a result, the calculated E values are in the range of 50-150 Pa, which are remarkably lower than those previously reported in the literature.

JTD Keywords: Adsorbed layers, AFM, Gold, Monolayers, Organic compounds, Self-assemblyYoung's modulus


Farre, R., Montserrat, J. M., Navajas, D., (2008). Morbidity due to obstructive sleep apnea: insights from animal models Current Opinion in Pulmonary Medicine , 14, (6), 530-536

PURPOSE OF REVIEW: Obstructive sleep apnea (OSA) is a prevalent disorder with clinically well known mid-term and long-term consequences. It is difficult, however, to investigate the mechanisms causing morbidity in OSA from human studies, owing to confounding factors in patients. Animal research is useful to analyze the various injurious stimuli--intermittent hypoxia/hypercapnia, mechanical stress and sleep disruption--that potentially cause OSA morbidity. This review is focused on the most recent advances in our understanding of the consequences of OSA, achieved as a result of animal models. RECENT FINDINGS: Animal research has improved our knowledge of various aspects of the cardiovascular consequences of OSA: myocardial damage, left ventricular dysfunction, vasoconstriction, hypertension and atherosclerosis. The systemic and metabolic consequences of OSA--inflammation, insulin resistance, alterations in lipid metabolism and hepatic morbidity--have also been investigated with animal models. Our understanding of the mechanisms involved in the neurocognitive consequences of OSA--neuronal and brain alterations and cognitive dysfunctions--has also been improved through animal research. Moreover, animal models have recently been used to investigate the mechanisms of upper airway inflammation and dysfunction. SUMMARY: The simple experimental models used to investigate OSA morbidity are useful for investigating isolated mechanisms. However, more complex and realistic models incorporating the various injurious challenges characterizing OSA are required to more precisely translate the results of animal research to patients and to design potentially preventive and therapeutic strategies.

JTD Keywords: Animal model, Morbidity, Sleep apnea, Translational research


Maneva-Radicheva, L., Ebert, U., Dimoudis, N., Altankov, G., (2008). Fibroblast remodeling of adsorbed collagen type IV is altered in contact with cancer cells Histology and Histopathology , 23, (7), 833-842

A series of co-culture experiments between fibroblasts and H-460 human lung carcinoma cells were performed to learn more about the fate of adsorbed type IV collagen (Coll IV). Fibroblasts were able to spatially rearrange Coll IV in a specific linear pattern, similar but not identical to the fibronectin (FN) fibrils. Coll IV partly co-aligns with fibroblast actin cytoskeleton and transiently co-localize with FN, as well as with beta 1 and a 2 integrin clusters, suggesting a cell-dependent process. We further found that this Coll IV reorganization is suppressed in contact with H460 cells. Zymography revealed strongly elevated MMP-2 activity in supernatants of co-cultures, but no activity when fibroblasts or cancer cells were cultured alone. Thus, we provide evidence that reorganization of substrate associated Coll IV is a useful morphological approach for in vitro studies on matrix remodeling activity during tumorigenesis.

JTD Keywords: Adsorbed collagen IV reorganization, Fibroblasts and cancer cells co-culture, MMP-2


Rodriguez, Segui, Bucior, I., Burger, M. M., Samitier, J., Errachid, A., Fernàndez-Busquets, X., (2007). Application of a bio-QCM to study carbohydrates self-interaction in presence of calcium Transducers '07 & Eurosensors Xxi, Digest of Technical Papers 14th International Conference on Solid-State Sensors, Actuators and Microsystems , IEEE (Lyon, France) 1-2, 1995-1998

In the past years, the quartz crystal microbalance (QCM) has been successfully applied to follow interfacial physical chemistry phenomena in a label free and real time manner. However, carbohydrate self adhesion has only been addressed partially using this technique. Carbohydrates play an important role in cell adhesion, providing a highly versatile form of attachment, suitable for biologically relevant recognition events in the initial steps of adhesion. Here, we provide a QCM study of carbohydrates' self-recognition in the presence of calcium, based on a species-specific cell recognition model provided by marine sponges. Our results show a difference in adhesion kinetics when varying either the calcium concentration (with a constant carbohydrate concentration) or the carbohydrate concentration (with constant calcium concentration).

JTD Keywords: Biomedical materials, Calcium, Cellular biophysics, Microbalances, Porous materials, Quartz, Surface chemistry/ bio-QCM, Carbohydrates self-interaction, Quartz crystal microbalance, Interfacial physical chemistry phenomena, Carbohydrate self adhesion, Biologically relevant recognition events, Marine sponges, Adhesion kinetics, Calcium concentration, Carbohydrate concentration, Biosensors, Biomedical materials, Surface chemistry, Cellular biophysics